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Multireference linearized Coupled Cluster theory for strongly correlated systems
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We propose a multireference linearized coupled cluster theory using matrix product states (MPS-
LCC) which provides remarkably accurate ground-state energies, at a computational cost that has
the same scaling as multireference configuration interaction singles and doubles (MRCISD), for
a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and
stretched geometries, to highly multireference systems such as the chromium dimer and lattice
models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC
theory shows a speed up of several orders of magnitude over the usual DMRG algorithm while
delivering energies in excellent agreement with converged DMRG calculations. Also, in all the
benchmark calculations presented here MPS-LCC outperformed the commonly used multi-reference
quantum chemistry methods in some cases giving energies in excess of an order of magnitude more
accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the
use of multireference quantum chemical techniques in strongly-correlated ab-initio Hamiltonians,
including two and three-dimensional solids.

Introduction

One of the most pressing theoretical questions in elec-
tronic structure theory is how to deal with realistic
strongly correlated electronic systems, which typically
exhibit combinatorial complexity in the description of
the ground-state wavefunction. There are two dominant
paradigms in electronic structure algorithms, namely
variational and projective methods, which for different
reasons struggle to capture the entirety of the problem.
Variational methods (such as CI1 and DMRG2,3) are
in principle robust techniques, but generally scale expo-
nentially in the number of correlating orbitals and do
not provide size-extensive energies (except in unreach-
able exact limits), whilst projective methods, such as
many-body perturbation theory and coupled cluster the-
ory, spectacularly successful in describing weak corre-
lation, fail as the underlying single-reference wavefunc-
tion upon which they are build diminishes in impor-
tance with growing strength of correlation. It is nat-
ural to ask if a judicious combination of a variational
and a projective method exists which can tractably han-
dle realistic strong-correlation systems. Here we pro-
pose such a method that is based on the linearized
Coupled-Cluster (LCC) method4 and is implemented us-
ing the matrix-product states (MPS)5 formalism to cap-
ture highly multi-configurational zeroth- (and higher) or-
der wavefunctions.

To give a consolidated presentation, we first start by
deriving the governing equations for the single reference
LCC method which uses the Hartree-Fock wavefunction
as the zeroth order state. We show that LCC is closely re-
lated to the commonly used variational method, the con-
figuration interaction with singles and doubles (CISD).

We highlight the strengths and weaknesses of LCC com-
pared to CISD. The main shortcoming of LCC (it be-
comes divergent when near-degeneracies are present) can
be overcome by using a multireference zeroth order wave-
function. These multireference LCC equations have the
same relation to the variational equations usually solved
using DMRG6–11, as the LCC equations have to CISD.
We show how the Matrix Product States can be used to
efficiently solve the multireference equations by a small
modification of the DMRG algorithm, resulting in a
method which we call MPS-LCC. The resulting method
is extremely powerful and we demonstrate its strength by
solving several tough paradigmatic benchmark problems:
first-row dimers at equilibrium and stretched geometries,
the 1-band and 3-band (cuprate-like) Hubbard models in
the strong-correlation regime U/t = 4 − 10 and the Cr2
dimer.

Theory

To derive linearized coupled cluster equations one
starts with the coupled cluster singles and doubles wave-
function written using the exponential ansatz |Ψ〉 =

eT̂ |Φ0〉, where T̂ = T̂1 + T̂2 is the sum of the single and
double excitation operators and |Φ0〉 is the Hatree-Fock
wavefunction. When the CC wavefunction is substituted
into the Schroedinger equation Ĥ |Ψ〉 = E|Ψ〉 and is left

multiplied by e−T̂ we obtain e−T̂ ĤeT̂ |Φ0〉 = E|Φ0〉. Left
projecting onto the Hartree Fock and a set of singly and
doubly excited determinants |Φµ〉 we obtain the expres-
sion for the coupled cluster energy and the governing
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equations for the t−amplitudes.

E =〈Φ0|e
−T̂ ĤeT̂ |Φ0〉 (1)

0 =〈Φµ|e
−T̂ ĤeT̂ |Φ0〉 (2)

The set of non-linear Equations 2 can be solved to evalu-
ate the t−amplitudes which can then be substituted into
Equation 1 to obtain the coupled cluster energy. To ob-
tain LCC equations the above equations can further be
simplified by expanding the exponential using the Baker-
Campbell-Hausdorff expansion and truncating the series

at the first order, i.e e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂ ], to yield

E = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|Ĥ |Ψ1〉 (3)

0 = 〈Φµ|Ĥ |Φ0〉+ 〈Φµ|(Ĥ − E0)|Ψ1〉 (4)

Equations 3 and Equations 4 are the governing equa-
tions of the single reference linearized coupled cluster the-
ory, where we have defined |Ψ1〉 ≡ T̂ |Φ0〉 is the LCC
correction to the Hartee-Fock wavefunction consisting of
only single and double excitations. Equation 4 is now a
linear equation in the unknown |Ψ1〉 which can be solved
and substituted into Equation 3 to calculated the LCC
energy.
Now let us recall that the variational principle can be

written as a set of equations 〈Φµ|H − E|Ψ〉 = 0, where
|Φµ〉 are the basis states used to expand the wavefunction
|Ψ〉. When the variational principle is used to optimize
the CISD wavefunction we obtain

