
Data Analytics Service Composition and Deployment
on Edge Devices

Jianxin Zhao, Tudor Tiplea, Richard Mortier, Jon Crowcroft, Liang Wang
Computer Laboratory, University of Cambridge, UK

firstname.lastname@cl.cam.ac.uk

ABSTRACT
Data analytics on edge devices has gained rapid growth in
research, industry, and different aspects of our daily life. This
topic still faces many challenges such as limited computation
resource on edge devices. In this paper, we further identify
two main challenges: the composition and deployment of
data analytics services on edge devices. We present the Zoo
system to address these two challenge: on one hand, it pro-
vides simple and concise domain-specific language to enable
easy and and type-safe composition of different data ana-
lytics services; on the other, it utilises multiple deployment
backends, including Docker container, JavaScript, and Mira-
geOS, to accommodate the heterogeneous edge deployment
environment. We show the expressiveness of Zoo with a use
case, and thoroughly compare the performance of different
deployment backends in evaluation.

1 INTRODUCTION
Machine Learning (ML) techniques have begun to dominate
data analytics applications and services. Recommendation
systems are the driving force of online service providers
such as Amazon.Finance analytics has quickly adopted ML
to harness large volume of data in such areas as fraud detec-
tion and risk-management.Deep Neural Network (DNN) is
the technology behind voice-based personal assistance, self-
driving cars [3], image processing [7], etc. Many popular data
analytics are deployed on cloud computing infrastructures.
However, they require aggregating users’ data at central
server for processing. This architecture is prone to issues
such as increased service response latency, communication
cost, single point failure, and data privacy concerns.
Recently computation on edge and mobile devices has

gained rapid growth, such as personal data analytics in
home [15], DNN application on a tiny stick [16], and se-
mantic search and recommendation on web browser [22].
HUAWEI has identified speed and responsiveness of native
AI processing on mobile devices as the key to a new era in
smartphone innovation [9].
Many challenges arise when moving ML analytics from

cloud to edge devices. One widely discussed challenge is the
limited computation power andworkingmemory of edge and
mobile devices.Personalising analytics models on different

edge devices is also a very interesting topic [18]. However,
one problem is not yet well defined and investigated: the
deployment of data analytics services. Most existing machine
learning frameworks such as TensorFlow and Caffe focus
mainly on the training of analytics models. On the other, the
end users, many of whom are not ML professionals, mainly
use trained models to perform inference. This gap between
the current ML systems and users’ requirements is growing.

Another challenge in conducting ML based data analytics
on edge devices is model composition. Training amodel often
requires large datasets and rich computing resources, which
are often not available to normal users. That’s one of the
reasons that they are bounded with the models and services
provided by large companies. To this end we propose the
idea Composable Service. Its basic idea is that many services
can be constructed from basic ML ones such as image recog-
nition, speech-to-text, and recommendation to meet new
application requirements. We believe that modularity and
composition will be the key to increasing usage of ML-based
data analytics.
This paper tries to address these two challenges. Specifi-

cally, the contribution of this paper includes:
• We identify two challenges that are not yet well ex-
plored in the literature about data analytics on edge
devices: service composition and deployment.
• We present the design of the Zoo system to address the
previous two challenges. It provides concise Domain-
specific Language (DSL) to enable composition of dif-
ferent data analytics services, and also deploys services
to multiple backends.
• We present a use case to demonstrate the expressive-
ness of the DSL, and thoroughly evaluate different
deployment backend for analytics services.

2 WORKFLOW
Before presenting the system design, we would like to briefly
introduce the workflow of Zoo as shown in Fig. 1. The work-
flow consists of two parts: development on the left side and
deployment on the right.

Development concerns the design of interaction workflow
and the computational functions of different services. One
basic component is Github Gist. A normal Gist script will be
loaded as a module in OCaml. To compose functionalities

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162916566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, L. Wang

Owl Gist

Basic Gist Operations

Service

Compose
Type

Checking

High Level Type

Published Models

Service Discovery

Docker JavaScript Mirage

Backend

Deployed Service

Image Voice Text
End user

REST API /
Browser

Load/Save

Build &
Publish

Deploy to
Edge Devices

Figure 1: Zoo System Architecture

from different Gists only requires a developer to add one
configuration file to each Gist. This file is in JSON format.
It consists of one or more name-value pairs. Each pair is a
signature for a function the script developer wants to expose
as a service. These Gists then can be imported and composed
to make new services. When a user is satisfied with the
composing result, she can save the new service as another
Zoo Gist.
Deployment takes a Gist and creates models in different

backends. These models can be published and deployed to
edge devices. It is separated from the logic of development.
Basic services and composed ones are treated equally. Be-
sides, users can move services from being local to remote
and vice versa, without changing the structure of the con-
structed service. Deployment is not limited to edge devices,
but can also be on cloud servers, or a hybrid of both cases, to
minimise the data revealed to the cloud and the associated
communication costs. Thus by this design a data analytics
service can easily be distributed to multiple devices.

