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Abstract

Locality is a basic requirement for most modern methods for modelling systems

of thousands of atoms or more. Despite its widespread use, the assumption of

locality remains largely unfounded in the underlying quantum mechanical de-

scription. This work presents an algorithm for quantifying the locality of forces

in a general molecular system. The algorithm was tested on linear hydrocarbon

systems; it confirmed the locality of the tight-binding model dftb and quanti-

fied the extent to which chemical changes, such as bond conjugation and oxygen

addition, introduce long-range effects within the more accurate dft model. The

results motivated the development of an intramolecular hydrocarbon potential

using the gap machine learning method; the new potential is a promising altern-

ative to existing models used in hydrocarbon simulation.
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Chapter 1

Introduction

The vast majority of methods for modelling large systems of atoms depend on

the interactions between atoms to be local. For example, interatomic potentials

used in chemistry generally write the Born-Oppenheimer potential energy of

the system as a sum of terms between atoms directly connected via one, two,

or three bonds. Long-ranged interactions are assumed to fall under well defined

classes such as electrostatics and dispersion; these forces are accounted for sep-

arately. More recently, the assumption of locality has also seen increasing use

in electronic structure methods that attempt to treat ever larger systems. Lin-

ear-scaling dft scales linearly with the system size only because it assumes the

electrons1 are strongly localized [1].

The primary motivation for this work, however, is to further the development

of machine learning methods for generating interatomic potentials [2, 3]. Like

existing potentials, those generated by machine learning depend on the interac-

tions between atoms to be local. Unlike most existing potentials, machine learn-

ing potentials address the issue of locality explicitly because they learn the en-

ergy as a flexible function of each atom’s local environment. The sizes of these
1More precisely, the electron density matrix
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Chapter 1. Introduction 1.1. Theoretical background

environments are still limited because the cost of training and using a machine

learning potential depends on the number of possible local environments, which

itself increases steeply with the size of those environments. Nevertheless, since

these methods treat the local environment size as a variable parameter, they are

good tools for investigating locality in a systematic way.

A systematic study of locality is essential to justify the continued success of

modelling methods for large systems. The assumption of locality remains un-

supported by the Schrödinger equation governing all common materials. This

equation describes a system’s energy as an inseparable global property [4]. Al-

though locality is expected to emerge in certain types of systems [1, 5] and it

has been proven analytically under a restricted approximation of the underlying

quantum mechanics [6], for the vast majority of existing modelling methods it

remains an uncontrolled approximation. This work presents the first steps to-

ward rigorously quantifying force locality in molecular systems and resolving

this issue.

1.1 Theoretical background

In order to quantify the locality of interactions in a system, we first need to define

the concept more rigorously. If the interaction between any given pair of atoms

is local, that means we can neglect their interaction once the distance between

the pair is sufficiently large. Concretely, this means we can decompose the total

energy of the system into atomic contributions as follows:

Etot =
N∑

i=1

(
ε(LrC (i))+δ(M \ LrC (i))

)
(1.1)
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Chapter 1. Introduction 1.1. Theoretical background

where Etot is the Born-Oppenheimer potential energy of the system obtained by

separating the electronic and nuclear components of the Schrödinger equation.

The symbol M denotes the the set of positions, atomic numbers, and other rel-

evant properties of all atoms in the molecule or system in question, while LrC (i)

denotes the local neighbourhood of atom i with radius rC, which is the set of

relevant properties of only those atoms located within a distance rC of atom i.

The radius rC is called the cutoff radius of the neighbourhood2. The quantity ε

is the local energy, the portion of that atom’s energy contribution that depends

only on its local neighbourhood. The error term δ is the remaining energy; this

is the error incurred by ignoring other atoms outside the local neighbourhood.

Often we can choose the local environment size to balance the computational

cost of our modelling method against its accuracy, since both generally increase

with the size of the local neighbourhoods.

The energy-based definition of locality above can be transformed to an equi-

valent version based on force, which is often a more accessible quantity than

local energy. We arrive at this definition by taking the gradient of Equation (1.1),

yielding

Fk =−∇kEtot =
N∑

i=1
−∇kε(LrC (i))+

N∑
i=1

−∇kδ(M \ LrC (i))=

= ∑
i∈LrC (k)

fki +∆k(rC) (1.2)

In other words, the force on a particular atom is the sum of forces on that

atom from all other atoms in its local neighbourhood, plus an error term ∆(rC)

which depends on the size of the neighbourhood. It is this error term that we

want to quantify and, eventually, control.
2Euclidean distance is not the only way of defining a local neighbourhood; in some cases,

topological measures of distance like the number of bonds make more sense.
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Chapter 1. Introduction 1.1. Theoretical background

1.1.1 Locality in interatomic potentials

The above formulation of locality appears indirectly in the functional forms of

most interatomic potentials. For example, take the chemical forcefields, which

are interatomic potentials used in chemistry that write the total energy of a

molecule as a sum of bond stretching, angle bending, torsional, improper tor-

sion (general 4-body), and nonbonded (any atom pairs not included in the above)

terms. For simplicity, consider a prototypical example of such a forcefield with

only harmonic bond-stretching terms. This forcefield’s energy expression is:

Etot =
∑

i, j bonded

1
2

ki j(r j −ri)2 (1.3)

We can now write the local energy

ε(ri, {r j; j ∈ LB1(i)})= 1
2

∑
j∈LB1(i)

1
2

ki j(r j −ri)2

that puts Equation (1.3) in the same form as Equation (1.1) with the error terms

δ ignored; here, LB1(i) is the local neighbourhood consisting of all atoms within

one bond of (i.e. bonded to) atom i and the additional factor of 1/2 corrects for

double counting. This construction also works, with larger local neighbourhoods,

for potentials that use bond-angle, torsion, and improper torsion terms.

Other types of potentials are more explicit in their use of local environments.

Many-body potentials of the Tersoff or Brenner [7], embedded-atom [8], or ma-

chine learning [2, 9, 10] types use an explicit cutoff function to limit the range

of the potential to only include each atom’s local neighbourhood.
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1.1.2 Nonlocal forces

The assumption of strictly local interactions is only justified in a small set of

materials. The vast majority of systems are subject to various types of non-

local interactions that are essential in determining the structure and properties

of the material. These interactions are responsible, for example, for condensed

phases [11]; they also play a large role in the packing and assembly of complex

molecules such as proteins or dna [12].

In order to model materials where nonlocal interactions are important, in-

teratomic potentials include one or more extra terms inspired by the physics of

the interactions betweenmolecules (or parts of a largemolecule). Although these

interactions all ultimately derive from the electrostatic interactions between the

electrons and nuclei of the system, they can broadly be classified into distinct

physical effects. At long range, these effects are [11]:

Electrostatics

When two groups of atoms are both strongly polarized, i.e. they both have strongly

asymmetric net charge distributions, the main interaction between the groups is

the classical electrostatic interaction between their static, unperturbed charge

distributions [11]. This interaction can be understood intuitively as the sum

of electrostatic forces between the permanent charges, dipoles, and higher mo-

ments that arise in molecules containing species of differing electonegativities.

Obtaining the full charge distribution for amolecule in order to directly evalu-

ate the classical electrostatic interaction energy is impractical for fast molecular

modellingmethods, as that would require a full quantummechanical calculation

for each geometry. Instead, these methods typically use approximations such as

the distributed multipole expansion, where the charge distribution of a molecule

5
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is approximated by a collection of point charges and higher moments assigned

to a collection of sites throughout the molecule. For more detail on this method

and how it assigns the electrostatic parameters, see Section 2.2.

