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If a thermal gradient is applied along a fluid-solid interface, the fluid experiences a thermo-osmotic
force. In steady state this force is balanced by the gradient of the shear stress. Surprisingly, there
appears to be no unique microscopic expression that can be used for computing the magnitude of
the thermo-osmotic force.

Here we report how, by treating the mass M of the fluid particles as a tensor in the Hamiltonian,
we can eliminate the balancing shear force in a non-equilibrium simulation and therefore compute
the thermo-osmotic force at simple solid-fluid interfaces. We compare the non-equilibrium force
measurement with estimates of the thermo-osmotic force based on computing gradients of the stress
tensor. We find that the thermo-osmotic force as measured in our simulations cannot be derived
from the most common microscopic definitions of the stress tensor.

Nanotechnology is not just conventional technol-
ogy scaled down to the nano scale. The reason is
that processes that are relatively unimportant on
macroscopic scales may become dominant on the
nano-scale. Case in point are phoretic flows: the
movement of fluids under the influence of gradients
of thermodynamic quantities such as temperature or
chemical potential. On a macroscopic scale, the ap-
plication of a pressure gradient or a body force is the
most efficient way to move fluid through a tube. The
resulting flux is proportional to the fourth power of
the tube diameter. However, on a sub-micron scale,
phoretic flows tend to become important because the
resulting volumetric flow rates scale as the square
of the tube diameter. Hence, for many problems,
be they technological (e.g. nano-fluidics) or natural
(e.g. fluid flow through porous networks or gels),
it is becoming increasingly important to be able to
predict phoretic flows.

A key feature of phoretic flows is that they are
driven by forces that only act on those parts of the
fluid that interact with the confining surfaces. The
range of the fluid-wall interactions is typically in the
nano-meter regime, except in the case of electrolytes
in contact with charged surfaces, in which case the
interaction layers may have thicknesses ranging from
nanometers to microns. Here we will be consider-
ing thermo-osmotic forces in non-polar fluids near
a wall. For such systems, the thermo-osmotic force
driving the flow is typically confined to an interfa-
cial layer with a thickness of a few molecular di-
ameters. Thermo-osmotic flows have been known
for well over a century [1, 2], but the relevance of
this phenomenon is increasing as more experiments
probe transport on the nano-scale. Moreover, there
is increasing evidence that large temperature gradi-
ents may exist inside eukaryotic cells [3], which is

also an environment full of interfaces.
Derjaguin [4] formulated a generic description

of thermo-osmosis in the language of irreversible
thermodynamics. As the approach by Derjaguin
(and others) is phrased in the language of macro-
scopic thermodynamics and continuum hydrody-
namics (creeping-flow equations), it cannot be used
for a quantitative prediction of the magnitude of
thermo-osmotic flows from knowledge of the inter-
molecular interactions. Moreover, the validity of
continuum hydrodynamics is questionable in the
first few molecular layers near a wall.

Yet, a microscopic implementation of Derjaguin’s
approach is possible by using the Onsager reciprocity
relations to relate the flow due to a temperature
gradient to the more easily calculated, excess heat
flux due to a pressure gradient. In fact, in earlier
work [5] we found reasonable agreement between the
Onsager approach and non-equilibrium simulations.
Fu, Merabia and Joly [6] also used the Onsager ap-
proach to estimate the thermo-osmosis coefficient
near a water-graphene interface. However, neither
our methods nor those developed in Ref. [6] allow
us to compute directly the forces on a fluid due to
thermal gradients parallel to a surface.

