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SUMMARY

After its uptake into the cytosol, intracellular glucose
is phosphorylated to glucose-6-phosphate (G6P),
trapping it within the cell and preparing it for meta-
bolism. In glucose-exporting tissues, like liver, G6P
is transported into the ER, where it is dephosphory-
lated by G6Pase-a. The glucose is then returned to
the cytosol for export [1, 2]. Defects in thesepathways
cause glycogen storage diseases [1]. G6Pase-b, an
isozyme of G6Pase-a, is widely expressed [3, 4]. Its
role in cells that do not export glucose is unclear,
although mutations in G6Pase-b cause severe
and widespread abnormalities [5–7]. Astrocytes, the
most abundant cells in the brain, provide metabolic
support to neurons, facilitated by astrocytic endfeet
that contact blood capillaries or neurons [8–12]. Peri-
vascular endfeet are the main site of glucose uptake
by astrocytes [13], but in human brain they may be
several millimeters away from the perineuronal pro-
cesses [14].We show that cultured human fetal astro-
cytes express G6Pase-b, but not G6Pase-a. ER-tar-
geted glucose sensors [15, 16] reveal that G6Pase-b
allows the ER of human astrocytes to accumulate
glucose by importing G6P from the cytosol. Glucose
uptake by astrocytes, ATP production, and Ca2+

accumulation by the ER are attenuated after knock-
down of G6Pase-b using lentivirus-delivered shRNA
andsubstantially rescuedbyexpressionofG6Pase-a.
We suggest that G6Pase-b activity allows effective
uptake of glucose by astrocytes, and we speculate
that it allows the ER to function as an intracellular
‘‘highway’’ delivering glucose from perivascular end-
feet to the perisynaptic processes.

RESULTS

The ER of Human Astrocytes Sequesters Glucose by
Uptake and Dephosphorylation of Gluose-6-Phosphate
The contribution of G6Pase-a to glucose handling in tissues like

liver that export glucose is clear (Figure 1A). G6Pase-b, which is
Current Biology 28, 3481–3486, Novem
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more widely expressed, has a similar structure to G6Pase-a,

and it is expressed in endoplasmic reticulum (ER) membranes

with a luminally disposed catalytic site, but its function is

unknown [3, 4]. The only brain cells reported to express

G6Pase-b are rodent astrocytes [18]. We confirmed, by immu-

nostaining of cortical slices from adult rat brain, that G6Pase-b

is selectively expressed in astrocytes (Figures 1B and 1C).

Using qPCR and/or immunoblotting, we established that a

G6P transporter (G6PT, see Figure 1A) and G6Pase-b, but

not G6Pase-a, are also expressed in cultured human astro-

cytes (Figures 1D and 1E). Subsequent experiments examine

the contribution of G6Pase-b to glucose homeostasis and en-

ergy metabolism in normal human astrocytes derived from

the fetal cortex.

We used ER-targeted glucose sensors with high (Kglucose
D =

30 mM, ERglc30) or low affinity for glucose (Kglucose
D = 600 mM,

ERglc600) [15, 16] to measure glucose concentrations within

the ER of cultured human astrocytes (Figures 2A and 2B). The

sensors selectively detect glucose, but not G6P or 2-deoxyglu-

cose [19]. Restoration of extracellular glucose (5 mM) to astro-

cytes incubated in glucose-free medium for 10 min caused a

decrease in the fluorescence resonance energy transfer (FRET)

ratio of ERglc600, consistent with a sustained increase in ER

glucose concentration (Figures 2C and 2Di). There was, how-

ever, no change in the FRET ratio of the high-affinity glucose

sensor (ERglc30) (Figure 2Div). This suggests that ERglc30 is

already saturated with glucose. Since ERglc30 and ERglc600

differ only within the glucose-binding site [15, 16], it further dem-

onstrates that the FRET changes recorded with ERglc600 are

due to changes in glucose concentration rather than to other ef-

fects, for example, pH changes or changes in the fluorescence of

endogenous metabolites.