3 SYSTEM DESIGN
The Zoo system is implemented on Owl [21], an open-source
scientific computing library in OCaml language. The reason
we choose Owl to support the implementation of Zoo is
some of its nice features. Owl provides a full stack support
for numerical methods, scientific computing, and advanced
data analytics on OCaml. Built on the core data structure of
N-dimensional array (ndarray), Owl supports a comprehen-
sive set of classic analytics such as math functions, statis-
tics, linear algebra, as well as advanced analytics techniques,
namely optimisation, algorithmic differentiation, and regres-
sion. On top of them, Owl provides Neural Network and
Natural Language Processing modules. Zoo relies on these
modules to construct basic ML services. OCaml provides
static type checking, and Owl’s ML modules have shown
great expressiveness and code flexibility.

Initially, the Zoo system is designed to make it convenient
for developers to share their OCaml code snippets. The de-
sign principle is to make the whole ecosystem open, flexible,
and extensible. One typical scenario for using the basic func-
tions of Zoo can be described as follows. Developer A creates
a script, uploads it to Gist, and then share it using a string of
Gist id. When developer B gets this id, he can use the func-
tions from A’s scripts by simply using the “#zoo” directive
in his code. All the OCaml files in the Gist will be imported
as modules for B to use. Based on these basic functionalities,
we’ll explain how we extend the Zoo system to address the
composition and deployment challenges.

3.1 Service
Gist is a core abstraction in Zoo. It is the centre of code shar-
ing. However, to compose multiple analytics snippets, Gist
alone is insufficient. For example, it cannot express the struc-
ture of how different pieces of code are composed together.
Therefore, we introduce another abstraction: service.

A service consists of three parts: Gists, types, and depen-
dency graph. Gists is the list of Gist ids this service requires.
Types is the parameter types of this service. Any service has
zero or more input parameters and one output. This design
follows that of an OCaml function. Dependency graph is a
graph structure that contains information about how the
service is composed. Each node in it represents a function
from a Gist, and contains the Gist’s name, id, and number of
parameters of this function.
Zoo provides three core operations about a service: cre-

ate, compose, and publish.The create_service creates a dic-
tionary of services given a Gist id. This operation reads the
service configuration file from that Gist, and creates a ser-
vice for each function specified in the configuration file. The
compose_service provides a series of operations to combine
multiple services into a new service. A compose operation
does type checking by comparing the “types” field of two
services. An error will be raised if incompatible services
are composed. A composed service can be saved to a new
Gist or be used for further composition. The publish_service
makes a service’s code into such forms that can be readily
used by end users. Zoo is designed to support multiple back-
ends for these publication forms. Currently it targets Docker
container, JavaScript, and MirageOS [14] as backends.

3.2 Type Checking
As mentioned in Section 3.1, one of the most important tasks
of service composition is to make sure the type matches. For
example, suppose there is an image analytics service that
takes a PNG format image, and if we connect to it another one
that produces a JPEG image, the resulting service will only
generate meaningless output for data type mismatch. OCaml

2

Data Analytics Service Composition and Deployment on Edge SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

provides primary types such as integer, float, string, and bool.
The core data structure of Owl is ndarray (or tensor as it is
called in some other data analytics frameworks). However,
all these types are insufficient for high level service type
checking as mentioned. That motives us to derive richer
high-level types.
To support it, we use generalised algebraic data types

(GADTs) in OCaml. There already exist several model collec-
tions on different platforms, e.g. Caffe [20] and MxNet [17].
We observe that most current popular deep learning (DL)
models can generally be categorised into three fundamental
types: image, text, and voice. Based on them, we define
sub-types for each: PNG and JPEG image, French and English
text and voice, i.e. png img, jpeg img, fr text, en text,
fr voice, and en voice types. More can be further added
easily in Zoo. Therefore type checking in OCaml ensures
type-safe and meaningful composition of high level services.