As noted by Anderson [7], the stress tensor, σαβ ,
near an interface is anisotropic. Force balance nor-
mal to the interface means that σzz is constant,
whereas the transverse stress, σxx, will depend on z.
A temperature gradient in the x−direction induces
a local stress gradient parallel to the interface. The
stress σxx depends on x only through its (explicit or
implicit) dependence on temperature [5]:

∂σxx(z)

∂x
=

(
∂σxx(z)

∂T

)
Pbulk

∂T

∂x
. (1)

The temperature derivative is computed at con-
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stant bulk pressure because thermal gradients do not
cause pressure gradients in the bulk of the liquid.
Therefore, the dependence of σxx on T will vanish
in the bulk. As temperature is the only quantity
that is varied, the local stress gradient must origi-
nate from intermolecular forces.

Here we use molecular simulations to predict
the strength of the local stress gradient. The
most straightforward approach is to carry out
non-equilibrium Molecular Dynamics simulations to
probe thermally induced forces. However, explicitly
imposing a thermal gradient cannot work, because in
steady-state the net force on all fluid particles must
necessarily vanish: the flow induced by the local
stress gradient causes a gradient in shear stress [7]
that cancels the thermo-osmotic force (Eq. (1)) (see
SM: Non-equilibrium Method):

∂σxz(z)

∂z
= −∂σxx(z)

∂x
. (2)

Because the viscous shear force is directly propor-
tional to the fluid velocity, eliminating flow should
cause it to vanish so that only the local stress gra-
dient remains. As we will later show, the simplest
way to accomplish this is to treat the mass M of
the fluid particles as a tensor in the Hamiltonian,
and consider the limit where Myy = Mzz = M , the
original mass of the particles, whilst Mxx →∞. As
the kinetic energy remains finite, vx → 0 for all fluid
atoms thereby eliminating the shear force.

To gain insight on the microscopic origins of the
thermo-osmotic force, it is necessary to isolate the
forces due to the thermal gradients from those due
to gradients in the shear stress. The normal route
to obtain the force fVx (z) on a volume element in
a liquid is to compute the gradient of stress acting
on that element. Here z denotes the distance from
the interface, and x the direction of the force par-
allel to the wall. The superscript V indicates that
fVx (z) is the force per unit volume. We can convert
fVx (z) into fPx (z), the force per particle, by using
ρ(z)fPx (z) = fVx (z), where ρ(z) is the number den-
sity at a distance z from the wall.

Eq. (1) provides a convenient route to compute
stress gradients numerically, because the tempera-
ture dependence of the stress tensor can be com-
puted from equilibrium simulations at slightly dif-
ferent temperatures by numerical differentiation:

∂σxx(z)

∂T
≈ σeq,T2

xx (z)− σeq,T1
xx (z)

T2 − T1
. (3)

In what follows, we denote the approach based on
Eqs. (1) and (3) as the “stress-gradient” route (see
SM: Stress Gradient Method). The stress-gradient

method would seem to offer a route to compute
phoretic forces in thin layers from the microscopic
definition of the stress tensor. However, as we show
below, this approach fails. We recall that the defi-
nition of the microscopic stress tensor is not unique.
This ambiguity is not a problem when computing
the bulk pressure, or even the surface tension [8].
However, for stress gradients parallel to a surface,
different definitions of the microscopic stress do not
yield the same answer. The obvious question is then:
which stress tensor provides the correct description.
The surprising answer that we find is “none” (at
least not one of the usual suspects).

As an alternative to computing the microscopic
stress gradient, we can relate the gradient of the
position-dependent stress to the local value of the
excess enthalpy [5] (see SM: Local Thermal Equilib-
rium (LTE) Method for derivation):

∂σxx(z)

∂x
= −

(
∆h(z)

T

)
∂T

∂x
(4)

where ∆h(z) is the excess enthalpy density. Note
that Eq. (4) can be obtained from a single equilib-
rium simulation.

Due to the non-uniqueness of the definition of the
stress tensor, different definitions may yield differ-
ent stress gradients. The most commonly used mi-
croscopic stress definitions are the virial (V ) (see
e.g. [9]) and the Irving-Kirkwood (IK) [10]. Both
definitions have identical kinetic (K) contributions
(σKxx(z) = −ρ(z)kBT ). The non-uniqueness of the
stress arises from different definitions of the poten-
tial (φ) stress (see SM: Stress-Gradient Method).