Lentivirus-mediated delivery of appropriate short hairpin RNA

(shRNA) effectively reduced expression of G6Pase-b without

affecting G6PT (Figure 2E). Loss of G6Pase-b abolished accu-

mulation of glucose by the ER (Figures 2Dii and 2F, see legends

for statistical analyses). We used human G6Pase-a for rescue

experiments since it has the same catalytic activity and ER

expression as G6Pase-b, but it is normally expressed only in liver

and kidney. Expression of G6Pase-a rescued ER glucose uptake

in cells lacking G6Pase-b (Figures 2Diii and 2F). Preincubation of

astrocytes with 2-deoxyglucose to inhibit hexokinase (HK, see

Figure 1A) abolished accumulation of glucose by the ER (Figures

2F and 2G).
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Figure 1. G6Pase-b Is Expressed in Astrocytes from Rodents and Humans

(A) Glucose transported into cells by glucose transporters (GLUT) is phosphorylated to G6P by HK. Glucose-exporting cells, like hepatocytes, use a G6P

transporter (G6PT) to transport G6P into the ER, where it is dephosphorylated by G6Pase-a and then exported from the cell, possibly at ER-PM contact sites (top

right). G6PT andG6Pase-a are viewed as adaptations that allow efficient glucose export. Astrocytes are proposed to provide neurons with a source of energy and

neurotransmitter precursors by importing glucose at their perivascular endfeet, glycolytically metabolizing it, and then exporting neurotransmitter precursors and

perhaps lactate at perisynaptic processes [17]. Although the importance of the lactate shuttle has been questioned [10–12], it is clear that astrocytes provide

metabolic support to neurons. Our results suggest that G6PT and G6Pase-b allow the ER of astrocytes to serve as an intracellular highway moving glucose from

perivascular endfeet to perisynaptic processes.

(B and C) Confocal z stacks of rat brain cortical slices immunostained for G6Pase-b and GFAP showing their colocalization. Arrows in the overlays indicate the

lumen of blood vessels surrounded by astrocytes. The overlay in (C) is additionally stained with isolectin B4 to identify capillaries (blue).

(D) qPCR showing expression levels of mRNA (relative to GAPDH) of the indicated enzymes in human astrocytes: GPBB andGPMMare two isoforms of glycogen

phosphorylase. Results show each independent determination (n = 4–8 isolates, derived from at least 4 different cultures) and the mean.

(E) Immunoblots (30 mg protein/lane), typical of 3 similar blots from independent treatments, show expression of G6Pase-b and G6PT in human astrocytes.
The results so far show that both HK and G6Pase-b are

required for the ER to sequester glucose, suggesting that the

ER may import G6P from the cytosol using G6PT, and then

use the luminal catalytic site of G6Pase-b to dephosphorylate

G6P to glucose (Figure 1A). We tested this directly using astro-

cytes in which the plasma membrane was permeabilized by

digitonin. Addition of G6P, but not of glucose, to permeabilized

astrocytes caused accumulation of glucose within the ER (Fig-

ures 3A and 3B). This observation excludes the possibility that,

in intact cells, cytosolic glucose reaches the ER lumen passively

or through glucose transporters. These results demonstrate that

G6Pase-b is required for uptake of glucose, imported as G6P, by

the ER of human astrocytes (Figure 3C). This is consistent with an
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analysis of rodent astrocyte microsomes, where G6P uptake

was attenuated in mice lacking G6PT, but unaffected by loss

of G6Pase-a [18].

G6Pase-b Is Required for Glucose Uptake, ATP
Production, and Ca2+ Uptake by ER
Knockdown of G6Pase-b reduced glucose uptake by astrocytes

and their intracellular ATP concentration, and both effects were

partially rescued by expression of G6Pase-a (Figures 4A and

4B). We examined inositol 1,4,5-trisphosphate (IP3)-mediated

Ca2+ release from the ER to explore the functional consequence

of losing G6Pase-b. Astrocytes were stimulated with TFLLR, a

peptide agonist of the protease-activated receptor 1 (PAR 1),



Figure 2. The ER of Human Astrocytes Se-

questers Glucose by Importing G6P

(A) The ER glucose-sensors comprise a glucose-

binding protein (GGBP) tethered to enhanced cyan

fluorescent protein (ECFP) and Venus, such that

glucose binding separates the chromophores

causing a decrease in FRET efficiency.