E = 〈Φ0|Ĥ |Φ0〉+ 〈Φ0|Ĥ|Ψ1〉 (5)

0 = 〈Φµ|Ĥ|Φ0〉+ 〈Φµ|(Ĥ − E)|Ψ1〉, (6)

where we have used intermediate normalization
(〈Φ0|Ψ〉 = 1) and as before |Ψ1〉 is the correction
to the Hartree-Fock wavefunction consisting of only
singly and doubly excited determinants. These equations
are remarkably similar to Equations 3 and 4 with the
small modification that the zeroth order energy E0

in Equation 4 is replaced with the variational energy
E in Equation 6. This seemingly small change has a
significant implication that the LCC energies unlike
the CISD energies are fully size-extensive. The LCC
energies are nearly equal to the full CCSD energies for
weakly correlated problems. We demonstrate this by
showing the correlation energy of diamond in Table I
with an ab-initio Hamiltonian on a 2 × 2 × 2 k−point
sampling resulting in 64 electrons in 64 orbital problem
(see [12] for more details).
The size-extensivity unfortunately comes at the cost

of variationality and more problematic is the fact that
the equations are prone to divergence13 in cases of near
degeneracy when other determinants besides the Hartree-
Fock have energies similar to E0.
This shortcoming can be overcome by formulating a

multireference LCC method in which the E0 and Ψ0 in
Equation 4 is replaced by the energy and wavefunction

TABLE I: The correlation energy (Eh/electron) of diamond
calculated using various theories with an ab-initio Hamilto-
nian. The DMRG calculation is still very far from convergence
even though it was performed using an MPS with a large vir-
tual bond dimension of M = 7500. The LCC energies are of
comparable accuracy to the CCSD and the FCIQMC ener-
gies and were calculated using a small MPS with M = 500,
representing a speed up of over 3 orders of magnitude over
the DMRG calculation. (See the main text for algorithmic
details.)

FCIQMC MP2 CCSD LCC DMRG

-0.6190 -0.5145 -0.6134 -0.6235 -0.5477

obtained by fully correlating a set of orbitals around the
Fermi surface. Such a multireference LCC method has
been formally derived in the past by Bartlett et al.14,15

as well as by Fink16,17. Here, we use Fink’s formulation
in which the single reference LCC is written as a pertur-
bation theory using an ingenious use of a zeroth order
Hamiltonian. This perturbation theory is then straight
forwardly extended to multireferences cases thus result-
ing in a multireference LCC theory. The advantage of
Fink’s formulation is that it not only reduces to the LCC
equations at the first order but systematic higher order
corrections can also be generated.
Following Fink’s formulation we first start by divid-

ing all the orbitals into an active (or correlating) set, in
which the orbital occupancies can be 0,1,2, a core set
in which the occupancies are constrained to be 2, and a
virtual set with zero occupancy. Then, we partition the
full Hamiltonian Ĥ , whose ground-state wavefunction Ψ
we seek, in terms of number-preserving operators within
each subset:

Ĥ =
∑

ij

tija
†
iaj +

∑

ijkl

〈ij|kl〉a†ia
†
jalak = Ĥ0 + Û (7)

Ĥ0 =
∑

ij;
∆nex=0

tija
†
iaj +

∑

ijkl;
∆nex=0

〈ij|kl〉a†ia
†
jalak (8)

The constraint ∆nex = 0 implies that the operators do
not transfer electrons between the three sets of orbitals,
and Û contains all remaining terms.
To begin with we will assume that the ground-state

eigenfunction Φ(0) of Ĥ0 can be found (later this as-
sumption will be relaxed using the projector approxima-
tion). This zeroth order wavefunction (which will in gen-
eral have a combinatorial complexity) has an eigenvalue
equal to the expectation value of the full Hamiltonian
E(0) = 〈Φ(0)|H |Φ(0)〉 and the first order energy is zero. It
is possible to develop the usual perturbation theory mas-
ter equations to express successive corrections (Φ(n)), to
the wavefunction: Ψ = Φ(0)+Φ(1)+Φ(2)+ .... We expect
this series to converge if the norms at each subsequent
order rapidly diminish. In the limit in which the active
space spans all orbitals, we recover full CI (which is al-
ways convergent), whereas in the opposite limit where
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there are zero orbitals in the active space, we recover lin-
earized Coupled Cluster theory, itself an excellent weak-
correlation theory, but which diverges in strong correla-
tion systems. We expect to have convergent theory for
any level of correlation as long as the active space is suf-
ficiently large.
The equations governing Φ(n) are shown in Equation 9,

where P is the projector on to the zeroth order wavefunc-
tion (P = |Φ(0)〉〈Φ(0)|) and Q is its complement (1−P );
the set of linear equations must be solved one at a time
to obtain the nth order correction to the wavefunction
(Φ(n))18. Once Φ(n) is known, 2n and 2n+ 1 order cor-
rections to the energy (E2n, E2n+1) can be calculated
due to Wigners (2n+ 1) rule using Equation 10.