3.3 Backend
Recognising the heterogeneity of edge device deployment,
one key principle of Zoo is to support multiple deployment
methods. Containerisation as a lightweight virtualisation
technology has gained enormous traction. It is used in de-
ployment systems such as Kubernetes. Zoo supports deploy-
ing services as Docker containers. Each container provides
RESTful API for end users to query.

Another backend is JavaScript. Using JavaScript to do an-
alytics aside from front end development begins to attract
interests from academia [22] and industry, such as Tensor-
flow.js and Facebook’s Reason language. By exporting OCaml
and Owl functions to JavaScript code, users can do complex
data analytics on web browser directly without relying on
any other dependencies.
Aside from these two backends, we also initially explore

usingMirageOS as an option. Mirage is an example of Uniker-
nel, which builds tiny virtual machines with a specialised
minimal OS that host only one target application. Deploying
to Unikernel is proved to be of low memory footprint, and
thus quite suitable for resource-limited edge devices.

3.4 DSL
Zoo provides a minimal DSL for service composition and
deployment.

Composition. To acquire services from a Gist of id gid, we
use $дid to create a dictionary, which maps from service
name strings to services. We implement the dictionary data
structure using Hashtbl in OCaml. The # operator is over-
loaded to represent the “get item” operation. Therefore,

$gid#sname

can be used to get a service that is named “sname”. Now
suppose we have n services: f1, f2, . . . , fn . Their outputs
are of type tf 1, tf 2, . . . , tf n . Each service s acceptsms input
parameters, which have type t1s , t2s , . . . , t

ms
s . Also, there is a

service д that takes n inputs, each of them has type t1д , t2д , . . . ,
tnд . Its output type is to . Here Zoo provides the $> operator
to compose a list of services with another:

[f1, f2, . . . , fn]$>д

This operation returns a new service that has
∑n

s=1ms inputs,
and is of output type to . This operation does type checking
to make sure that tf i = t iд ,∀i ∈ 1, 2, . . . ,n.

Deployment. Taking a service s , be it a basic or composed
one, it can be deployed using the following syntax:

s$@ backend
The $@ operator publish services to certain backend. It

returns a string of URI of the resources to be deployed.

3.5 Service Discovery
The services requires a service discovery mechanism. For
simplicity’s sake, each newly published service is added to a
public record hosted on a server. The record is a list of items,
and each item contains the Gist id that service based on, a
one-line description of this service, string representation of
the input types and output type of this service, e.g. “image
-> int -> string -> tex”, and service URI. For the container
deployment, the URI is a DockerHub link, and for JavaScript
backend, the URI is a URL link to the JavaScript file itself.
The service discovery mechanism is implemented using off-
the-shelf database.

3.6 Version Control
Developers would modify and upload their scripts several
times. As such, each version of a script is assigned a unique
id in Gist. Zoo supports specifying a version of a Gist.

The naming scheme of a Gist is gid/[vid|latest]/pin.
A user can either choose a specific version id, or he can use
the latest version, which means the newest version on local
cache. Obviously, “latest” will introduce cache inconsistency.
The latest version on one machine might not be the same on
the other. To get the up-to-date version from Gist server, the
download time of the latest version on a local machine will
be saved as metadata. The newest version on server will be
pulled to local cache after a certain period of time, if “latest”
flag is set in the Gist name. Ideally, every published service
should contain a specific version id, and “latest” should only
be used during development.
Zoo can analyse dependency information of a Gist and

save it. When the “pin” flag is set, Gist dependency graph of
current script will be saved or loaded.

3

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, L. Wang

4 USE CASE
To illustrate the workflow above, let’s consider a synthetic
scenario. Alice is a French data analyst. She knows how to
use ML and DL models in existing platforms, but is not an
expert. Her recent work is about testing the performance of
different image classification neural networks. To do that,
she need to first modify the image using the DNN-based
Neural Style Transfer (NST) algorithm. The NST algorithm
takes two images and outputs to a new image, which is
similar to the first image in content and the second in style.
This new image should be passed to an image classification
DNN for inference. Finally, the classification result should
be translated to French. She does not want to put academic-
related information on Google’s server, but she cannot find
any single pre-trained model that performs this series of
tasks.
Here comes the Zoo system to help. Alice find Gists that

can do image recognition, NST, and translation separately.
Even better, she can perform image segmentation to greatly
improve the performance of NST [13] using another Gist. All
she has to provide is some simple code to generate the style
images she need to use. She can then assemble these parts
together easily using Zoo.