(B) Total internal reflection fluorescence (TIRF)

image of astrocyte showing colocalization of

ER-Tracker Red (shown in blue) with ERglc600

(yellow).

(C) Typical trace from a single astrocyte express-

ing ERglc600 and exposed to glucose (5 mM, bar)

showing reciprocal changes in the fluorescence of

Venus and ECFP (F/F0, where F0 is the fluores-

cence recorded before adding glucose).

(D) FRET ratios (R/Ro, Venus/ECFP) were recorded

using ERglc600 (i, ii, iii) or ERglc30 (iv) after adding

glucose (5 mM) to normal astrocytes (i, iv), after

shRNA-mediated knockdown of G6Pase-b (ii)

alone or with expression of G6Pase-a (iii).

(E) Western blots (WBs) (30 mg protein/lane),

typical of 3 independent transfections, show ef-

fects of G6Pase-b shRNA and scrambled shRNA

on expression of G6Pase-b and G6PT. Positions

of Mr markers (kDa) are shown.

(F) Summary results (mean ± SEM from (n) inde-

pendent cells; n shown above bars) show R/Ro

determined 250 s after addition of glucose or

2-deoxyglucose. ***p < 0.001, **p < 0.01, Kruskal-

Wallis with Dunn’s multiple comparisons test,

relative to control.

(G) Analysis of astrocytes expressing ERglc600

and pretreated with 2-deoxglucose (5 mM, 30 min)

to inhibit HK before addition of glucose (5 mM).
which is coupled to Gq and thereby formation of IP3 [20]. Loss of

G6Pase-b reduced the amplitude of the PAR 1-evoked increase

in cytosolic free Ca2+ concentration ([Ca2+]c) (Figures 4C and 4D).

Several steps between PAR1 and the increase in [Ca2+]c require

ATP, including G-protein activation, formation of IP3, regulation

of IP3 receptors by ATP, and the activities of plasma membrane

(PMCA) and ER (SERCA) Ca2+-ATPases. We examined SERCA

because it has been reported to rely on glycolysis-derived

ATP, requiring both glucose uptake and glycogen degradation

[21, 22]. Loss of G6Pase-b reduced the Ca2+ content of the ER,

assessedusing ionomycin,byasimilar amount (�70%,Figure4E)
Current Biolog
to the decrease in amplitude of the PAR1-

evoked Ca2+ signals (Figure 4D). The

effects of knocking down G6Pase-b

were partially rescued by expression of

G6Pase-a (Figure 4). We have not exam-

ined the effects of G6Pase-b on other

steps in the signaling sequence, but its ef-

fects on Ca2+ uptake by the ER seem suf-

ficient to account for the diminished Ca2+

signals evoked by PAR 1.

DISCUSSION

Glucose occupies a central position in

the metabolism of all eukaryotic cells
because it is a major energy source and a precursor for many

metabolic intermediates. The capacity of most cells to sequester

glucose is constrained by the properties of their HK (HK I), which,

unlike the isoform expressed in liver (HK IV) [23], is saturated by

prevailing glucose concentrations and feedback inhibited by

G6P [24]. Glucose meets the metabolic needs of astrocytes,

and it allows them to support neurons by providing them with in-

termediates for metabolism and neurotransmitter synthesis. A

popular hypothesis suggests that lactate is exported from astro-

cytes to meet these needs [17], but the importance of this

‘‘lactate shuttle’’ is disputed [10–12]. It is, however, clear that
y 28, 3481–3486, November 5, 2018 3483



Figure 3. The ER of Permeabilized Astrocytes Accumulates G6P but

Not Glucose

(A) FRET ratios (R/Ro) were recorded from individual permeabilized astrocytes

expressing ERglc600 after addition of G6P (5 mM, i) or glucose (5 mM, ii).

(B) Summary results (mean ± SEM from [n] independent cells, n shown above

bars) show R/Ro determined 250 s after addition of glucose or G6P. ***p <

0.001, Mann-Whitney test.

(C) The results show that the ER of astrocytes accumulates glucose by import,

and then dephosphorylation, of G6P, rather than by directly transporting

glucose.
neuronal activity stimulates glucose uptake at the perivascular

endfeet of astrocytes [25–27], where the glucose transporter

(GLUT1) is enriched [13]. Effective support of neurotransmission

by astrocytes therefore requires both efficient glucose uptake at

the perivascular endfeet, and its transfer across considerable

distances, several millimeters in human brain [14], to perisynap-

tic processes.