Induction

Another type of interaction arises when the electron distribution of one group of

atoms is distorted in the electric field of another. This interaction is more com-

plicated to describe than the classical electrostatic energy because it requires

a model for how an electron distribution responds to an applied field. Usually

this is done by means of parameters called polarizabilities, which describe the

induction of multipole moments at a site as a linear (although often frequency-

dependent) reponse to the applied field [11].

Another reason the induction energy is difficult to describe is that it is a com-

plex many-body effect; one polar molecule can polarize another molecule, but

that molecule may in turn polarize a third molecule with its own electric field.

This means the induction energy (in contrast to the electrostatic energy) can-

not be expressed as a simple sum over pairwise interactions; in other words, it

is non-additive. This complication, along with the relatively small role that the

induction energy plays in many systems, means it is not explicitly included in

most molecular modelling methods, although its effects may be included approx-

imately in the electrostatic model [11].

Dispersion

By far themost common use of polarizabilities inmolecularmodellingmethods is

to describe dispersion interactions. When two widely separated groups of atoms

both have neutral, unpolarized net charge distributions, this is the only force

6
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between them.

Dispersion is an entirely quantummechanical effect that results because the

long-range correlation of electron motion in the two groups results in an overall

lower-energy state [11]. The leading term of the dispersion energy decays as r−6

with intermolecular distance r. Higher-order terms also exist, including those

that decay as r−8 and r−10, but most potentials simply incorporate those effects

into the sixth-power term.

Some potentials combine the dispersion interaction with another term that

approximately describes the Pauli repulsion that occurs when atoms get close to

each other. This approach has the advantage of removing the singularity of the

inverse-power dispersion at short distances. The original and most well-known

potential to use this approach is the Lennard-Jones potential, which includes a

computationally efficient r12 repulsive wall. This potential is used in many of the

most popular interatomic potentials in chemistry and physics. For instance, the

amber [13], opls [14], and TraPPE [15] chemical forcefields use a Lennard-Jones

potential plus Coulomb interactions between predefined partial charges for the

nonbonded force terms. The related compass forcefield [16] uses a similar form,

except with r−9 repulsion instead of the traditional twelfth-power term. Even

the airebo many-body potential for hydrocarbon simulation includes adaptively

switched Lennard-Jones (12-6) potentials to represent intermolecular forces.

It was proposed as early as 1932 that an exponential repulsive wall might be

more accurate [17, 11], although this ‘exp-6’ version3 is still not as popular as

the original Lennard-Jones potential. This functional form is used by the MMn

forcefields, such as MM3 [19], and by the flexible Williams model of Tobias, Tu,

and Klein [20].
3Sometimes called the Buckingham potential after the 1947 variant [18], although the true

Buckingham potential also includes an eighth-power dispersion term

7
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Although the sixth-power functional form of the dispersion energy (along

with eigth- and tenth-power terms inmore complete treatments) is widely agreed

to be correct, the determination of the constant coefficient of r−6 is a subject of

ongoing research. Usually the constant is determined using the same polariz-

abilities that parameterize the induction energy [12, 21, 22, 23]. Even among

these methods, however, there are many different ways, at different levels of

approximation and computational cost, of either defining the polarizabilities or

of getting the coefficients from those polarizabilities. A new possiblity is to use

machine learning to separately describe both the dispersion and short-range re-

pulsion energies (see Section 4.4), although this avenue of research has not yet

been pursued.

1.1.3 Quantum-mechanical models

Molecular modelling methods can be tuned to fit almost any reference data. The

quality and predictive power of the method depend just as much on the quality

of the fitting reference as on the method’s functional form and fitting method. An

early and popular reference is experimental data, which is accessible and often

easy to translate into forcefield parameters. However, as more accurate first-

principles modelling methods became available, it became viable to fit models

to quantum-mechanical data. Such models are appealing because they are built

from the bottom up, rather than constructed as empirical approximations, so

their success is due to the success of the underlying physical principles.

To generate quantum-mechanical reference data, many methods are avail-

able. All of them attempt to solve the Schrödinger equation; they vary in the

chosen compromise between speed and accuracy of approximation. Below are

the methods most relevant to this work. For reference, the Schrödinger equation

8
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for a material in the Born-Oppenheimer approximation is written:

ĤΨ(r;R)= (T̂el+ V̂nn+ V̂ne+ V̂ee+ V̂ext)Ψ(r;R)

= E(R)Ψ(r;R) (1.4)

where r is the set of all electronic coordinates and R is the set of all nuclear co-

ordinates. The operators in the Hamiltonian are, in order, the electronic kinetic

energy, the repulsion between the nuclei, the attraction between the electrons

and the nuclei, the repulsion between the electrons, and any external potential

(due e.g. to an electric field).

Density functional theory

This method is based on a reformulation of the Schrödinger equation in terms

of electron density. The original Schrödinger equation obeys a variational prin-

ciple, where the expectation value of anywavefunction under the electronicHamilto-

nian is always greater than or equal to the ground state energy, equality being

reached only with the ground-state wavefunction. A similar principle applies

when the electron density n(r) is used in place of the wavefunction: The energy

functional

E[n(r)]= T0[n(r)]

+
∫

n(r)
(
Vext(r)+

∫
1
2

n(r′)
|r−r′| d3r′

)
d3r

+EXC[n(r)] (1.5)

has a unique minimum at the ground-state density n0(r) [4]. In the above, T0

gives the kinetic energy of a fictitious system of non-interacting electrons with

9
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the density n(r), the external potential Vext now includes the repulsion between

the nuclei aswell as the attraction of the electrons to the nuclei, and the exchange-

correlation energy EXC must account for the effects of indistinguishable elec-

trons and electron correlation, both of which the first two terms ignore. If the

exchange-correlation functional is perfect, optimizing this energy expressionwith

respect to electron density gives the electronic energy and density of the real

system’s ground state. This formalism is known as density functional theory, or

dft. The most common way to optimize the functional (1.5) is to write it as a

superposition of non-interacting electrons, each acting under an effective poten-

tial, and then find the eigenstates (known as the Kohn-Sham orbitals) of that

potential.

In practice, it is difficult to approximate the true exchange-correlation func-

tional accurately. Existing approximations use either the local electron density,

its gradient, or a nonlocal exchange term based on the Hartree-Fock method

(see Section 1.1.3) and are fitted either to simple model systems or to exist-

ing calculations on large samples of molecules [4]. Approximations of this type

generally capture intramolecular interactions and other short-range forces ac-

curately. This accuracy, combined with its low computational cost relative to

wavefunction-based methods, make dft probably the most successful and widely

used method to date for modelling medium-sized molecules and solid-state sys-

tems [4].

None of the standard functionals, however, adequately account for long-range

intermolecular interactions. They are especially bad at capturing dispersion forces [22,

23]. There are functionals that correct the energy to account for dispersion [12];

however, these usually use simple r−6 functional forms that could just as well be

explicitly added in to an existing interatomic potential.

10
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Tight-binding approximation

Even though dft offers an excellent compromise between speed and accuracy

for a wide range of systems, it is still too slow for many common tasks. For ex-

ample, running hundreds of thousands of steps of molecular dynamics to sample

a dft energy landscape is still intractable for large biological or solid-state sys-

tems containing thousands of atoms or more [24, 25, 26]. For such applications,

methods are available that are faster and more approximate than dft but are

still founded in quantum mechanics, and are thus more accurate and transfer-

able than empirical interatomic potentials.