1 open Zoo
2 (* Image classification *)
3 let s_img = $ "aa36e" # "infer";;
4 (* Image segmentation *)
5 let s_seg = $ "d79e9" # "seg";;
6 (* Neural style transfer *)
7 let s_nst = $ "6f28d" # "run";;
8 (* Translation from English to French *)
9 let s_trans = $ "7f32a" # "trans";;
10 (* Alice's own style image generation service *)
11 let s_style = $ alice_Gist_id # "image_gen";;
12

13 (* Compose services *)
14 let s = [s_seg; s_style] $> s_nst
15 $> n_img $> n_trans;;
16 (* Publish to a new Docker Image *)
17 let pub = (List.hd s) $@
18 (CONTAINER "alice/image_service:latest");;

Note that the Gist id used in the code is shorted from 32
digits to 5 due to column length limit. Once Alice creates
the news service and published it as a container, she can
then run it locally and send request with image data to the
deployed machine, and get image classification results back
in French.

5 EVALUATION
In the evaluation section we focus on comparing the perfor-
mance of different backends we use. Specifically, we observe
three representative groups of operations: (1) map and fold
operations on ndarray; (2) using gradient descent, a common
numerical computing subroutine, to get arдmin of a certain
function; (3) conducting inference on complex DNNs, includ-
ing SqueezeNet [10] and a VGG-like convolution network.
The evaluations are conducted on a ThinkPad T460S laptop
with Ubuntu 16.04 operating system. It has an Intel Core
i5-6200U CPU and 12GB RAM.
The OCaml compiler can produce two kinds of executa-

bles: bytecode and native. Native executables are compiled
specifically for an architecture and are generally faster, while
bytecode executables have the advantage of being portable.
A Docker container can adopt both options.

For JavaScript though, since the Owl library contains func-
tions that are implemented in C, it cannot be directly sup-
ported by js-of-ocaml, the tool we use to convert OCaml
code into JavaScript. Therefore in the Owl library, we have
implemented a “base” library in pure OCaml that shares the
core functions of the Owl library. Note that for convenience
we refer to the pure implementation of OCaml and the mix
implementation of OCaml and C as base-lib and owl-lib
separately, but they are in fact all included in the Owl library.
For Mirage compilation, we use both libraries.
Fig. 2(a-b) show the performance of map and fold opera-

tions on ndarray. We use simple functions such as plus and
multiplication on 1-d (size < 1, 000) and 2-d arrays. The
log-log relationship between total size of ndarray and the
time each operation takes keeps linear. For both operations,
owl-lib is faster than base-lib, and native executables
outperform bytecode ones. The performance of Mirage ex-
ecutives is close to that of native code. Generally JavaScript
runs the slowest, but note how the performance gap between
JavaScript and the others converges when the ndarray size
grows. For fold operation, JavaScript even runs faster than
bytecode when size is sufficiently large.
In Fig. 3, we want to investigate if the above observa-

tions still hold in more complex numerical computation. We
choose to use a Gradient Descent algorithm to find the value
that locally minimise a function. We choose the initial value
randomly between [0, 10]. For both sin(x) and x3 − 2x2 + 2,
we can see that JavaScript runs the slowest, but this time the
base-lib slightly outperforms owl-lib.
We further compare the performance of DNN, which re-

quires large amount of computation.We compare SqueezeNet
and a VGG-like convolution network. They have different
sizes of weight and networks structure complexities. Ta-
ble. 1 shows that, though the performance difference between
owl-lib and base-lib is not obvious, the former is much

4

Data Analytics Service Composition and Deployment on Edge SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

(a)

(b) (c)

Figure 2: Performance of map and fold operations on ndarray on laptop (a-b) and RaspberryPi (c).

f(x) = sin(x) f(x) = x3 2x2 + 2
Use Gradient Descent to find argmin(f)

0

5

10

15

20

25

30

35

40

Ti
m

e
(m

s)

base-native
base-byte
mirage-base
owl-native
owl-byte
mirage-owl
js

Figure 3: Performance of gradient descent on function
f to find arдmin(f)

Table 1: Inference Speed of Deep Neural Networks

Time (ms) VGG SqueezeNet

owl-native 7.96 (± 0.93) 196.26(± 1.12)
owl-byte 9.87 (± 0.74) 218.99(± 9.05)

base-native 792.56(± 19.95) 14470.97 (± 368.03)
base-byte 2783.33(± 76.08) 50294.93 (± 1315.28)

mirage-owl 8.09(± 0.08) 190.26(± 0.89)
mirage-base 743.18 (± 13.29) 13478.53 (± 13.29)
JavaScript 4325.50(± 447.22) 65545.75 (± 629.10)

better. So is the difference between native and bytecode for
base-lib. JavaScript is still the slowest. The core computa-
tion required for DNN inference is the convolution operation.
Its implementation efficiency is the key to these differences.
Current we are working on improving its implementation in
base-lib.