We have shown that the ER of human astrocytes accumulates

glucose by sequestering G6P. This requires G6Pase-b, and dis-

rupting the sequence inhibits cellular glucose uptake, ATP pro-

duction, and ER Ca2+ uptake. In neutrophils and macrophages

too, loss of G6Pase-b reduced glucose uptake, lactate, and

ATP production and attenuated Ca2+ signaling [28, 29]. We sug-

gest two important roles for G6Pase-b in astrocytes. First,

G6Pase-b sustains cellular glucose uptake by rapidly seques-

tering the cytosolic G6P that would otherwise inhibit HK and

thereby reduce the gradient for glucose influx (Figure 1A)

[30–32]. Evidence that diffusion of a fluorescent analog of 2-de-

oxyglucose is very restricted within perivascular endfeet [33]

lends credence to our suggestion that G6P is likely to accumu-

late at sites of glucose uptake unless it is sequestered by the

ER. The only other means of removing cytosolic G6P, namely,

glycolysis, the pentose phosphate pathway, and glycogen syn-

thesis are poorly suited to the task because their regulation is

not tuned to the G6P concentration. Second, we suggest that

G6Pase-b provides astrocytes with both a second reservoir of

glucose (additional to their glycogen stores) [34] and a route by

which glucose can pass through the cell protected from glyco-

lytic enzymes (Figure 4F). The ER lumen provides a route, a

‘‘Ca2+ tunnel,’’ for redistributing Ca2+ within cells [35]. We pro-

pose that the ER fulfills a similar function for intracellular glucose

transport, with G6PT transporting G6P into the ER lumen, where

it is de-phosphorylated by G6Pase-b to generate free glucose.
3484 Current Biology 28, 3481–3486, November 5, 2018
Since glucose is not further metabolized within the ER, it can

then diffuse unhindered through the ER lumen until it encounters

a glucose transporter. In permeabilized cells, glucose does not

readily enter the ER (Figure 3A), suggesting that such trans-

porters may either selectively transport glucose out of the ER

or their overall activity is low, consistent perhapswith them being

concentrated at glucose-export sites (Figure 1A). After translo-

cation back into the cytosol, glucose may be phosphorylated

to G6P and then further metabolized to support the local needs

of astrocytes for ATP, and to provide neurotransmitter precur-

sors and lactate for export to neurons (Figures 1A and 4F) [36].

This intracellular glucose highway may function in many cells,

but it is likely to be particularly important for astrocytes delivering

glucose acquired at their perivascular endfeet to their perisynap-

tic processes that may be several millimeters away (Figure 4F).

We conclude that G6Pase-b, a widely expressed but hitherto

enigmatic enzyme, fulfills two essential roles in astrocytes. By

allowing rapid sequestration of G6P at perivascular endfeet, it al-

lows sustained glucose uptake, and by delivering glucose to the

ER lumen it provides a protected intracellular highway for effec-

tive delivery of glucose from perivascular endfeet to perisynaptic

processes (Figures 1A and 4F). The complex architecture of

astrocytes, where the major sites of glucose uptake and

demand are widely separated, may exaggerate their need

for G6Pase-b, but it seems likely that, in other cells too,

G6Pase-bmay both facilitate glucose uptake and its intracellular

distribution.
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Figure 4. G6Pase-b Is Required For Glucose

Uptake, ATP Synthesis, and ER Ca2+ Accu-

mulation

(A) Effects of the indicated shRNA alone or after

expression of G6Pase-a on 2-deoxyglucose uptake

(10 mM, 10 min) by populations of astrocytes. Re-

sults show individual values and mean ± SEM (n = 3

independent treatments). For clarity, the before-

after treatments for each set of determinations are

shown alongside by lines. Color code applies to all

panels. RLU, relative luminescence units. For all

summary data, **p < 0.01, *p < 0.05, Friedman test

with Dunn’s multiple comparisons test, relative to

control.

(B) Effects of the same treatments on intracellular

ATP (individual values, and mean ± SEM, n = 3 in-

dependent treatments).