One such method is based upon an expansion of the dft energy functional

near some reference density nref(r). For a system with no spin polarization, the

second-order expansion in some perturbation δn about the reference is [24, 25]:

E[nref+δn]≈∑
i

ni〈ψi(r)|Ĥref|ψi(r)〉+

EXC[nref(r)]+Vnn−
∫

VXC[nref(r)]nref(r) d3r+

− 1
2

Ï
nref(r)nref(r′)

|r−r′| d3r d3r′+

1
2

Ï (
1

|r−r′| +
δ2EXC

δn(r)δn(r′)

∣∣∣∣
nref(r)

)
δn(r)δn(r′) d3r d3r′ (1.6)

with the reference Hamiltonian

Ĥref =−1
2
∇2 + V̂ext+ 1

2

∫
nref(r′)
|r−r′| d3r′+ V̂XC[nref(r)] (1.7)

The ψi are the Kohn-Sham eigenstates of the reference system. The exchange-

correlation energy also appears above as a potential VXC[n(r)]= δEXC[n(r)]
δn(r) and the

internuclear repulsion Vnn has again been written separately from the external

potential. In this expansion, only terms in the zeroth and second order of the

11
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density fluctuation appear; the first-order terms cancel.

If the above expansion is truncated to zeroth order taking only the first three

lines of Equation 1.6, the electronic Hamiltonian no longer depends on the dens-

ity itself and no self-consistent iteration is necessary. To solve the equation,

the Kohn-Sham orbitals of the reference density are first expanded in an atom-

centred basis set, whose approximate overlap and expectation values are pre-

computed and tabulated. The Schrödinger equation then reduces to a single

matrix equation that uses precomputed values. This process is characteristic

of a tight-binding method: No self-consistent iterations or explicit orbitals are

needed to compute an energy. This specific formulation is called density func-

tional based tight binding (dftb) because it is parameterized using dft calcula-

tions rather than empirical data. The precomputed values, lack of self-consistent

iteration, and minimal basis make this method much less expensive than dft on

a comparable system [26].

A limitation of the zero-order method is that it cannot account for long-range

forces. This method, along with other tight-binding models, has been shown to

exhibit strict force locality in most insulating systems [6], meaning it can only

account for short-range bonding interactions. The dftb model can be modified to

include long-range interactions by taking the Hamiltonian expansion to second

order in the density fluctuation. This version, known as charge–self-consistent

dftb (scc-dftb), involves a self-consistent assignment of partial charges to each

of the atoms. Although this modification makes the method more accurate and

better able to account for electrostatic interactions, it is also more expensive

than the zero-order expansion.

In this work, however, dftb was only used to sample the molecular configur-

ation space efficiently; more accurate long-range forces were simply computed

12
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using dft. Since the sampling method had to be efficient rather than accurate,

it was done using only the zero-order dftb method.

Quantum chemistry

On the other end of the continuum of speed versus accuracy lie the quantum

chemistry methods. These methods are based on the Hartree-Fock procedure,

which computes the many-electron wavefunction of a system in an iterative, self-

consistent way. This procedure exactly accounts for exchange by antisymmetriz-

ing themany-particle wavefunction.Modern, post–Hartree-Fock quantum chem-

istrymethods also account for correlation by considering states with excited elec-

trons. These methods include many-body perturbation theory, more commonly

known as Møller-Plesset theory, as well as configuration-interaction methods,

which optimize the energy in a basis of excited wavefunctions [27].

The main downside of these methods is their computational cost. Even on

small molecules they are typically many times slower than standard dft meth-

ods. Their cost also scales unfavourably with the number of electrons in the sys-

tem, typically O (N5) or worse [27, 28].

The main strength of these methods is their ability to account for both ex-

change and correlation effects with no uncontrolled approximations. For an ac-

curate, systematic description of intermolecular forces, quantum chemistry is

usually the best choice.

13



Chapter 2

Methodology

2.1 Locality algorithm

The method used to quantify locality is inspired by Equation 1.2. If the local

neighbourhood of the atom labelled k is fixed, the local contribution to the force∑
i∈LrC (k) fki is constant. We can therefore obtain an estimate of the remaining

force ∆k(rC) by generating a sample of molecular geometries, all with the same

local neighbourhood of atom k, and computing the standard deviation of the force

Fk on the central atom over the sample. The local contribution drops out and we

are left with an estimate of the error incurred by ignoring forces outside the local

neighbourhood.

The quality of this estimate depends on the quality of the sample of geo-

metries used to compute the standard deviation. Ideally the sample would be

representative of of configurations in all the systems we want to simulate. For

example, if we are only interested in locality of saturated hydrocarbon systems,

the nonlocal sample only needs to include good coverage of saturated hydrocar-

bons. If we want to simulate unsaturated hydrocarbons, on the other hand, we

should ideally include both saturated and unsaturated geometries in the non-

14



Chapter 2. Methodology 2.1. Locality algorithm

local sample. Section 2.1.2 gives more detail on how to generate chemically var-

ied samples.

The above procedure tells us about the locality of only one geometry of the

local neighbourhood. Usually, however, we are interested in a more general and

approximate definition of locality: we want to know the average dependence of

the force on an atom on changes outside its local environment. To do this, we need

to compute force variances across a sample of local environment geometries and

average them together. If we do this withmany different local environment sizes,

i.e. many different radii rC, we obtain a profile of how the average locality of the

force on a given atom depends on the size of its local environment.

2.1.1 Algorithmic details

The samples of molecular configurations used to compute the force variances in

this work were generated by running molecular dynamics with the atoms inside

the local environment constrained in place. The forces used to evolve the dynam-

ics were computed using zero-order dftb (see Section 1.1.3) via the implementa-

tion in the quip library [29]; the method used the standard ‘mio’ parameter set1.

The dynamics were evolved using the standard velocity Verlet algorithm with a

timestep of 0.1 fs to capture the fast motion of hydrogen atoms. No thermostat

was used, i.e. the dynamics sampled the nve ensemble.

The dynamics were run either until a set number of steps was reached (4000

unless otherwise noted) or one of the mobile atoms entered the local neighbour-

hood, i.e. came within rC of the central atom. Had atoms been allowed to move

within the space of the local neighbourhood, then the neighbourhood would no

longer have been constant throughout the trajectory and the computed variance
1Parameters available at http://www.dftb.org/parameters/download/

15
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would no longer have represented the real force error. The only way to preserve

the accuracy of the sample in such situations without introducing artificial forces

was to terminate the trajectory, saving all timesteps up until that point. This ne-

cessity also means that the saved trajectories had widely varying lengths, which

presented a challenge for data storage and later analysis.

While dftb provides forces accurate enough to generate acceptable thermal

samples of molecular configurations, it cannot capture long-range interactions

such as electrostatics or dispersion. To obtain more accurate locality data that

included some of these interactions, dft calculations were done on a subset of

the dftb trajectories. The trajectories were subsampled at an interval of 20 fs

and the resulting geometries were fed to the molpro code [30, 31, 32, 33]. The

dft calculations used the minimal 6-31G* basis set and the local b-lyp exchange-

correlation functional. These parameters were chosen for speed rather than ac-

curacy due to the large number of calculations that were required; the accuracy

should still be much better – especially qualitatively – than that of zero-order

dftb. Any calculations that did not converge were ignored and excluded from the

final analysis.

In order to obtain a good sample of local environments to compute an aver-

age force variance, the starting structure of the test system was assigned ran-

dom thermal velocities corresponding to some fixed initial temperature (4000 K

unless otherwise noted) and equilibriated using molecular dynamics. The dy-

namics were run using dftb and with the same parameters as the constrained

systems described earlier, only in this case all of the atoms were free to move

and the dynamics were only run for 1000 steps (100 fs). This equilibriation was

repeated several times to obtain a number Ninst of instances of the system with

different atomic positions and velocities.
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Each instance was used as the starting configuration of a separate locality

computation wherein local environments of different sizes were frozen, the rest

of the system was mutated and equilibriated as described in Section 2.1.2, dy-

namics were run on those mutations as described above, and variances of those

samples were computed. The list of radii rC used to determine a local environ-

ment was the same across all instances to ensure consistency. The result of this

procedure was a list of Ninst lists of variances, one list per dynamics instance,

each consisting of Nenv variances, one per local environment radius. For each

local environment radius, all variances corresponding to that size were averaged

together, weighting by the number of configurations that were used to compute

each individual variance. Finally, the square roots of the averaged variances

were taken to give the force error as a function of local environment radius.