(Ĥ0 − E(0))|Φ(n)〉 = Q

(

−Û |Φ(n−1)〉+

n
∑

k=1

E(k)|Φ(n−k)〉

)

(9)

E(2n) = 〈Φ(n−1)|Û |Φ(n)〉 −

n
∑

k=1

n−1
∑

j=1

E(2n−k−j)〈Φ(k)|Φ(j)〉

E(2n+1) = 〈Φ(n)|Û |Φ(n)〉 −

n
∑

k=1

n
∑

j=1

E(2n+1−k−j)〈Φ(k)|Φ(j)〉

(10)

We use the variational principle for the perturbation
theory19,20 which states that to solve Equation 9 it is
sufficient to minimize the Hylleraas functional shown in
Equation 14 with respect to |Φ(n)〉. Only a small mod-
ification to the DMRG algorithm, implemented in the
Block code21–23, was required to minimize the Hyller-
aas functional. The details of the algorithm are outlined
in the next section24.
Projector approximation: The cost of optimizing the

zeroth order wavefunction scales exponentially with the
size of the active space. This exponential cost can be
circumvented by only approximately diagonalizing the
zeroth order hamiltonian. The error in the zeroth order
wavefunction can then also be corrected perturbatively.
To do this we define a new zeroth-order hamiltonian
H̃0 = PĤ0P + QĤ0Q, and the perturbing hamilto-
nian becomes Ũ = PĤ0Q + QĤ0P + Û . It can then
be shown that the use of the modified zeroth order
hamiltonian changes the Equations 9 only at the first
order to (Ĥ0 − E(0))|Φ(1)〉 = QĤ|Φ(0)〉, where Ĥ is
the unperturbed hamiltonian; and the expression of
the second order energy changes from 〈Φ(0)|Û |Φ(1)〉 to

〈Φ(0)|Ĥ |Φ(1)〉. These results are remarkable because in
essence they imply that even approximate solution of
the zeroth order equation is sufficient and the original
perturbation series can be used with only minor modifi-
cations.

Before moving on to describe our implementation, we
would like to point out that Fink’s formulation is differ-
ent than Bartlett’s formulation of LMRCC theory. Un-
like Bartlett’s equations, in Fink’s equations the states

with different number of electrons in the active, core and
virtual spaces don’t interact with each other through
the zeroth order Hamiltonian. Also, unlike Bartlett’s
equations the present LMRCC equations cannot be ob-
tained straightforwardly from governing equations of ic-
MRCC25,26 by discarding terms that are higher order
than linear in the excitation operator T . A key differ-
ence between the current approach and the commonly
used approach in multi reference methods is that we use
a single MPS to represent the first order wavefunction
instead of expanding it in the space formed by inter-
nally contracted singles and doubles excitations out of
the reference wavefunction. The states forming this space
are not mutually orthogonal and without special care the
equations can become ill-conditioned due to linear depen-
dencies. The problem of linear-dependencies never arise
in our formulation, further unlike the usual formulations
at convergence our wavefunction is allowed to relax in the
full uncontracted space of singles and doubles excitations.
Another important difference is that unlike the usual for-
mulation we do not need any reduced density matrices,
for example up to sixth-order RDMs are required for a
naive implementation of ic-MRCI calculations, although
in practice this requirement can be realxed by using con-
figuration state functions instead of internally contracted
states27,43. The two other approaches used for incorpo-
rating post-DMRG dynamical correlation are the Canon-
ical Transformation theory and the methods based on ex-
ploring the tangent space of the MPS28–30. The canon-
ical transformation theory31,32 tries to perform the uni-
tary multi reference coupled cluster theory, but with the
simplification that all RDMs higher than the two-body
RDMs are evaluated using the cumulant approximation.
The tangent space based methods are in principle quite
similar to our current method with the main difference
that the corrections to the reference MPS are restricted
to linear combination of its tangent space vectors. This is
a far more restrictive space than the one used here which
is the one spanned by a single MPS with an arbitrarily
large bond dimension.
We would also like to emphasize that this method can

be extended in several ways. First, the static one-particle
and two-particle correlation functions of the ground
state can be easily calculated33,34. Second, in addition
to the ground state, a set of low-lying excited states
can also be calculated with a computational cost that
scales linearly with the number of states using quasi-
degenerate perturbation theory35–37. Finally, dynamical
correlation functions can be calculated by combining the
working equations of coupled cluster Green’s function
framework38 with the dynamical DMRG39,40.

Implementation

A general MPS representing a wavefunction |Ψ〉 is
shown in Eq. (12), where ni is the occupation of orbital i,
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FIG. 1: A matrix product state (MPS) can be represented
graphically using a series of 3-dimensional tensors in which,
the physical index (pointing upwards) of the tensors denotes
the occupation of the orbital and the other two indices, known
as virtual indices, are sequentially contracted. Similarly, a
matrix product operator (MPO) can be represented graphi-
cally using a series of 4-dimensional tensors, with two physical
indices and two virtual indices. The virtual indices of adjacent
tensors are contracted sequentially.

FIG. 2: The figure shown the overlap and a transition matrix
element of an MPO H0 between MPS Ψ and Φ. These are
calculated by contracting the free physical dimension of the
MPS and MPO sequentially as shown in the figure. By ap-
propriately ordering the sequence of these contractions it can
be shown that the cost of evaluating an overlap is O(kM3)
and a transition matrix element is O(k3M3) respectively.

and i1 · · · ik−1 are the virtual indices that are contracted
to obtain the final state. By increasing the size of the vir-
tual indices an MPS can be used to represent any wave-
function arbitrarily accurately. Similarly, operator Ω can
be written in a matrix product operator (MPO) form as
shown in Eq. (13). It should be noted that the expression
in Equation 13 is very general, but it can be simplified if
one limits the operator to have at most two body interac-

tions. In such cases it can be shown that the virtual bond
dimension of the operator need never be greater than k2,
where k is the number of orbitals. The algebraic notation
very quickly becomes cumbersome due to the rapid pro-
liferation of indices; instead the graphical notation which
is briefly explained below is much more convenient and
intuitive. Here we can only give a short introduction to
the notation, for more details we refer the reader to the
excellent review article by Schollwöck5.