Therefore, Eqs. (3) and (4) provide at least three
distinct expressions for the thermo-osmotic force.
We can evaluate Eq. (1) using both stress expres-
sions in Eq. (3) and compute Eq. (4) via our local
thermodynamic expression for ∆h(z) (Eq. S(23)).
Then, the thermo-osmotic force per particle is given
by

fPx (z) =
1

ρave(z)

(
∂σxx(z)

∂x

)
(5)

where ρave(z) = (ρ(T1, P, z) + ρ(T2, P, z))/2.
As the three methods for evaluating the thermo-

osmotic force give different answers (see Fig 2), we
would like to know which, if any of these, is correct.
The obvious approach is to compute the thermo-
osmotic force in a steady-state, non-equilibrium sim-
ulation. To eliminate the shear stress (Eq. (2)) in a
non-equilibrium simulation, so that only the thermo-
osmotic force remains, we propose the following non-
equilibrium simulation technique: First, we impose a
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FIG. 1: Simulation box used for non-equilibrium
force calculation. Fluid atoms (blue, white, and
red) interact with solid atoms (maroon) bonded

together via harmonic springs. Temperature
profiles are plotted over the simulation box and the
color gradient indicates a gradual progression from

cold to hot atoms.

periodic temperature gradient along x. This is done
by selecting the left-most part of the simulation box
(see Fig S2 in SM) and thermostatting at a temper-
ature lower than the average (T = 0.9) while also
selecting the middle of the simulation box and ther-
mostatting at a temperature higher than the average
(see SM: Non-equilibrium Method). The resulting
heat current sets up the thermal gradient.

After the system has reached steady-state, we
change the equations of motion for the fluid atoms:
in particular, we now treat the mass M of the fluid
particles as a tensor in the Hamiltonian, and con-
sider the limit where Mxx → ∞. Transforming the
Hamiltonian in this way changes the dynamics of the
system, but static properties such as inter-molecular
interactions remain the same. Equipartition would
still hold in this model system: hence, the average
kinetic energy associated with motion in the x di-
rection is still kBT/2. As

vx =

√
kBT

Mxx
, (6)

vx → 0 for all fluid atoms. Since Myy and Mzz are
still equal to M , the original mass of the particles,
fluid atoms are still diffusing in the y and z direc-
tions. As the average kinetic energy does not change,
the magnitude of the temperature gradient is left un-
changed (Fig 1). In other words, we have switched
off the shear flow, whilst maintaining the tempera-
ture gradient (see SM: Non-equilibrium Method).

In this stationary system, the bulk serves as a
reservoir of atoms so that fluid near the surface can
rearrange to the local-equilibrium density profile. As
the gradient in shear stress ∂σxz(z)/∂z now van-
ishes, only the thermo-osmotic force will remain. To
compute the average thermo-osmotic force, we must
average the per-atom force calculation over many
different initial configurations, as every single real-
ization will have a different density-profile in the x-
direction frozen in.

In our numerical calculations, we consider a
Lennard-Jones fluid consisting of N = 7920 atoms
interacting via a truncated and shifted Lennard-
Jones potential

Vtrunc(r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6]− V (rc) r ≤ rc
0 r > rc.

(7)
where rc = 4σ. In what follows σ is our unit of
length and ε is our unit of energy: all computed
quantities are expressed in reduced units. We car-
ried out simulations where this fluid was in contact
with three different surfaces: a structured wall inter-
acting with fluid through a less attractive Lennard-
Jones potential, a structured wall interacting via a
purely repulsive Weeks-Chandler-Andersen (WCA)
potential [11], and a reflecting wall that simply
flips the corresponding velocity of fluid atoms if
they attempt to cross it. The parameters for in-
teraction between the fluid and structured wall are:
σfluid-fluid = σsolid-fluid = σ. The interaction strength
between the fluid and structured wall is given by
εsolid-fluid = 0.55ε. The WCA interaction between
the fluid and repulsive wall atoms was obtained by
truncating and shifting the fluid-fluid interaction at
rc = 21/6σ.