All of the dynamics, dft calculations, and data analysis was controlled and

automated using a Python code, interfaced to quip, as described in Appendix A.

2.1.2 Mutations

One might also be interested in locality as a function not only of the motions of

atoms outside a local environment, but also of changes in the number and type

of atoms outside that environment. To carry out such locality computations, the

capability was implemented to mutate molecules in chemically sensible ways.

The two types of mutations were the conjugation of a carbon-carbon bond, i.e.

the removal of one hydrogen atom on each end of the bond, and the addition

of oxygen by replacing two hydrogen atoms on the same carbon atom. These

mutations are illustrated in Figure 2.1.

These mutations were done on each dynamics instance after the end of the

initial equilibriation trajectory. Several copies of the equilibriated structurewere
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(a) decane

(b) decane with a conjugated bond

(c) decane with oxygen

Figure 2.1: The molecular structures of the test system, decane, along with two mutated
examples. The mutated structures were first equilibriated and relaxed with dftb forces.
The centres of the local environments used in the algorithm are highlighted in blue.
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made and the two mutations were applied once to one copy and twice to an-

other copy; only the parts of the structure outside the local neighbourhood were

mutated. Together with the unmutated structure, this process resulted in five

chemically different structures with identical local neighbourhoods. Each struc-

ture was first relaxed using the bfgs linesearch optimization method until the

maximum of the forces fell below 0.05 eV/Å; this step dealt with any unfavour-

able geometries resulting from the programmatic geometry changes. After the

relaxation, the atomic velocities were rescaled to match the system’s temperat-

ure before the mutation step, at the end of the instance’s initial equilibriation.

This rescaling ensured that all mutations of an instance were run at the same

temperature, namely, the temperature that the system would have had if it had

not been mutated and relaxed. The dynamics were then evolved, as described

in Section 2.1.1, for each of the mutated structures independently. Finally, since

the trajectories for each of the structures had identical local environments, they

were concatenated (after removing 20 fs of equilibriation from the beginning of

each trajectory) and variances were computed across the concatenated lists. The

variances were then averaged across instances as described in Section 2.1.1. This

procedure allowed locality to be computed with respect to chemical changes as

well as physical ones.

2.1.3 Test systems

All of the calculations done in this work used a single linear alkane (saturated

hydrocarbon chain) with a length in the range of 10–24 carbon atoms as the

starting structure; one example (decane, 10 carbons) is shown in Figure 2.1a.

These are ideal systems for testing the algorithm because the number of atoms in

a single molecule scales only linearly with the maximum diameter of the system,
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and hence with the range of local neighbourhood radii that can be explored.

2.2 Electrostatics

The locality algorithm can also be used to test whether existing models of long-

range interactions can be used to make the force more local by subtracting the

predicted nonlocal components. This application is explored herewith the simplest

nonlocal interaction tomodel, classical electrostatics. Although the physical basis

of the interaction is simple, the practical computation of the interaction energy

presents difficulties that are addressed with a large variety of techniques and

approximations.

2.2.1 Parameterizations

The most complete, correct way to evaluate the electrostatic interaction energy

is to obtain the electron distributions of the molecules or groups in question,

then evaluate the classical Coulomb interaction energy of the distributions just

as dft and quantum chemistry codes do. Fast molecular modelling methods, on

the other hand, do not have the luxury of accessing the full electron distribution

for each geometry they encounter, so they must use some other approximation

to predict the electrostatic energy.

The most common approximation is to assign electrostatic parameters such

as charges, dipoles, and higher moments to a molecule or to various sites within

a molecule and assume that these moments do not change during the simula-

tion [11]. Such parameterizations are chosen to mimic the net charge distribu-

tion of the molecule or group in some way, for example by reproducing its elec-

trostatic field at long range.
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One method that is relevant especially in the context of small molecules is to

assign each molecule a single series of multipole moments centred on that mo-

lecule, effectively expanding its electrostatic potential in spherical harmonics.

This expansion has the disadvantage that it may diverge when the molecules

get close to each other. For this reason, it is much more common to replace the

single expansion centred on the molecule with multiple expansions centred on

sites distributed throughout the molecule.

The latter method, termed a distributed multipole expansion [11], has much

more freedom in the choice of sites and assignment ofmoments than themolecule-

centred expansion. The simplest choice of sites is to assign a site to each atom

in the molecule. Although it may be advantageous to use additional sites, the

atom-site convention is the simplest and most practical one for most molecules.

For this reason, it is the convention adopted by most molecular modelling meth-

ods as well as in this work.

2.2.2 Derivation of electrostatic moments

Even when the sites are restricted to lie on the atoms in a molecule, there is still

considerable freedom in deciding how to assign charges and higher moments

to the sites. The distributed multipole expansion does not specify any single op-

timal assignment of these parameters, in part because there is no clear target for

what should be optimized. Accordingly, there are numerous established meth-

ods for computing these parameters for a given molecular geometry. Some try

to give insight into the behaviour of atoms as part of a molecule, others try to

match the molecule’s electrostatic potential in the far field, while still others try

to find a compromise. Below is a selection of some of the most popular methods.

The earliest example of a multipole moment assignment method is the Mul-
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liken population analysis [34]. This method is simple to implement; it takes the

output of electronic structure methods performed with atom-centred basis sets

(atomic orbitals) and assigns charge to an atom by finding the population of all

orbitals centred on that atom. Initially thismethodwas developed to assist chem-

ical intuition and decide how ionic or covalent a bond is. In reproducing the elec-

trostatic forces on a molecule, however, Mulliken moments perform poorly [11].

More recent methods either use a partitioning of the electron density of a

molecule or fit the electrostatic potential generated by that density. The former

class of methods are usually known as atoms-in-molecules (aim) methods; the

latter are known as electrostatic potential fitting (esp) methods. The aim meth-

ods include Bader’s method [35], which segments the charge distribution along

zero-flux surfaces (minima in the electron density), and the Voronoi deforma-

tion density [36], which uses a Voronoi diagram with the nuclei as centres to di-

vide the electron density. Other aim methods decompose the charge density into

overlapping regions; the Hirshfeld partitioning, for example, works by imagining

the system as a superposition of non-interacting free atoms, then partitioning

the real electron density at each point in proportion to the free-atom contri-

butions [37]. To obtain the electrostatic moments for an atom, these methods

expand the charge density assigned to an atom into a series of multipoles. Such

methods can also be used to assign an effective volume to each atom, which can

be used to derive polarizabilities for the induction and dispersion energies. In

particular, the Hirshfeld definition has inspired several methods for computing

effective atomic polarizabilities [21, 22, 23].

Electrostatic potential fittingmethods generally use the computed charge dis-

tribution to evaluate the potential at a grid of points outside the molecule; they

then use a simple least-squares fit to find charges that reproduce the potential
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at those points [38]. A recent method [39] combines this approach with the aim

formalism to produce an all-purpose compromise between near-field and far-field

electrostatic potential accuracy.