Both the MPS and MPO can be conveniently repre-
sented graphically as shown in Figure 1. In the figures
each matrix (strictly speaking this is a three dimensional
tensor) of the MPS is represented by a circle with three
bonds jutting out, one pointing in the upward direction
which corresponds to the physical index ni and two oth-
ers pointing horizontally that correspond to the virtual
indices. The bonds corresponding to the virtual indices
of the adjacent matrices are joined together, which alge-
braically corresponds to contracting the virtual indices,
to obtain the wavefunction. The different MPS and MPO
when written graphically are distinguished by the sym-
bols used to represent their matrices; e.g. here we use a
circle of Ψ, a triangle for Φ and a square for H0 respec-
tively.

It can be shown that taking the overlap between two
MPS and calculating the matrix element of an MPO be-
tween two MPS can be performed with a polynomial cpu
cost of O(kM3) and O(k3M3) respectively (see Figure 2).
To get this computational scaling one needs to perform
the various tensor contractions in a specific well-defined
order. A suboptimal order of contractions can lead to
computational cost that scales exponentially with the
number of orbitals k. The partial derivative of overlap or
operator expectation value with respect to one of the ma-
trices of an MPS gives rise to a tensor which has exactly
the same dimension as that of the matrix. This partial
derivative in graphical language is represented by graph
of the overlap or the expectation with the corresponding
matrix removed from it as shown in Figure 3.

In both MPS-LCC and DMRG the functional being
optimized is quadratic in the wavefunction of interest.
In the case of DMRG it is the energy functional,

E[Ψ] =〈Φ|Ĥ |Φ〉 − 〈Φ|E|Φ〉 (11)

and in the case of LCC it is the Hylleraas functional
shown in Equation 14.
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|Ψ〉 =
∑

{n},i1···ik−1

An1

i1
An2

i1i2
. . . Ank

ik−1
|n1n2 . . . nk〉. (12)

Ω =
∑

{n}{n′},i1···ik−1

W
n1n

′

1

i1
W

n2n
′

2

i1i2
. . .W

nkn
′

k

ik−1
|n1n2 . . . nk〉〈n

′
1n

′
2 . . . n

′
k| (13)

H [Φ(n)] =〈Φ(n)|Ĥ0 − E(0)|Φ(n)〉 −

(

〈Φ(n)|Û |Φ(n−1)〉 −

n
∑

k=1

E(k)〈Φ(n)|Φ(n−k)〉

)

+ 〈Φ(n)|Φ(0)〉

(

〈Φ(0)|Û |Φ(n−1)〉 −

n
∑

k=1

E(k)〈Φ(0)|Φ(n−k)〉

)

(14)

FIG. 3: The figure shows the partial derivative of the overlap
and transition matrix element with respect to the local ten-
sor Anl

il−1il
of the MPS. Each of these graphs represents 4M2

terms corresponding to taking the partial derivative with re-
spect to each element of the tensor A

nl

il−1il
.

In MPS-LCC the wavefunction of interest is written as
an MPS and is then evaluated by minimizing the Hyller-
aas functionals using the sweep algorithm. The key ele-
ment of the sweep algorithm is that at each sweep itera-
tion l only one tensor Anl

il−1il
is optimized keeping all the

others constant. Figure 3 shows the partial derivative
of 〈Ψ|Φ〉 and 〈Ψ|H |Φ〉 with respect to the unknown ten-
sor Anl

il−1il
of wavefunction Ψ. The governing equations

that need to be solved at each sweep iteration are ob-
tained by taking the partial derivatives of Equations 14
and equating them to zero. This converts a compli-
cated multi-linear problem into a linear algebra problem
(a linear equation) with the elements of tensor Anl

il−1il

as unknowns. Standard iterative algorithms like the,
Jacobi-Davidson and Conjugate-Gradient methods can
be used to solve the linear algebra problems. By increas-
ing the virtual bond dimension of the MPS expressing
|Φ(n)〉, the Equation 14 can be minimized arbitrarily ac-
curately. The cpu cost per sweep iteration for calculating
the two most expensive terms |〈Φ(n)|Ĥ0−E(0)|Φ(n)〉 and

〈Φ(n)|Û |Φ(n−1)〉 on the right hand size of Equation 14
are O(k2M3

n) and O(k2M2
nMn−1) + O(k2MnM

2
n−1) re-

spectively, where Mn is the virtual bond dimension of
the MPS representing the state |Φ(n)〉. The entire algo-
rithm is implemented in the Block code which includes
the ability to treat several different symmetries including
SU(2) and non-Abelian point group.