We have also conducted the same evaluation experiments
on RaspberryPi 3 Model B. Fig. 2(c) shows the performance
of fold operation on ndarray. Besides the fact that all back-
ends runs about one order of magnitude slower than that on

Table 2: Size of executables generated by backends

Size (KB) native bytecode Mirage JavaScript

base 2,437 4,298 4,602 739
native 14,875 13,102 16,987 -

the laptop, previous observations still hold. This figure also
implies that, on resource-limited devices such as Raspber-
ryPi, the key difference is between native code and bytecode,
instead of owl-lib and base-lib for this operation. The
other figures are not presented here due to space limited, but
the conclusions are similar.
Finally, we also briefly compare the size of executables

generated by different backends. We take the SqueezeNet
for example, and the results are shown in Table 2. It can be
seen that owl-lib executives have larger size compared to
base-lib ones, and JavaScript code has the smallest file size.
In summary, there does not exist a dominant method of

deployment for all these backends. It is thus imperative to
choose suitable backend according to deployment environ-
ment.

6 RELATEDWORK
Moving ML analytics from cloud to edge devices faces many
challenges. One widely recognised challenge is that, com-
pared with resource-rich computing clusters, edge and mo-
bile devices only have quite limited computation power and
working memory. To accommodate heavy ML computation
on edge devices, one solution is to train suitable small mod-
els to do inference on mobile devices [5]. This method leads
to unsatisfactory accuracy and user experience. Some tech-
niques [4, 8, 12] are proposed to enhance this method.

Another challenge is to personalise analytics models. One
of our previous research work [18] explores training person-
alised model on local devices from an initial shared model.

5

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, L. Wang

Instead of moving data from user to cloud, our method pro-
vides for model training and inference in a system where
computation is moved to the data. Specifically, we take an
initial model learnt from a small set of users and retrain it
locally using data from a single user. It is proved to both be
robust against adversarial attacks and can improve accuracy.

There exist several work on deployment of data analytics
services. Clipper [6] is a general-purpose low-latency predic-
tion serving system. It provides end users with a series of ML
applications including computer vision, speech recognition,
recommendation, etc. Clipper tries to maximise accuracy
and throughput given certain latency budget. However, the
service or model deployment here is only limited to server-
side, and the users cannot deploy their own service freely.
TensorFlow Serving [19] tries to simplify the deployment
models that are created and trained by TensorFlow. It is sim-
ilar to Zoo in its mechanism of serving a model for request
from users. However, it does not support type-safe service
composing, nor does it offer flexible cross platform auto-
matic deployment solutions using multiple backends. Some
deployment systems are limited to certain applications, such
as Linear Regression model in LASER [1] system, and video
analytics model in NoScope [11]. Serverless Architectures
such as AWS Lambda [2] allow users to deploy functions
cost-efficiently. Existing serverless frameworks all bound
closely with cloud computing platforms such as Amazon
Web Services and Google Cloud Platform.

7 CONCLUSIONS
In this work we identify two challenges of conducting data
analytics on edge: service composition and deployment. We
propose the Zoo system to address these two challenges.
For the first one, it provides a simple DSL to enable easy
and type-safe composition of different advanced services.
We present a use case to show the expressiveness of the
code. For the second, to accommodate the heterogeneous
edge deployment environment, we utilise multiple backends,
including Docker container, JavaScript, and MirageOS. We
thoroughly evaluate the performance of different backends
using three representative groups of numerical operations
as workload. The results show that no single deployment
backend is preferable to the others, so deploying data ana-
lytics services requires choosing suitable backend according
to the deployment environment.

ACKNOWLEDGMENTS
This work is funded in part by the EPSRC Databox project
(EP/N028260/1), NaaS (EP/K031724/2) andContrive (EP/N028422/1).

REFERENCES
[1] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang

Zhang. 2014. Laser: A scalable response prediction platform for online
advertising. In Proc. ACM WSDM’14. ACM, 173–182.

[2] Amazon. 2017. AWS Lambda. https://aws.amazon.com/cn/lambda/.
(2017). [Online; accessed 14-Mar-2018].