(C) Typical traces (duplicate measurements) show

Ca2+ signals evoked by stimulation of PAR 1 by

TFLLR (30 mM) in HBS for astrocytes treated as

indicated.

(D and E) Summary results shown peak increases in

[Ca2+]c (D[Ca2+]c) evoked by TFLLR in HBS (D) or

ionomycin (1 mM) in Ca2+-free HBS (E). The latter to

determine the Ca2+ content of the intracellular

stores. Results show individual values and means ±

SEM, n = 6 (D) or 5 (E) independent analyses, each

with duplicate determinations.

(F) The ER of astrocytes provides an intracellular

highway for glucose transport. Glucose from cap-

illaries is transported into the perivascular endfeet

of astrocytes by GLUT1 and then phosphorylated

by HK to G6P, which is then metabolized in the

cytosol or transported into the ER by the G6P

transporter (G6PT). Within the ER, the luminal cat-

alytic site of G6Pase-b dephosphorylates G6P to

glucose. Hence, G6Pase-b both ensures removal of

G6P from the cytosol, where its accumulation would

inhibit HK and prevents further glucose uptake, and

it delivers glucose to the ER lumen, where it is

protected from further metabolism and free to

diffuse. An ER glucose transporter can then return

glucose to the cytosol, where its phosphorylation to

G6P by HK allows it to enter glycolysis. This then provides ATPwithin the perisynaptic process and lactate and neurotransmitter precursors for export to neurons.

Hence, G6Pase-b within the ER allows effective glucose uptake at perivascular endfeet and its transport through a protected ER highway to perisynaptic

processes.
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Antibodies

IC, immunocytochemistry; WB, western blot

Rabbit anti-G6Pase-b (IC) Santa Cruz Biotechnology, Dallas, USA Cat#sc-134714; RRID:AB_10647643

Rabbit anti-G6PT (WB) Santa Cruz Biotechnology Cat#sc-135479; RRID:AB_2254868

Donkey anti-mouse IgG-HRP (WB) Santa Cruz Biotechnology Cat#sc-2314; RRID:AB_641170

Donkey anti-rabbit IgG-HRP (WB) Santa Cruz Biotechnology Cat#sc-2077; RRID:AB_631745

Goat anti-GFAP (IC) AbCam, Cambridge, UK Cat#ab 53554; RRID:AB_880202

Rabbit anti-G6Pase-a (WB) AbCam Cat#ab 83690; RRID:AB_1860503

Rabbit anti-G6Pase-b (WB) AbCam Cat#ab 133964

Donkey anti-rabbit AlexaFluor 488 (IC) ThermoFisher, Paisley, UK Cat#A-21206; RRID:AB_141708