Benchmarks

Earlier we showed that MPS-LCC is more efficient
that the variational DMRG algorithm for weakly corre-
lated systems like the diamond crystal. Here we demon-
strate that it shows equally impressive performances for:
first row dimers at equilibrium and stretched geometries,
strongly correlated systems like 2-dimensional 1-band
and 3-band Hubbard model at half filling and the Cr2
dimer. The half filled 1-band Hubbard model is chosen
because reliable AFQMC results are available due to ab-
sence of sign-problem. It should be pointed out that from
the perspective of MPS-LCC calculations, half-filling rep-
resents the hardest case and we expect the quality of re-
sults to be better away from half filling.

First row dimers

We start by calculating the energy of the ground state
of the C2 dimer at various bond lengths using MPS-LCC
with the double-zeta basis set. The MPS-LCC calcula-
tions are performed on an MCSCF reference wavefunc-
tion with an active space of (8o, 8e) and the resulting
energies are tabulated in Table II. The table also shows
the FCI energies which are calculated by correlating all
12 electrons in 28 orbitals using the DMRG algorithm as
implemented in the Block code.The errors in the MC-
SCF and MPS-LCC energies, calculated relative to the
FCI energies, are plotted in Figure 4. We see that there
is a discontinuity in the MCSCF and MPS-LCC energies
at a bond length of 3.10 bohr. This is because the 1Σ+

g

and 1∆g energy curves cross between 3.05 bohr and 3.10
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FIG. 4: The figure shows the error in the energies calculated
using MCSCF and MPS-LCC methods relative to the FCI
energies for the carbon dimer at various bond lengths using
the cc-pVDZ basis set. There is a discontinuity in the energies
of the MPS-LCC and MCSCF methods at 3.1 bohr because
of a curve crossing between 1Σ+

g and 1∆g states. This curve
crossing is shown in the inset.

bohr bond lengths, with the former being the ground
state at shorter bond lengths and the latter being the
ground state at larger bond lengths. In our calculations
the discontinuity in the MCSCF and MPS-LCC curves
arise because we have only used the D2h subgroup of
the full D∞h point group of the molecule. Besides the
discontinuity at the curve crossing the MPS-LCC energy
is both continuous and smooth despite the fact that at
bond lengths greater than 3.05 bohr the ground state
and the first excited states are nearly degenerate with a
maximum separation of less than 6 mEh.

We also benchmark the MPS-LCC method for C2, N2

and F2 molecules at their equilibrium bond lengths of
1.24253, 1.0977 and 1.4119 Å respectively against the
full configuration interaction (FCI) energies calculated
using the FCIQMC method with up to quadruple-zeta
basis set41. Here, the energies are calculated using vari-
ous commonly used active-space methods like MRCI42,43,
CASPT2, CASPT344, NEVPT245,46 and the MPS-LCC
method developed in this work. For all these meth-
ods two sets of calculations were performed, the first in
which a complete active space configuration interaction
(CAS-CI) wavefunction was used as a reference and in
the second multi-configuration self consistent field (MC-
SCF) wavefunction was used. Both CAS-CI and MCSCF
calculations were performed with frozen core and all the
valence orbitals included in the active space. The results
of the calculations are shown in Table III and are plot-
ted in Figure 5. These calculations show that MPS-LCC
gives higher accuracy for these molecules compared to
all other methods. One striking feature of these results
is the fact that the quality of the MPS-LCC results are

TABLE II: The table shows the ground state energy of the
C2 dimer calculated using various methods with the cc-pVDZ
basis set. The MCSCF and MPS-LCC use an (8e, 8o) active
space and the FCI energy is calculated by fully correlating 12
electrons in 28 orbitals.