[3] Mariusz Bojarski, Del Testa, et al. 2016. End to end learning for self-
driving cars. arXiv preprint arXiv:1604.07316 (2016).

[4] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and
Yixin Chen. 2015. Compressing neural networks with the hashing
trick. In International Conference on Machine Learning. 2285–2294.

[5] Byung-Gon Chun and Petros Maniatis. 2009. Augmented smartphone
applications through clone cloud execution.. In HotOS, Vol. 9. 8–11.

[6] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System.. In NSDI. 613–627.

[7] Google. 2017. Google Cloud Vision API. https://cloud.google.com/
vision. (2017). Accessed Nov. 11, 2017.

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, et al. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applica-
tions. CoRR abs/1704.04861 (2017). arXiv:1704.04861

[9] Huawei-News. 2017. HUAWEI Reveals the Future of Mobile
AI at IFA 2017. http://consumer.huawei.com/en/press/news/2017/
ifa2017-kirin970/. (2017). [Online; accessed 10-Nov-2017].

[10] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv
preprint arXiv:1602.07360 (2016).

[11] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. NoScope: optimizing neural network queries over video
at scale. Proceedings of the VLDB Endowment 10, 11 (2017), 1586–1597.

[12] Xin Lei, AndrewWSenior, Alexander Gruenstein, and Jeffrey Sorensen.
2013. Accurate and compact large vocabulary speech recognition on
mobile devices.. In Interspeech, Vol. 1.

[13] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. 2017. Deep
Photo Style Transfer. CoRR abs/1703.07511 (2017). arXiv:1703.07511
http://arxiv.org/abs/1703.07511

[14] Anil Madhavapeddy and David J Scott. 2013. Unikernels: Rise of the
virtual library operating system. Queue 11, 11 (2013), 30.

[15] Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang, Qi Li,
Hamed Haddadi, Yousef Amar, et al. 2016. Personal Data Management
with the Databox: What’s Inside the Box?. In Proceedings of the 2016
ACM Workshop on Cloud-Assisted Networking. ACM, 49–54.

[16] Movidius. 2017. Movidius Neural Compute Stick. https://developer.
movidius.com/. (2017). Accessed Nov. 11, 2017.

[17] MxNet. 2017. MxNet Model Zoo. https://mxnet.incubator.apache.org/
model_zoo/index.html. (2017). [Online; accessed 14-Mar-2018].

[18] Sandra Servia Rodríguez, LiangWang, Jianxin R. Zhao, RichardMortier,
and Hamed Haddadi. 2018. Privacy-preserving Personal Model Train-
ing. Internet-of-Things Design and Implementation (IoTDI), The 3rd
ACM/IEEE International Conference on (2018).

[19] TensorFlow Serving. 2017. TensorFlow Serving. https://www.
tensorflow.org/serving/. (2017). [Online; accessed 14-Mar-2018].

[20] Berkeley Vision and Learning Center. 2017. Caffe Model Zoo. https:
//github.com/BVLC/caffe/wiki/Model-Zoo. (2017). [Online; accessed
14-Mar-2018].

[21] Liang Wang. 2017. Owl: A General-Purpose Numerical Library in
OCaml. CoRR abs/1707.09616 (2017). http://arxiv.org/abs/1707.09616

[22] LiangWang, Sotiris Tasoulis, Teemu Roos, and Jussi Kangasharju. 2016.
Kvasir: Scalable provision of semantically relevant web content on big
data framework. IEEE Transactions on Big Data 2, 3 (2016), 219–233.

6

https://aws.amazon.com/cn/lambda/
https://cloud.google.com/vision
https://cloud.google.com/vision
http://arxiv.org/abs/1704.04861
http://consumer.huawei.com/en/press/news/2017/ifa2017-kirin970/
http://consumer.huawei.com/en/press/news/2017/ifa2017-kirin970/
http://arxiv.org/abs/1703.07511
http://arxiv.org/abs/1703.07511
https://developer.movidius.com/
https://developer.movidius.com/
https://mxnet.incubator.apache.org/model_zoo/index.html
https://mxnet.incubator.apache.org/model_zoo/index.html
https://www.tensorflow.org/serving/
https://www.tensorflow.org/serving/
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://arxiv.org/abs/1707.09616

	Abstract
	1 Introduction
	2 Workflow
	3 System Design
	3.1 Service
	3.2 Type Checking
	3.3 Backend
	3.4 DSL
	3.5 Service Discovery
	3.6 Version Control

	4 Use Case
	5 Evaluation
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