All Molecular Dynamics simulations were carried
out using the LAMMPS package [12]. Fig 1 shows a
simulation cell of length 〈Lx〉 = 49.32σ and 〈Ly〉 =
9.86σ containing fluid that interacts with a struc-
tured wall. Fig S1(b) shows the simulation cell for
fluid interacting with a reflecting wall. To ensure
that P = 0.122 in the bulk, the top wall acts as a
piston that is free to move in the x and z-directions.
The solid atoms in the structured walls were ar-
ranged in an fcc lattice (ρ = 0.9σ−3) bonded via
harmonic springs to their nearest neighbors, where
the spring stiffness kbond = 5000ε/σ2 and equilib-
rium rest length is 1.1626σ. The fluid was in contact
with the {001} face of the crystal lattice.

To minimize computational costs, we used a
smaller simulation box (〈Lx〉/3 = 16.44σ, N =
2640 fluid atoms) to evaluate the microscopic stress
(see SM: Stress-Gradient Method) and LTE (see
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SM: Local Thermal Equilibrium (LTE) Method) ex-
pressions. When comparing the directly computed
thermo-osmotic force in the non-equilibrium simula-
tion with the ‘stress gradient’ and LTE methods, we
should note that the direct calculation only includes
the gradient in the potential stress

fP,φx (z) =
1

ρ(z)

(
∂σφxx(z)

∂T

∂T

∂x

)
(8)

since the force computation is simply a summation
over all pairwise forces. Yet, as mentioned previ-
ously, the non-uniqueness of the stress arises due to
different definitions of the potential stress not the
kinetic. Therefore, we can use our equilibrium mea-
surements of the kinetic stress at different tempera-
tures (see SM: Stress-Gradient Method) to calculate
the gradient of the kinetic stress. Adding the kinetic
contribution to our direct calculation should give the
full thermo-osmotic force.

Fig 2(a, b) compare the force per particle pre-
dicted by the stress-gradient and LTE methods with
those computed directly via the non-equilibrium
technique. For the structured wall shown in Fig 2(b)
(see Fig S3 for the Lennard-Jones surface), the non-
equilibrium calculation was carried out for temper-
ature gradients of different magnitudes in order to
validate the signal. As expected, the thermo-osmotic
force monotonically increases as a function of the
gradient. To improve statistics, the non-equilibrium
forces from the left and right regions were averaged
(see Fig S2).

Surprisingly, in all cases, both the V (red) and
IK (cyan) approximations of the stress gradient fail
to predict the thermo-osmotic force (blue). Perhaps
more significantly, the LTE approach (green) gets
quite close, but still differs from the non-equilibrium
result (blue). It is possible that this difference is due
to deviation of the non-equilibrium result from the
local thermal equilibrium approximation. Encourag-
ingly, all methods agree in predicting zero net force
in the bulk, consistent with the theory (Eq (4)).

From a mesoscopic perspective, the integral of
fPx (z) shown in Fig 2 multiplied by the correspond-
ing density profiles ρ(z) (see Fig S4(d)) yields the
surface tension gradient, ∂γ/∂x. Surprisingly, for
all surfaces apart from the Lennard-Jones structured
surface (see Fig S3), the mechanical and LTE ap-
proaches predict the same surface tension gradient
(see Table S1). The discrepancy leads us to con-
clude that stress expressions fail even at a meso-
scopic scale at solid-fluid interfaces (see SM: Surface
Tension Gradients).

In our previous work, there was significant numer-
ical evidence indicating that stress gradients also fail

to predict microscopic Marangoni and osmotic forces
due to concentration gradients [13, 14]. We have
shown that near an interface, it is not possible to
express the microscopic forces as the gradient of the
stress tensor.