r/a0 Energy/Eh

FCI MCSCF MPS-LCC

1.80 -75.4549 -75.3501 -75.4532

1.85 -75.5132 -75.4080 -75.5116

1.90 -75.5621 -75.4564 -75.5605

1.95 -75.6026 -75.4965 -75.6010

2.00 -75.6358 -75.5294 -75.6343

2.05 -75.6628 -75.5560 -75.6613

2.10 -75.6843 -75.5771 -75.6828

2.15 -75.7010 -75.5935 -75.6996

2.20 -75.7136 -75.6058 -75.7122

2.25 -75.7227 -75.6145 -75.7213

2.30 -75.7287 -75.6202 -75.7272

2.35 -75.7320 -75.6232 -75.7306

2.40 -75.7332 -75.6240 -75.7317

2.45 -75.7324 -75.6229 -75.7309

2.50 -75.7300 -75.6202 -75.7285

2.55 -75.7263 -75.6161 -75.7247

2.60 -75.7215 -75.6109 -75.7199

2.65 -75.7159 -75.6047 -75.7141

2.70 -75.7095 -75.5979 -75.7076

2.75 -75.7026 -75.5904 -75.7006

2.80 -75.6953 -75.5825 -75.6931

2.85 -75.6878 -75.5743 -75.6853

2.90 -75.6802 -75.5659 -75.6773

2.95 -75.6726 -75.5573 -75.6693

3.00 -75.6652 -75.5487 -75.6612

3.05 -75.6580 -75.5400 -75.6532

3.10 -75.6512 -75.5208 -75.6509

3.15 -75.6467 -75.5163 -75.6464

3.20 -75.6420 -75.5116 -75.6418

3.25 -75.6373 -75.5068 -75.6371

3.30 -75.6326 -75.5020 -75.6323

3.35 -75.6278 -75.4972 -75.6276

3.40 -75.6230 -75.4924 -75.6228

3.45 -75.6183 -75.4877 -75.6182

3.50 -75.6137 -75.4831 -75.6135

3.55 -75.6091 -75.4785 -75.6090

3.60 -75.6047 -75.4740 -75.6046

3.65 -75.6003 -75.4696 -75.6002

3.70 -75.5961 -75.4654 -75.5960

3.75 -75.5920 -75.4613 -75.5920

3.80 -75.5880 -75.4573 -75.5880

3.85 -75.5842 -75.4535 -75.5842

3.90 -75.5805 -75.4498 -75.5805

3.95 -75.5769 -75.4463 -75.5770

4.00 -75.5735 -75.4429 -75.5737

4.05 -75.5703 -75.4398 -75.5705

4.10 -75.5672 -75.4367 -75.5674

4.15 -75.5642 -75.4339 -75.5645
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almost unaffected by the reference wavefunction. This
is a well known feature of the CCSD method, but from
these results it looks like the linearized version of the the-
ory also shows this feature as long as the active space is
large enough to avoid divergences.

It can be seen that the results of the MRCI calculation
for the F2 dimer are much less accurate than the C2

and N2 dimers. This is most likely due to the relatively
small size of the zeroth order wavefunction which only
has about 64 determinants in the active space compared
to 4900 and 3136 determinants respectively for C2 and
N2 respectively. The perturbation theories are in general
somewhat less sensitive to the size of the Hilbert space
of the zeroth order wavefunction because they are not
variational.

We have also performed calculations on the C2 dimer
with cc-pVQZ basis set at various bond lengths. Here
the accurate benchmark data is obtained using the frozen
core DMRG calculations23 published recently. These re-
sults again show the higher accuracy obtained by the
MPS-LCC method relative to other methods. There are
larger non-parallality errors at bond length of 1.6 Å pos-
sibly because of curve crosing between two Ag states (the
intersecting 1Σ+

g and 1∆g states belong to the Ag irre-
ducible representation in the D2h subgroup) near this
geometry. Quasi-degenerate perturbation theory can in
principle be used to ameliorate these problems.

Cr2 dimer

The chromium dimer has been a challenging problem
for quantum chemistry and large active spaces and basis
sets are required to obtain the correct binding curve47–57.
Here, we do not try to calculate the best binding curve
that we can, but instead use some smaller benchmark cal-
culations to compare the commonly used quantum chem-
ical methods against the MPS-LCC method. In particu-
lar, we carry out an all electron (48e, 42o) calculation on
the Cr2 dimer with an SVP basis set at a bond length of
1.5 Å.

Table V shows the total energy and the well depth
calculated using various quantum chemical methods, in-
cluding coupled cluster with up to fourth order excitation
and the contracted MRCI method27 as implemented in
Molpro58. All the multireference calculations including
the LCC were performed with a zero order wavefunction
obtained by performing a (12e,12o) CASSCF calculation.
The first order MPS-LCC wavefunction was represented
with an MPS of virtual bond dimension 4000. It can
be seen that the MPS-LCC method not only gives a to-
tal energy closest to our best guess of FCI energy but
the error in the calculated well depth is over an order of
magnitude more accurate than any of the other methods
shown here.

 0

 0.02

 0.04

 0.06

 0.08

C 2
(d

z)

C 2
(tz

)

C 2
(q

z)

N 2
(d

z)

N 2
(tz

)

N 2
(q

z)

F 2
(d

z)

F 2
(tz

)

F 2
(q

z)

E
rr

or
 / 

E
h 

MPS-LCC
MRCI

CASPT3
CASPT2
NEVPT2

 0

 0.02

 0.04

 0.06

 0.08

E
rr

or
 / 

E
h 

MPS-LCC
MRCI

CASPT3
CASPT2

FIG. 5: The error in the energies calculated using various ac-
tive space methods relative to the highly accurate FCIQMC
energies41 of C2, N2 and F2 molecules at bond lengths of
1.24253, 1.0977 and 1.4119 Å respectively. The upper panel
shows the errors when the CAS-CI wavefunction was the ref-
erence and the bottom panel used an MCSCF wavefunction
as reference. In both cases the active space chosen was the
full valence space containing eight orbitals.
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TABLE III: The third column show the ground state energy and estimated uncertainty in Hartrees (Eh) of the C2, N2 and
F2 molecules at bond lengths of 1.24253, 1.0977 and 1.4119 Å respectively calculated using the FCIQMC41 method. The rest
of the table shows the errors of various active space methods relative to FCIQMC in milli-Hartrees (mEh). The active space
used for these calculations consisted of the eight valence orbitals including 2s and 2p orbitals. Two sets of calculations were
performed, one with the CAS-CI reference and the other with MCSCF reference.