While all of the above methods can provide distributed multipole expansions

to arbitrary order, most molecular modelling methods adopt the simpler con-

vention of using only partial charges, in effect truncating the expansion at the

zeroth order. Simply ignoring higher moments can lead to a large error [11], so

many methods, such as electrostatic potential fitting, constrain the expansion

so as to obtain the best approximation with only point charges. Another tech-

nique that can improve the accuracy of point-charge models is to use additional

sites; however, this approach is usually only practical for small molecules such

as water.

With thewide array of electrostaticmoment assignmentmethods available, it

is difficult – and often arbitrary – to choose one for a particular application. The

ideal assignment for the creation of a local interatomic potential is the one that

accounts for all long-range electrostatic interactions so that the remainder of the

total force is strictly local. However, it is difficult to find this forcefield directly,

so for now an approximation must be chosen. For the purpose of this work, the

best compromise between accuracy and computational efficiency was offered by

the Bader aim charges, implemented in a compact and efficient code2 [40, 41,

42]. The input to this code was an electron density file generated by molpro

using its default rectilinear grid with points spaced by about 0.25Å. This spacing

was relatively large and led to inaccuracies in the total electron count, but the

parameter set was deemed good enough for a first trial of the electrostatic force

field correction. In any case, the choice of the electrostatic assignment method

and parameters is subject to change in future work on this problem.
2Code available at http://theory.cm.utexas.edu/henkelman/code/bader/
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2.2.3 Use of electrostatic force fields

If a molecular modelling method uses an electrostatic force field derived using

one of these methods, it must combine the electrostatics with the local force

derived from each atom’s local energy. Simply adding the forces is not a good ap-

proach because multipole-based electrostatic force fields all have singularities

when two sites approach each other too closely. In the full quantum-mechanical

description these singularities are resolved because the interpenetration of the

charge distributions at short range reduces the electrostatic force between the

two sites. Molecular modelling methods can simulate this effect by using func-

tions that damp the electrostatic interaction at short range [11].

Amore common approach, however, is simply to turn off the interaction between

sites that are too close. Bond-based potentials such as amber ignore electrostatic

forces between atoms that are within three bonds of each other (atoms separated

by exactly three bonds are sometimes assigned a scaled-down interaction) un-

der the assumption that those forces are already included in the bond, angle, or

torsion terms [13]. Similarly, methods based on explicit cutoff radii can turn off

electrostatic forces between atoms separated by less than the cutoff, effectively

separating the energy expression into disjoint local and nonlocal terms. For ma-

chine learning methods, this means that any short-range electrostatic damping

effects can be incorporated into the learning procedure as part of the local en-

ergy; the electrostatic model then only needs to accurately reproduce the far-field

electrostatic potential.

Until now we assumed that the electrostatic moments do not change dur-

ing a simulation. This means that the moments are precomputed or assigned

with reference to some ideal, equilibrium geometry, or are averaged over some

thermal sample of molecular configurations. To obtain the most accurate de-
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scription of electrostatic forces, however, we need to allow the moments to vary

with the geometry of the molecule. This task is an ideal application for machine

learning. If the moments on an atom depend only on the local neighbourhood

of that atom, then a sample of geometries with quantum-mechanically derived

electrostatic moments can be used to train a machine learning model to repro-

duce those moments at any other geometry of interest. This method has been

applied successfully to ionic systems [43], where the redistribution of charge is

a major contributor to the energy of the system, and in multicomponent solid

systems [44]. It would be interesting to apply this idea to molecular systems as

well, as soon as a good method for computing the long-range electrostatic forces

in these systems can be decided.

25



Chapter 3

Locality results

The locality algorithm provides an estimate of the variability of the force on a

given atomwhen the atomic environment outside its local neighbourhood changes.

This quantity, observed as a function of local neighbourhood size, gives insight

into the physics of the interactions in a system. Not only is this information in-

teresting in itself, but it can also be used as a tool to assist in the design of new

interatomic potentials. Below are the results of this algorithm on a selection of

hydrocarbon chains used as test systems.

3.1 Forces from dftb

First, we can investigate the locality of the dftb forces in the system. Zero-order

dftb provides forces good enough to evolve dynamics and explore the molecule’s

configuration space, but we do not expect much quantitative accuracy compared

to a full quantum-mechanical model. Indeed, tight-binding models have been

shown to always give strictly local (exponentially decaying) forces in systems
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Figure 3.1: Errors of the dftb forces on decane. The centre is at one end of the molecule;
the results comprise Ninst = 20 dynamics instances. The black line shows force errors with
no mutations, the orange line shows them with conjugation and oxygen mutations. The
force axis is logarithmic.

that behave as insulators1 [6], even including systems where we know nonlocal

forces to be present, e.g. molecules with polar, interacting parts.

The locality algorithm bears out this prediction, as shown in Figure 3.1 for

the example of a 10-atom hydrocarbon chain (n-decane). The locality centre is

the carbon atom at one end of the chain; the distance between the carbon atoms

at each end of the straightened chain – in effect, the length of the molecule – is

11.3Å. The plot shows the standard deviations of the force on the central atom

as a function of local neighbourhood radius. The standard deviations were first

averaged over all dynamics instances, weighting by the square root of the num-

ber of points used to compute each data point, then the Cartesian components

of the force errors were averaged together.

The trend in the plot is linear, indicating an exponential decay with distance
1More precisely, the strict locality holds only if the Coulomb interaction between different

parts of the molecule is screened, which is what is expected in insulating systems.
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Figure 3.2: Comparision of the dftb versus the dft force errors on decane
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Figure 3.3: Force errors on decane with two types of mutations
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of the forces in the molecule. This trend is not significantly affected by the inclu-

sion of conjugation and oxygen mutations. Since both types of mutation result in

closed-shell insulating systems, this retention of the exponential decay is what

was expected.

3.2 Forces from dft

For a more realistic description of the interactions in the molecule we need to

use dft. As described in Section 2.1.1, dft calculations were done on geometries

sampled from the dftb trajectories to obtain a more accurate set of forces.

Even without including mutations, we see in Figure 3.2 that dft predicts

the forces to be less local than dftb does. After about 4Å, or two carbon-carbon

bonds, the dft force errors begin to deviate strongly from the dftb errors.

In contrast to the zero-order dftb model, the dft forces are affected by muta-

tions of the molecule. Figure 3.3 shows the force variance including conjugation

and oxygen mutations separately. The forces are most strongly affected by the

inclusion of oxygen atoms, although the reduction in locality is still not as large

as expected. This could be because the plot is based on forces on a carbon atom.

Perhaps a larger effect could be seen if the locality of the forces on an oxygen

atomwere computed instead (using an alreadymutatedmolecule as the starting

point), since oxygen atoms participate more strongly in the electrostatic forces

that reduce locality.

3.2.1 Size dependence

To determine whether the locality results are affected by the finite size of the

molecule, the locality algorithm was also run on hydrocarbon chains of different
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Figure 3.4: Comparison of the dft force locality of hydrocarbon chains of two different
lengths. The local neighbourhood centres are now near the centres of the molecules, i.e.
the fourth carbon for C8 and the eighth for C16. No mutations were done on the systems;
each of Ninst = 50 instances was equilibriated for 60 fs without prior relaxation and run
for an additional 400 fs.

sizes, once on octane (8 carbons) and once on hexadecane (16 carbons). Figure 3.4

shows the results, which show no evidence of finite-size effects in this type of

system.

3.3 Electrostatics

Returning to the decane system, the electrostatic field generated by Bader’s aim

partial charges was additionally computed and subtracted from the dft forces.

The charges were computed at each geometry where a dft calculation had been

done; electrostatic forces were ignored between atoms separated by less than 5Å.