In the calculations presented in Fig 2(b), we as-
sume that the structure of the confining solid does
not depend on temperature. Symmetry then implies
that, on average, a flat solid wall should exert zero
net transverse force on a fluid atom. Yet, in the case
of an atomically structured wall, the stress gradient
predicts a non-zero force contribution from the sur-
face (see Fig S5(c)).

To elucidate the role of the wall stress, we repeated
the force calculation via the mass tensor but instead
summed over only wall-fluid interactions φwf . Sur-
prisingly, Fig 3(b) shows a significant force exerted
by the wall on the fluid from z = 0.8−1.4 that scales
linearly with the gradient. As a test case, the same
force was measured in equilibrium simulations (blue
circles) while Mxx →∞ where, as expected, the wall
exerts no force.

To explain the wall forces shown in Fig 3(b), we
consider the possibility that due to the density gra-
dient in x induced by the thermal gradient, the av-
erage center-of-mass x−position (Fig 3(a)) of a fluid
atom (red spheres) is asymmetric with respect to the
lattice positions of the solid atoms (yellow spheres)
below. Fig 3(a) shows the average x−position of
an atom as a function of z in the equilibrium (blue
circles) and non-equilibrium simulations (green, red,
cyan circles).

In equilibrium, the center-of-mass position of a
fluid atom in the Right region (x = 25.48− 48.50 in
Fig S2) is located at the region center, x = 36.99,
also the lattice position of a solid atom. Out of equi-
librium, the average position shifts away from the
center in a way that scales linearly with the gra-
dient and breaks symmetry. The force profile in
Fig 3(b) is consistent with the position shift shown in
Fig 3(a), since the fluid experiences a negative force
where it is shifted right z = 0.8 − 1.0, zero force
at z = 1.075 where there is no shift, and a small
positive force where it is shifted left z = 1.1 − 1.4.
As expected, the wall force decays extremely quickly.
Surprisingly, the potential stress gradient (Fig S5(c))
predicts wall forces that are opposite in sign to the
actual values and decay slowly. It is likely in the case
of a purely repulsive surface (Fig 2(b)), fluid will on
average be sufficiently far away such that the wall
force will become exceedingly small. For the flat in-
terface (Fig 2(a)), there are no transverse wall-fluid
interactions meaning that the thermo-osmotic force
is solely due to fluid-fluid interactions.
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In the context of existing literature, it is worth
noting that Maxwell’s [15] derivation of gas ther-
mal creep flow along a solid interface approximated
the surface as a reservoir behaving intermediate be-
tween a reflected and an evaporated gas. Defining
the parameter f as the fraction of gas molecules ab-
sorbed and evaporated by the surface and 1 − f as

the fraction reflected, he derived a coefficient of slip-
ping that incorporates surface asperities. While we
solely consider the case of a reflecting surface (f = 0,
i.e. perfect slip) in Fig. 2(a), we can easily introduce
partial slip by using bounce-back rules. Moreover,
we can explicitly model a structured, solid surface
instead of using Maxwell’s approximation.

In this paper, we have reported direct calculations
of the thermo-osmotic force using a non-equilibrium
simulation technique. We find that near a solid-
fluid interface, fx 6= ∂σxx/∂x suggesting that nei-
ther the Irving-Kirkwood nor virial expression ac-
curately predict surface forces due to temperature
gradients. Although the stress is useful for a hy-
drodynamic description of the problem [7] it does
not match with what is measured microscopically.
Third, we find that an expression for the thermo-
osmotic force based on the local enthalpy gets close
to the true result. Finally, we have determined the
contribution from wall stresses. For a structured sur-
face, the wall structure does play a role in thermo-
osmosis due to the asymmetric positioning of fluid
atoms with respect to the lattice positions of solid
atoms. This contribution disappears in the case of
an unstructured reflecting wall.
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