Donkey anti-goat AlexaFluor 633 (IC) ThermoFisher Cat#A-21082; RRID:AB_141493

Bacteria and Virus Strains

Lentiviral transfer vector, FUGW Addgene Addgene#14883

Envelope vector, pMD2.G Addgene Addgene#12259

Packaging vector, pMDLg/pRRE Addgene Addgene#12251

Packaging vector, pRSV.Rev, Addgene Addgene#12253

Packaging vector, psPAX2 Addgene Addgene#12260

Chemicals, Peptides, and Recombinant Proteins

ATP Sigma-Aldrich, Gillingham, UK Cat#A9187

2-deoxy-D-glucose Sigma-Aldrich Cat#D6134

AlexaFluor 568-conjugated isolectin GS-B4 ThermoFisher Cat#121412

Astrocyte growth medium (AGM BulletKit) Lonza, Slough, UK Cat#CC 3186

BAPTA Molekula, Dorset, UK Cat#20358510

Bovine serum albumin (BSA) Europa Bioproducts Ltd, Cambridge, UK Cat#EQBAH64

Cal-520AM AAT Stratech Scientific, Suffolk, UK Cat#21130

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat#D2650

ECL Prime reagents GE Healthcare Life Sciences, Little Chalfont, UK Cat#RPN2232

ER Tracker Red ThermoFisher Cat#E34250

Fibronectin Merck Millipore, Watford, UK Cat#FC010

Fetal bovine serum (FBS) Sigma-Aldrich Cat#F7524, batch 094M3341

D-glucose-6-phosphate (G6P) Sigma-Aldrich Cat#G7879

Ionomycin Apollo Scientific, Bredbury, UK Cat#56092-81-0

Lipofectamine LTX ThermoFisher Cat#15338100

PAR-1 peptide, TFLLR Tocris, Bristol, UK Cat#1464

Probenecid Sigma-Aldrich Cat#P8761

Triton X-100 Sigma-Aldrich Cat#T8787

Critical Commercial Assays

ATP assay kit AbCam Cat#ab113849

Glucose Uptake-Glo assay kit Promega Southampton, UK Cat#J1341

Fastlane cell cDNA kit QIAGEN Cat#215011

Experimental Models: Cell Lines

293FT cells ThermoFisher Cat#R70007

Human astrocytes from fetal cortex Lonza, Slough, UK Cat#CC-2565
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Recombinant DNA

Plasmid (pEF/myc/ER FLIPglu-600uDelta13V)

encoding ERglc600

Addgene Addgene#18020

Plasmid (pEF/myc/ER FLIPglu-30uDelta13V)

encoding ERglc30

Addgene Addgene#18021

CCSB-Broad LentiORF-G6Pase-a Dharmacon, Lafayette, USA Cat#ccsbBroad304_04582

TRC human G6Pase-b shRNA Dharmacon Cat#TRCN0000051500

Quantitect primer assay: GAPDH QIAGEN, Crawley, West Sussex, UK Cat#Hs_GAPDH_1_SG

Quantitect primer assay: G6Pase-b QIAGEN Cat#Hs_G6PC3_1_SG

Quantitect primer assay: G6Pase-a QIAGEN Cat#Hs_G6PC_1_SG

Quantitect primer assay: GPBB QIAGEN Cat#Hs_PYGB_1_SG

Quantitect primer assay: GPMM QIAGEN Cat#Hs_PYGM_1_SG

Quantitect primer assay: GFAP QIAGEN Cat#Hs_GFAP_1_SG

Software and Algorithms

Prism 5 GraphPad, La Jolla, USA https://www.graphpad.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Colin W. Taylor (cwt1000@

cam.ac.uk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Normal human astrocytes from fetal cortex were supplied as frozen cells that had not been passaged (catalog number CC-2565,

Lonza, Slough, UK). The cells were confirmed, by Lonza, to be free of infection with HIV-1 and hepatitis B and C, and we confirmed

they were free of mycoplasma. Astrocytes were grown at 37�C in humidified air containing 5%CO2, using astrocyte growth medium

(AGM BulletKit) supplemented with 3% fetal bovine serum. AGM includes human epidermal growth factor, insulin, ascorbic acid,

gentamycin and L-glutamine. Cells were passaged using trypsin when they reached 70%–80% confluence.

Outbred male Sprague Dawley rats (aged 9-10 weeks, 320-350 g, Charles River Laboratories, Kent, UK) were immunocompetent,

and after screening by Charles River Laboratories, their health profile was categorized as VAP/Plus�. Rats were habituated to the

colony for one week in a reversed light-dark cycle (lights off at 7 a.m) with ad libitum access to food and water. They were not subject

to drug treatments or procedures prior to being euthanised with pentobarbital (300 mg, Dolethal, Vetoquinol UK Ltd, Buckingham,

UK) and perfused transcardially with isotonic saline followed by 10% neutral buffered formalin (Sigma). Brains were transferred to

20% sucrose solution with 1% PBS, and 30-mm coronal sections were prepared after 24 h. Experiments complied with the United

Kingdom 1986 Animals (Scientific Procedures) Act, after ethical review by the University of Cambridge Animal Welfare and Ethical

Review Body.