The resulting forces should ideally be better localized than the original forces,

but the actual results were unsatisfactory. As Figure 3.5 shows, this correction

only increased the force errors, instead of systematically decreasing them as the
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Figure 3.5: Force errors with electrostatic forces due to Bader charges subtracted between
atom pairs more than than 5Å apart

correction was intended to do. The adverse effect is particularly prominent when

considering only unmutated systems. Unmutated decane is a nonpolar molecule

and long-range forces due to its static charge distribution should be negligible,

but the Bader charges still appear to generate a strong electrostatic field. Plain

Bader charges thus provide an inadequate description of the electrostatic field

in hydrocarbons since they seem to always overpredict the forces, so in future

work a better electrostatic model will be necessary.
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Hydrocarbon gap

4.1 Motivation

The linear alkanes have long been studied as a classical example of local systems.

Their local behaviour is evidenced by their electronic structure; for example,

the total electronic energy is essentially linear in the chain length [1] and the

electron density matrix decays exponentially with spatial separation [45].

Force locality is a stronger condition than electron localization, though, and

the results in Section 3.2 offer direct numerical evidence that the force itself is

well localized. Not only does this evidence justify the creation of local potentials

for hydrocarbons, it also provides valuable information that we can use to optim-

ize a local potential for accuracy or for computational efficiency. For example, we

can use the locality information to select a cutoff radius at which the average

force error falls below a certain target. Additionally, once we select a cutoff, we

can use the locality information to find the minimum force error that we can the-

oretically achieve. Both uses of the locality data will be explored below by fitting

a Gaussian approximation potential (gap) to model saturated and unsaturated

linear hydrocarbons.
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This new gap could have applications beyond simply exploring the locality

of hydrocarbon systems. Although many potentials are available to model the

properties of hydrocarbons, most of them fail under conditions far away from

those for which they were parameterized. These failures are especially apparent

when computing quantities, such as transport properties, that are very sensitive

to the details of the intramolecular force model. One such property is the shear

viscosity of liquid hydrocarbons, which becomes increasingly difficult to predict

accurately as either the pressure or the chain length is increased [46, 47]. The

gap method tested here offers a systematic way of overcoming those failures by

generating accurate potentials for hydrocarbons that can be made to work even

under extreme temperature or pressure conditions.

4.1.1 Existing hydrocarbon potentials

Systems made chiefly of carbon and hydrogen are central subjects of research in

many different fields. They play important roles in chemical engineering, spe-

cifically in the study of petrochemicals; in biophysics, specifically in the study of

lipids and membranes; as well as in materials science, for example in the study

of diamond and of carbon nanostructures. The demand for good carbon-hydrogen

potentials from these areas of research has resulted in many specialized models.

One of the earliest models optimized specifically for hydrocarbons is the op-

timized potentials for liquid simulation (opls) [14], which is a chemical forcefield

with fixed bonds and angles, but with the torsional and nonbonded (Lennard-

Jones 12-6 plus Coulomb) potentials fitted to a combination of experimental data

and existing potentials computed for various liquid hydrocarbons. The opls is a

united-atom model, meaning the hydrogen atoms are implicitly represented by

the carbon centres to which they are attached, but an all-atom version [48] was
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later developed. A forcefield with similar goals to opls is the flexible Williams

model of Tobias, Tu, and Klein [20], which includes bond stretching and angle

terms and replaces the Lennard-Jones plus Coulomb nonbonded interactions

with an exp-6 potential. The TraPPE united-atom potential [15], on the other

hand, was developed with emphasis on transferability and accuracy of hydrocar-

bon phase equilibria.

Potentials using functional forms other than the traditional chemical bond-

angle-nonbonded form have also been applied successfully to carbon-hydrogen

systems, with the added benefit that they can describe not only molecular sys-

tems, but condensed materials and nanostructures as well. One such potential

is the modified embedded-atom method (meam) [8]; while the eam was originally

developed for use on metals, the angular terms added in the modified version

allow it to describe covalently bonded networks as well. The meam has even been

extended to molecular systems such as saturated hydrocarbons [49]. Another

popular class of potentials for carbon-hydrogen systems includes those based

on the Tersoff, and later Brenner, many-body potential [7]. A more recent po-

tential of this type is the adaptive intermolecular reactive empirical bond order

potential (ariebo) [50], which includes an adaptively switched Lennard-Jones

12-6 potential for intermolecular interactions. Becuase this potential is a flexible

many-body potential that can model chemical reactions and because it performs

well for alkane liquids, it was chosen as a point of comparison for the newly fitted

gap models.

The airebo potential was evaluated using the lammps molecular dynamics

code1 [51]; the cutoff of the Lennard-Jones potentials was 5.0σ for each nonbon-

ded pair, where σ is the distance where the L-J potential crosses zero. The airebo

parameters were those from the original 2000 paper, [50].
1http://lammps.sandia.gov
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4.2 Methodology

Gaussian approximation potentials (gap s) are a systematic way of generating in-

teratomic potentials from quantum-mechanical data using machine learning. A

gap takes a set of geometries, alongwith the corresponding quantum-mechanical

total energies and forces (together called the training set or training data),

and interpolates those quantities to new geometries using a nonparametric re-

gressionmethod based onGaussian processes. Like other interatomic potentials,

a gap expresses the total energy of a system as a sum of atomic contributions.

Unlike most interatomic potentials, a gap directly interpolates these local en-

ergies in the space of local atomic neighbourhoods extracted from the training

geometries. One difficulty in performing this interpolation is that local energies

are usually not available from dft or quantum chemistry training data. The

gap method works around this limitation by expressing the available quantit-

ies (forces and total energies) as linear operators on the local energies that it is

trying to learn [2].

The method of Gaussian processes used to perform the interpolation is foun-

ded in Bayesian statistics [52]. It fits a function to the available data while res-

isting overfitting; that is, it produces a fit that ignores the pattern of random

noise specific to the training set. The robustness of the method depends on a

sensible choice of Bayesian priors for the fit parameters. In atomic systems, the

length and energy scales of the Born-Oppenheimer potential energy surface are

known well enough (within an order of magnitude) in most situations that the

priors can be confidently chosen to produce a robust fit.
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4.2.1 Descriptors

In order for a potential to compute the energy of a local atomic neighbourhood, it

needs to transform that neighbourhood to obtain the quantities that appear in

its energy expression. These transformed quantities should respect the symmet-

ries of the local energy, i.e. they should not change if the entire neighbourhood

is translated or rotated in space, or if the labels of atoms of the same species

are permuted. These transformed quantities are called descriptors of the local

neighbourhood, especially in the context of machine learning potentials. How-

ever, most other types of local potentials make use of them as well. Chemical

forcefields, for instance, transform the neighbourhood into a set of bond lengths,

angles, torsions, and other terms.

Machine learning potentials like gap, on the other hand, have a variety of

descriptor types they can choose from. While the set of atomic positions can be

used directly, they are not good descriptors because they lack the symmetries

of the local energy. Fortunately, many other descriptors are available that do

respect these symmetries. The best-performing of these is called soap; it has

been used successfully to create potentials for solid-state systems such as silicon

and tungsten [9, 53]. A similar descriptor is the ‘symmetry functions’ approach

developed for neural network potentials [10], although these are not nearly as

good as soap at providing unique representations of atomic environments [9].

One downside of descriptors in this family is that they are more expensive to

compute, being based on expansions of the local neighbour density, than the

simpler chemical descriptors. As always, this cost must be considered alongside

the greater accuracy achievable using these descriptors.
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4.2.2 Training sets

For the machine learning potential to work well on a variety of sizes of hydrocar-

bons, its training data should include local neighbourhoods both at the ends of a

chain as well as those in the middle, far away from either end. In order to provide

the potential with a good variety of configurations, the molecule n-tetracosane (a

24-carbon linear hydrocarbon chain) was chosen for the training configurations.