Molecule Basis FCIQMC CAS-CI reference (mEh) MCSCF reference (mEh)

(Eh) MPS-LCC CASPT2 CASPT3 MRCI MPS-LCC CASPT2 CASPT3 MRCI NEVPT2

C2 dz -75.7285(1) 0.0 64.7 30.8 63.2 1.4 9.0 5.2 3.7 21.4

C2 tz -75.7850(1) 1.5 73.7 28.4 65.7 2.4 10.6 7.9 7.2 27.4

C2 qz -75.8023(3) 1.9 75.7 25.1 65.9 2.6 9.1 8.5 8.0 27.2

N2 dz -109.2767(1) 1.3 34.3 16.3 20.7 1.4 18.4 5.0 7.0 28.7

N2 tz -109.3754(1) 3.7 45.9 18.2 26.0 2.6 22.1 7.7 13.9 37.1

N2 qz -109.4058(1) 4.5 49.0 16.0 26.6 2.9 20.7 8.2 15.9 37.2

F2 dz -199.0994(1) 3.1 37.1 19.8 17.8 4.3 14.2 8.4 19.4 44.2

F2 tz -199.2977(1) 6.3 56.6 23.2 25.0 7.7 19.2 14.8 35.4 57.5

F2 qz -199.3598(2) 6.7 62.7 22.0 26.0 7.9 18.6 16.0 40.6 59.6

TABLE IV: The second row of the table shows the DMRG
energy in Hartrees for Carbon dimer at various bond lengths.
The rest of the table shows the error in milli-Hartree (mEh)of
various methods relative to the DMRG energies. All calcu-
lations besides DMRG were performed on a reference wave-
function obtained by a frozen core MCSCF calculation with
eight electrons in eight orbitals active space.

r DMRG MPS-LCC MRCI CASPT3 CASPT2 NEVPT2

Å (Eh) (mEh)

1.1 -75.7613 2.7 8.2 7.7 9.7 27.9

1.2 -75.7992 2.8 8.3 8.5 9.5 27.7

1.24253 -75.8027 2.3 8.4 8.9 9.5 27.6

1.3 -75.7994 3.2 8.5 9.5 9.5 27.6

1.4 -75.7797 3.9 9.1 10.9 9.8 28.0

1.6 -75.7241 0.1 12.4 5.7 22.8 27.2

2 -75.6460 1.6 8.4 7.6 15.4 29.0

2d Hubbard model

We first calculate the ground state energy of a half
filled 18-site 2D Hubbard lattice at U/t = 4.0. In this
system when 8 orbitals (4 degenerate orbitals above and
4 below the Fermi surface in k−space) are treated vari-
ationally and the rest of the orbitals are correlated us-
ing the MPS-LCC framework we get excellent agreement
with the AFQMC results which are expected to agree
with the FCI results to all shown significant digits. The
zeroth order wavefunction calculated variationally only
captures about 14% of the correlation energy, but with
the inclusion of the first order correction to the wavefunc-
tion we account for 101% of the remaining correlation
energy. Even though we don’t necessarily recommend

TABLE V: The table presents the absolute energies and the
well depths (in Eh) calculated for the chromium dimer at
1.5 Å bond length with an SVP basis set. CASSCF, MRCI
and MPS-LCC theories used an active space of 12 electrons
in 12 orbitals. Notice that the well-depth calculated using
the MPS-LCC method is over an order of magnitude more
accurate than the result of any other method presented. The
“FCI” energy was calculated by extrapolating a large DMRG
calculation59 to zero discarded weight limit and is estimated
to have a residual error of about 2 mEh.

Method 1.5Å(SVP)

Energy well depth

CASSCF -2,086.2256 0.167

CCSD -2,086.3880 0.177

CCSD(T) -2,086.4222 0.150

CCSDTQ -2,086.4302 0.143

MRCIC -2,086.4280 0.138

MPS-LCC -2,086.4349 0.129

FCI -2,086.4448 ± 0.002 0.129

performing higher order perturbation theory, for illus-
tration purposes we show that subsequent higher order
corrections calculated up to the 7th order show rapid con-
verge towards the FCI energy as shown in Table VI. To
access the cost of the method, we show in Figure 7 that
the third order MPS-LCC energy rapidly converges to
its final value with an MPS bond dimension (M) of only
about 200. This is to be contrasted with the extremely
slow convergence of DMRG algorithm with both local-
ized and delocalized k−space basis. Given that the cpu
time of both the MPS-LCC and the DMRG algorithm
scale as O(M3) we see about three orders of magnitude
improvement in the computational cost.
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FIG. 7: The graph shows the energy error of three p-MPS-
LCC calculations, (where the approximate zeroth order wave-
function is represented with an MPS of bond dimension 100
(blue), 20 (green) and 10 (red) respectively) relative to the
FCI energy versus the MPS bond dimension of the first order
wavefunction. We have also shown the energy error of the
DMRG calculation using localized orbitals (black) and delo-
calized k-space orbitals (cyan) respectively. The MPS-LCC
method shows several orders of magnitude speed up over the
corresponding DMRG calculations.

Now we assess the performance of the projector ap-

proximation, where the zeroth order wavefunction is only
approximately evaluated. Here again the perturbation
theory shows rapid convergence towards the FCI energy.
In particular, when the energy of Ψ(0) is minimized by
using an MPS with a virtual bond dimension of only 20
the errors in energy compared to full MPS-LCC rapidly
diminishes as shown in Table VI.
Two p−MPS-LCC calculations, one with an (8e, 8o)

and other with (24e, 24o) active space were performed
on a 2-D Hubbard model with 50 sites. The zeroth order
wavefunction in the two cases only accounted for about
1% and 14% of correlation energy respectively. But re-
markably, the third order correction to the energy was
able to capture 95% and 99% of the remaining correlation
energy. The first order correction to the wavefunction in
the two cases above were represented by an MPS of bond
dimension 5000 and 20000 respectively. Based on the re-
sults of the smaller 18 site Hubbard model we expect this
perturbation theory to be rapidly convergent although it
was not possible to carry out these calculations due to
the high computational cost.