METHOD DETAILS

Lentiviral Vectors
Lentiviral vectors were used to express ER-targeted glucose sensors and a short-hairpin RNA (shRNA) against G6Pase-b. Plasmids

encoding the glucose sensors, ERglc600 and ERglc30 [15, 16] were subcloned into the lentiviral transfer vector FUGWbyPCR-based

cloning. Lentiviral particles for sensors and shRNA were produced in 293FT cells by transfection with equal amounts of transfer vec-

tor (TRC human G6Pase-b shRNA, or FUGW containing ERglc30 or ERglc600), envelope vector (pMD2.G), and two packaging vec-

tors (pMDLg/pRRE and pRSV.Rev), using Lipofectamine LTX. Lentiviral particles of CCSB-Broad LentiORF-G6Pase-a were

produced using one packaging vector (psPAX2). Viral supernatant was collected after 48 h, filtered (0.45 mm), incubated with LentiX

concentrator (16 h at 4�C, Clontech), collected (1500 xg, 45 min, 4�C) and the pellets were re-suspended in AGM at 10% of the orig-

inal volume, and stored at�80�C. For expression of fluorescent sensors or G6Pase-a, and knockdown of G6Pase-b, astrocytes were

incubated with lentiviral particles (multiplicity of infection, MOI = 2) in complete AGM, and used after 72 h.

Measurements of [Ca2+]c
For measurements of [Ca2+]c, confluent cultures of astrocytes grown in fibronectin-coated 96-well plates (Greiner Bio-One, Stone-

house, UK) were incubated at 20�C with Cal-520AM (2 mM) in HBS containing probenecid (2.5 mM) [37]. HBS comprised: 135 mM

NaCl, 5.9 mM KCl, 1.2 mM MgCl2, 1.5 mM CaCl2, 11.5 mM glucose and 11.6 mM HEPES, pH 7.3. After 60 min, cells were washed,
e2 Current Biology 28, 3481–3486.e1–e4, November 5, 2018
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incubated in HBS (90 min), washed and used for experiments at 20�C in HBS. Ca2+-free HBS contained BAPTA (2.5 mM), which was

added immediately before stimulation to reduce the free [Ca2+] of HBS to < 100 nM. Fluorescence (excitation at 490 nm, emission at

520 nm)was recorded at 1.44 s intervals using a FlexStation III fluorescence plate-reader (MDSAnalytical Technologies,Wokingham,

UK) [38]. Fluorescence (F) was calibrated to [Ca2+]c from: ½Ca2+ �c = KD
F�Fmin

Fmax� F, where KD is the equilibrium dissociation constant of

Cal-520 for Ca2+ (320 nM), Fmin and Fmax are the minimal and maximal fluorescence values determined after addition of Triton

X-100 (0.2% v/v) in Ca2+-free HBS (Fmin) or ionomycin (10 mM) in HBS (Fmax). In these, and all other analyses of cells grown in

multi-well plates, the distribution of treatments across wells was systematically changed between replicate experiments to avoid po-

tential position-related artifacts.

Western Blotting
Confluent cultures of astrocytes grown in 6-well plates were scraped into lysis medium (150 mM NaCl, 0.5 mM EDTA, 1% Triton

X-100, 10 mM Tris/HCl pH 7.5, Pierce protease inhibitor mini-tablet with EDTA, 1 tablet/10 ml, 4�C). After 1 h, lysates were sonicated

(Transonic ultrasonic bath, 3 3 10 s) and the supernatant was recovered (20,000 xg, 30 min). Proteins were separated on NuPAGE

3%–8% Tris-acetate gels and transferred to iBlot PVDF membranes using an iBlot gel-transfer device (ThermoFisher). Membranes

were blocked by incubation (1 h) with Tris-buffered saline (TBS: 137 mMNaCl, 20 mM Tris, pH 7.6) containing BSA (5%) and Tween-

20 (0.1%), incubated (12 h, 4�C) with primary antibody in blocking buffer, washed in TBS (33 15 min), and incubated (1 h, 20�C) with

HRP-conjugated secondary antibody in blocking buffer. After washing in TBS (33 15min) antibodies were detected using ECL Prime

reagents and a PXi luminescence imaging system. Antibodies were diluted as follows: G6PT (1:500), G6Pase-a (1:100), G6Pase-b

(1:500), and HRP-conjugated secondary antibodies (1:5000).

Immunocytochemistry
Rat cortical brain slices were washed in PBS, incubated (20�C, 15min) in blocking buffer (PBSwith 10%BSA and 0.3%Triton X-100),

washed in PBS (33 5 min), and incubated (72 h, 4�C) with primary antibodies or isolectin B4 in PBS containing 0.1 mMCaCl2, 0.05%

Triton X-100 and 1%BSA. After washing in PBS (33 30min), slices were incubated with secondary antibodies (16 h, 4�C), washed in

PBS (33 30 min), and imaged. Antibodies and lectin were diluted as follows: G6Paseb (1:50), GFAP (1:1000), isolectin B4 (1:50) and

secondary antibodies (1:10000).