The sample of training geometries was generated in much the same way as

the trajectories for the locality algorithm in Section 2.1.1. The difference in this

case is that none of the atoms were frozen; for each dynamics instance, only one

dftb trajectory was run with 500 equilibriation steps (50 fs) discarded and 19200

additional steps (1920 fs) recorded. Each trajectory was subsampled at an inter-

val of 20 fs and dft calculations were done on the samples, just as described in

Section 2.1.1. The dft results were then simply concatenated across all available

instances to form the training set.

In order to assess the effects of temperature on the performance of the po-

tential, this procedure was done twice, once with the instances initialized to

a temperature of 3000 K (the system equilibriated to about 1500 K; 59 total in-

stances were run) and once with an initial temperature of 500 K (equilibriating

to about 350 K; 60 total instances were run). The latter temperature is closer

to the ambient temperature conditions for which most existing potentials have

been parameterized. The resulting training sets consisted of 5659 geometries

with dft energies at the hot temperature and 5726 such geometries at the cold

temperature.

In addition, two more training sets for unsaturated hydrocarbons, consisting

of 50 instances (4842 geometries) at the hot temperature and 50 instances (4792

geometries) at the cold temperature, were created by changing two bonds on the
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tetracosane molecule to double bonds, thereby conjugating them. The resulting

molecule is called 6,14-tetracosene. The sampling procedure just described was

also applied to this system to obtain two training sets with unsaturated local

neighbourhood geometries.

4.2.3 Implementation and parameters

The gap s in this work were trained and evaluated using the original imple-

mentation2 within quip [29]. The code implements Gaussian process regression

as well as a variety of descriptors. More details on the process of computing

descriptors and training a Gaussian process, the parameters involved in these

computations, and the way that gap works around local energies not being avail-

able, are described in [54] and [9]. The relevant parameters used in this work

are summarized below; the others were left at their defaults.

The code was used to generate three different gap models for each training

set. Each was trained with a prior noise value of 0.05 eV per atom on the energies

and 0.2 eV/Å on the forces.

The first of the models used the soap descriptor on nearest neighbours only.

This was done by generating two different sets of descriptors, which formed the

basis of two separate Gaussian processes whose results were later added to-

gether to obtain the total energy. The first descriptor set was only computed

for local environments of carbon atoms, so it had a cutoff of 2.5Å. The second

descriptor set was only computed for local environments of hydrogen atoms, so

it had a cutoff of 1.8Å. Each cutoff was smoothed with a cosine curve of width

0.5Å to avoid discontinuities in the descriptors and their derivatives. Both soap

models were limited to nmax = 10 radial basis functions and angular momentum
2Code available at http://www.libatoms.org; gap version was 1432414728.
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functions of up to lmax = 8. The soap descriptors were used with a covariance

function of the form k(p(i),p( j)) = (p(i) ·p( j))ζ+δi jσe, where the p are the normal-

ized vectors of soap descriptor coefficients, σe is the prior error on the local en-

ergies, and the sensitivity parameter ζ was set to 4.0. The width of the atomic

Gaussians used to compute the soap atomic density was left at the default of

0.5Å.

The other two gap models used two-body and three-body chemical descriptors,

again using only nearest neighbours. These models described the energy of in-

dividual bonded-atom pairs or triplets, so the total energy was expressed as a

sum over each pair or triplet in the system. The two-body descriptor was calcu-

lated separately for C-C, C-H, and H-H bonds, again using separate Gaussian

processes. Two atoms were considered bonded if they were within the cutoff of

1.8Å (again smoothed over a width of 0.5Å). The covariance function in this case

was a squared exponential, where the difference between two bond distances

was squared, scaled, and its negative exponential taken. The scaling factor was

computed using automatic relevance determination (ard), in which the scaling

is determined by the range of the descriptor across the training set. For the

two-body descriptor, the differences were scaled by θrel = 0.2 times the descriptor

range.

The three-body gap, on the other hand, incorporated the two-body descriptors

just described, in addition to three-body descriptors onH-C-H, C-C-C, andH-C-C

bonded atom triplets with (cosine-smoothed) bond distance cutoffs of 1.6Å, 2.0Å,

and 2.0Å, respectively. The three-body descriptors also used a squared expo-

nential kernel with ard, this time with a scaling factor of θrel = 1.0 times the

descriptor range. The three-body descriptors themeselves are not single distances;

rather, each triplet was processed into three numbers: the sum of the two bond
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distances to the central C atom, the squared difference of those distances, and

the distance between the two outer atoms.

Gaussian process regression formally requires the building and inversion of

a square covariance matrix with one row for each training example, an opera-

tion which scales as the cube of the number of examples. Moreover, training ex-

amples taken from dynamics simulations are usually highly correlated and thus

redundant, meaning it would be an enormous waste of computational power to

use all the local neighbourhoods in the training set. This problem is solved by

a procedure called sparsification, which randomly selects representative con-

figurations from the local neighbourhoods in the training set and expresses the

remaining configurations as linear combinations of the representatives [2, 53].

Since the computational cost is governed by the number of sparse points rather

than the full training set, this procedure considerably reduces the computational

cost of evaluating a gap, while largely preserving the coverage of configuration

space present in the full training set.

The sparsification procedure used in this work was also implemented in the

gap code. The code randomly selected a preset number of descriptors from the

training data, where each bond distance, each set of three-body distances, and

each set of soap coefficients was counted as a descriptor. For the gap models

trained here, 100 sparse points were selected from the two-body descriptors,

while 1000 sparse points were selected from the three-body and soap descriptors.
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4.3 Results

4.3.1 Saturated hydrocarbons

The performance of a potential can be assessed by comparing the forces and

energies it produces against some reference, in this case the dft results used

to train the potentials. Because the sparsification procedure ensures that only

a small subset of the training data enters into the definition of the potential,

the performance of the gap models on their own training sets is a good measure

of how well the potential will generalize to data not in the training set. This

property, in combination with the Bayesian regularization built into the gap,

also means no separate validation set is necessary to guard against overfitting

of the potential, since the validation data is essentially already contained in the

training set.

Figure 4.1 shows how the predicted total energies of each of the geometries

of the test system compare against the reference for each of several gap models

trained using different descriptors. The figure also shows how their performance

compares to that of the airebo potential. The quantitative performance of the

potentials is summarized in Table 4.1, which gives the root-mean-square (rms)

errors of the energies predicted by the models.

Evidently, the two-body gap model failed to capture most of the variation in

the training data. The rms error of this potential is as large as the variation

in the training set itself. This result is unsurprising, as the two-body nearest-

neighbour gap effectively only includes bond stretching terms, which are known

to usually contribute little to the total energy of a molecule under ambient con-

ditions (indeed, some hydrocarbon potentials, including opls [14], simply freeze

bond lengths and angles). The three-body gap model, on the other hand, is much
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Figure 4.1: A comparison of gap models and the airebo potential for cold saturated hydro-
carbons. The data points plotted here have been subsampled by a factor of 10 for legibility.
Each set of energies has also had its mean subtracted so that it is centred about zero. The
blue lines represent the target, y= x.

Energy error / (meV per atom)
Test set Prior (dft) 2-body 3-body soap-nn airebo
Cold saturated 3.77 3.80 2.30 0.638 3.29
Cold unsaturated 5.52 5.72 3.36 1.52 52.7

Table 4.1: Errors of the gap models and of airebo on the two cold test sets. The prior error
is just the standard deviation of the total energies in the test set. The other errors are
the root-mean-square (rms) differences between the predicted and the dft total energies,
where each set first had its mean subtracted.
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more successful. Its performance is comparable to that of the airebo model, even

though airebo is a true many-body potential and should have more predictive

capability than a model that includes only two- and three-body terms.