3-band Hubbard model

Recently Schwarz et al.63 have published FCIQMC64,65

results on an undoped 3-band (p − d) Hubbard model
with 10 unit cells. Each unit cell containing CuO2

is represented by three orbitals, one 3dx2−y2 centered
on the Cu atom and a 2px and 2py orbital on the
the Oxygen atoms displaced in the x−direction and
y−directions relative to the Cu respectively. For the
details of the Hamiltonian we refer the reader to the
original publication, but we would like to note that the
model has inter-site potential and is extremely strongly
correlated with the on-site repulsion divided by nearest
neighbor hopping U/t ≈ 8. We performed an MPS-LCC
calculation, where 10 holes were exactly correlated in the
10 lowest energy orbitals and the effect of the remaining
20 orbitals was taken into account perturbatively with
a first order wavefunction represented by an MPS of
bond dimension M = 1500. Table VII shows that the
resulting MPS-LCC energy has an astonishingly small
error of less than 0.0002 eV/hole compared to a very
large DMRG calculation with an M = 6000.

Conclusion and Outlook

In this paper we show that the governing equations of
multireference LCC theory can be efficiently solved using
MPS by slightly modifying the DMRG algorithm. The
theory has been used to obtain highly accurate energies,
with a fraction of the cost of a variational DMRG calcula-
tion, of several benchmark problems: ab-initio Hamilto-
nian of diamond, to Cr2 dimer, two-dimensional 1-band
and 3-band Hubbard models at half filling in the strongly
correlated regime of U/t = 4 − 8. More broadly, our
work demonstrates new possibilities for efficiently access-
ing the ground state wave functions of highly correlated
materials like transition metal oxides fully ab-initio with-
out recourse to approximate models.
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26 M. Hanauer, A. Köhn, The Journal of chemical physics

134, 204111 (2011).
27 K. R. Shamasundar, G. Knizia, H.-J. Werner, The Journal

of Chemical Physics 135, 054101 (2011).
28 J. Haegeman, et al., Physical Review Letters 107, 070601

(2011).
29 S. Wouters, N. Nakatani, D. Van Neck, G. K.-L. Chan,

Physical Review B 88, 075122 (2013).
30 N. Nakatani, S. Wouters, D. Van Neck, G. K.-L. Chan,

The Journal of chemical physics 140, 024108 (2014).
31 T. Yanai, Y. Kurashige, E. Neuscamman, G. K.-L. Chan,

The Journal of Chemical Physics 132, 24105 (2010).
32 E. Neuscamman, T. Yanai, G. K.-L. Chan, Int. Rev. Phys.

Chem. 29, 231 (2010).
33 D. Ghosh, J. Hachmann, T. Yanai, G. K. L. Chan, J.

Chem. Phys. 128, 144117 (2008).
34 D. Zgid, M. Nooijen, J. Chem. Phys. 128, 144115 (2008).
35 D. J. Klein, The Journal of Chemical Physics 61, 786

(1974).
36 I. Shavitt, L. T. Redmon, The Journal of Chemical Physics

73, 5711 (1980).
37 B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
38 M. Nooijen, J. G. Snijders, International Journal of Quan-

tum Chemistry 48, 15 (1993).
39 T. D. Kühner, S. R. White, Phys. Rev. B 60, 335 (1999).
40 E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
41 D. Cleland, G. H. Booth, C. Overy, A. Alavi, Journal of

Chemical Theory and Computation 8, 4138 (2012).
42 P. J. Knowles, H.-J. Werner, Chemical Physics Letters

145, 514 (1988).
43 H.-J. Werner, P. J. Knowles, The Journal of Chemical

Physics 89, 5803 (1988).
44 H.-J. Werner, Molecular Physics 89, 645 (1996).
45 C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P.

Malrieu, J Chem. Phys. 114, 10252 (2001).
46 C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P.

Malrieu, J Chem. Phys. 114, 10252 (2001).
47 W. Purwanto, S. Zhang, H. Krakauer, The Journal of

chemical physics 142, 064302 (2015).
48 G. Li Manni, D. Ma, F. Aquilante, J. Olsen, L. Gagliardi,

Journal of Chemical Theory and Computation 9, 3375
(2013).

49 Y. Kurashige, T. Yanai, The Journal of chemical physics

135, 094104 (2011).



11

50 D. Zgid, D. Ghosh, E. Neuscamman, G. K.-L. Chan, The
Journal of chemical physics 130, 194107 (2009).

51 T. Müller, The Journal of Physical Chemistry A 113,
12729 (2009).

52 C. Angeli, B. Bories, A. Cavallini, R. Cimiraglia, The Jour-
nal of chemical physics 124, 054108 (2006).

53 P. Celani, H. Stoll, H.-J. Werner, P. J. Knowles, Mol. Phys.

102, 2369 (2004).
54 H. Dachsel, R. J. Harrison, D. A. Dixon, The Journal of

Physical Chemistry A 103, 152 (1999).
55 M. M. Goodgame, W. A. Goddard, Physical Review Letters

54, 661 (1985).
56 K. Andersson, B. Roos, P.-A. Malmqvist, P.-O. Widmark,

Chemical Physics Letters 230, 391 (1994).
57 C. W. Bauschlicher, H. Partridge, Chemical Physics Let-

ters 231, 277 (1994).
58 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby,
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