Measurements of Glucose Uptake and Intracellular ATP
Confluent cultures of astrocytes in 96-well plates at 20�C were used to measure intracellular ATP using a luciferin-based ATP assay

kit. A Glucose Uptake-Glo assay kit was used to report glucose uptake (by measurement of 2-deoxyglucose uptake) in cells washed

with glucose-free HBS before incubation (10min, 20�C) with 2-deoxyglucose (1mM). We confirmed that none of the treatments used

affected the number of cells/well.

Fluorescence Microscopy
Imaging used an inverted Olympus IX83 microscope with 60x/1.3NA and 100x/1.49NA objectives, and a multi-line-laser bank with

iLas2 targeted illumination system (Cairn, Faversham, Kent, UK). Excitation light was passed through a dichroic mirror for 422 nm

(ZT442rdc-UF2, Chroma) and a quad dichroic beam-splitter for other wavelengths (TRF89902-QUAD, Chroma). Emitted light passed

through filters (Cairn Optospin) with peaks/bandwidths of 480/40 nm, 525/50 nm, 630/75 nm and 700/75 nm, before capture with an

iXon Ultra 897 EMCCD camera (5123 512 pixels, Andor). We confirmed, using astrocytes expressing single fluorophores, that there

was no bleed-through between channels. Confocal stacks were generated using spinning-disc confocal microscopy (70-mmpinhole;

X-Light, Crest Optics). MetaMorph Microscopy Automation and Image Analysis Software (Molecular Devices) and Fiji [39] were used

for image analysis. Images of cells were background-corrected by subtraction of fluorescence from a region devoid of cells.

Measurement of G6P uptake by permeabilized astrocytes
To measure G6P and glucose uptake by permeabilized astrocytes expressing ERglc600, cells were permeabilized by digitonin

(30 mM, 2 min, 37�C) in cytosol-like medium (CLM) comprising 140 mM KCl, 2 mM NaCl, 1 mM EGTA, 2 mM MgCl2, 20 mM PIPES,

pH 7. The permeabilized cells were washed with CLM supplemented with MgATP (1.5 mM) and CaCl2 (375 mM, free [Ca2+]�250 nM),

and assays were then conducted in the same medium at 20�C.

Quantitative PCR
Astrocytes grown to confluence in 24-well plates were lysed (200 ml cell processing buffer/well), and 4 ml lysate was used to generate

cDNA (Fastlane cell cDNA kit). Each qPCR mix contained diluted cDNA (1:5, 5 ml), Rotor-Gene SYBR Green PCR master mix (10 ml),

Quantitect primer assay (2 ml) and RNase-free water (3 ml). qPCR was performed on a Rotor-Gene 6000 thermocycler (QIAGEN): a

denaturation step (95�C, 5 min) was followed by 40 amplification cycles (5 s at 95�C, 10 s at 60�C), with a melting curve recorded

at the end of each run (70�C to 95�C). Expression of mRNA relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was

calculated from:

Relative expression = E
�CPROTEIN

T

E
�CGAPDH

T

, where E is the amplification efficiency, calculated as 10m, where m is the average increase in fluo-

rescence for four cycles after the cycle threshold CT for the indicated PCR product [40]. Results are reported as means from cDNA
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samples independently obtained from at least 4 different cultures. Negative controls (exclusion of reverse-transcriptase in cDNA

synthesis, or of primers during the qPCR run) were included in each assay. Quantitect primer assays were used for GAPDH,

G6Pase-b, G6Pase-a, GPBB, GPMM and GFAP.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed without blinding or power calculations to predetermine sample sizes. Statistical comparisons used non-

parametric tests: the Mann-Whitney test or, for multiple comparisons, the Kruskal-Wallis or Friedman test, each with Dunn’s multiple

comparisons test (GraphPad Prism 5, La Jolla, CA). Results are presented as means ± SEM of values from at least 3 independent

experiments. Sample sizes (n) refer to independent experiments (see legends for details).
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