Finally, the model based on soap performs the best out of all of these. To

compare its performance with the locality results in Chapter 3, the rms error was

computed on the soap-predicted forces as well. The resulting 37.9 meV/Å is much

lower than the dft force error at 2.5Å fromFigure 3.2. This surprisingly low error

is probably because the cold training set on which this potential was evaluated

contains a much smaller range of configurations than the ones accessible to the

locality algorithm, which was run with an initial temperature of 4000 K. For

a better comparison, the soap-nn model was trained and evaluated on the hot

saturated test set (initial temperature 3000 K) as well. The resulting force error

was 124 meV/Å, much closer to the order of magnitude (0.1 eV/Å) suggested by

Figure 3.2, which indicates that the soap-nn potential approaches the limit of

accuracy available to a local saturated hydrocarbon potential with a cutoff of

2.5Å.

4.3.2 Unsaturated hydrocarbons

The potentials tested above were also trained on the unsaturated test sets. Since,

as Figure 3.3 shows, the locality of the dft forces within 2.5Å is not significantly

affected by conjugation mutations, a gap trained on unsaturated hydrocarbons

should be able to achieve similar performance to the one for saturated hydrocar-

bons. Even the airebo potential is formulated, with the inclusion of bond order

parameters, so that it should be able to model unsaturated hydrocarbons as well.

The results in Figure 4.2 are the predicted versus reference energies for the

cold unsaturated test set. The rms errors on this test set are also shown in
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Figure 4.2: A comparison of potentials on cold unsaturated hydrocarbons. The airebo
plot was only subsampled by a factor of 5, the others by a factor of 10.

Table 4.1. The two- and three-body gapmodels each captured about the same pro-

portion of variation in the training set, while the soap model fared proportionally

worse. The most surprising change, however, is the degradation in performance

of the airebo potential. As Figure 4.2 shows, airebo segments the training data

into different classes, each one shifted by a different amount from the reference

dft energies. No pattern has yet been found in the training data that could ex-

plain this segmentation.
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4.3.3 Range dependence

All of the gap models trained so far are intramolecular potentials due to their

short ranges, which only extend to nearest neighbours. A complete description of

hydrocarbons must also account for the long-range intermolecular forces, most

importantly dispersion, that help determine the properties of hydrocarbons in

the bulk.

A naïve approach to capturing these forces would be to simply increase the

size of the local neighbourhoods used to train the potentials. However, the com-

putational cost and overall difficulty of fitting a gap explodes with an increase in

the range of interactions considered in the fit, since increasing the radius of the

local environments combinatorially increases the number of configurations that

can fit in that environment. This difficulty can be circumvented in a number of

ways, for example by explicity parameterizing the nonlocal interactions as most

existing forcefields do.

Another way to work around the combinatorial explosion is to use simple

descriptors of the local environment with more reasonable scaling. The simplest

of these is the two-body distance descriptor. Since it only consists of one number

for each pair of atoms within a certain distance, it is effectively one-dimensional,

so increasing the range of the descriptor only linearly increases the size of the

space that the gap has to describe. Increasing the range does increase the num-

ber of atom pairs in any given system, but the sparsification step keeps the cor-

responding rise in computational cost under control.

To see how well a two-body gap model would perform with a longer range,

two additional models were trained with ranges (cosine-smoothed two-body pair

cutoffs) of 3.8Å and 4.9Å, corresponding roughly to second-nearest-neighbour

(hereafter referred to as ‘2NN’) and third-nearest-neighbour (‘3NN’) interac-
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Figure 4.3: A comparison of two-body gap models with ranges of 1.8Å (left) and 3.8Å
(right). Neither plot was subsampled.

Model Energy error / (meV per atom) Force error / (meV/Å)
1NN 3.80 405
2NN 3.29 188
3NN 3.48 195
airebo 3.29 518

Table 4.2: Errors of two-body gap models, with various ranges, on the cold saturated test
set. The original nearest-neighbour two-body model (‘1NN’) and airebo are included for
comparison.

tions. The models used a squared exponential ard kernel with θrel = 0.2 and 100

sparse points as before; they were trained on the cold saturated hydrocarbons

only.

The qualitative improvement of the long-ranged potentials over the nearest-

neighbour version is shown in Figure 4.3. The alignment of the 2NN energies

with the dft energies shows that this model is at least capturing some of the

variation of the data.

The quantitative improvement of the long-range potentials, on the other hand,

is less clear. Table 4.2 lists both force and energy errors of the two-body gap mod-
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Figure 4.4: The carbon-hydrogen pair potential predicted by the two-body 3NN gap model

els. It shows that the rms energy errors were not reduced by much compared to

that of the nearest-neighbour potential. The forces, on the other hand, improved

significantly. Incidentally, both long-range potentials have comparable energy

errors and lower force errors than the airebo model, although the three-body

and soap models in Section 4.3.1 still offer a better qualitative improvement over

airebo than these long-range models.

Two-body potentials such as the gap models trained here offer the additional

benefit that they can be visualized easily. The carbon-hydrogen pair potential

from the 3NN gap model is show in Figure 4.4. The potential does exhibit bond-

ing behaviour, with a minimum at approximately the right location (the C-H

bond length in alkanes is usually taken to be about 1.1Å [16, 29]). However, it

appears to be repulsive at medium range, possibly as a result of exchange repul-

sion between different parts of the molecule. At long range, there is no attractive

force. This is to be expected from a potential derived from dft data, since most

dft functionals totally lack long-range dispersion [12, 23].
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4.4 Further development

Although the intramolecular gap models for hydrocarbons show promise, much

work remains to describe intermolecular forces accurately and so obtain a useful

model for bulk hydrocarbons. These interactions can be captured by two main

strategies: The one used by most existing potentials is to parameterize the in-

teractions and find parameters either by fitting to some reference, such as ex-

perimental data, or by deriving quantities from electronic structure calculations

(see Section 1.1.2). The other strategy is to use a nonparametric method such as

gap to fit the interactions directly to some reference.

The parametric method is the easiest short-term strategy, as the parameters

and functional forms used in existing forcefields can simply be incorporated into

an existing intramolecular gap model. The gap could be used, for instance, to fit

the difference between the intramolecular force field and the dft data, using a

relatively short range in order to ignore the dft description of intermolecular

forces. This method could encounter problems, however, if the optimal paramet-

ers of the intermolecular force field are very sensitive to the intramolecular force

field used. If that is the case, the intermolecular force field may need to be re-

parameterized and fit in conjunction with the intramolecular gap model.

The nonparametric method, in contrast, may be better at describing inter-

molecular forces due to such a potential’smore general functional form.However,

the quality of a nonparametric potential still depends strongly on the quality of

the data used to fit it. Since standard dft is notoriously bad at capturing disper-

sion [12, 22, 23], a higher-quality reference is needed. One could use a dft func-

tional with dispersion corrections, but since those corrections are usually done

with fixed, parametric functional forms of the same type used in interatomic po-

tentials, there is no point in fitting a nonparametric model to such calculations.
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The most sensible reference for nonparametric fitting of intermolecular forces is

thus an adequate level of quantum chemistry. This means reference data will be

difficult and expensive to generate. Preliminary work on the methane dimer in-

dicates that calculations of at least the coupled-cluster level will be necessary to

describe dispersion in alkanes. Such calculations are still limited in practice to

small systems (a few tens of atoms, or perhaps hundreds with the aid of large su-

percomputers3, for single calculations, although new linear scaling algorithms

are beginning to make larger systems feasible [28]) so the reference data will be

limited to small model systems such as dimers or small-molecule clusters.

An additional challenge is to find descriptors of the molecular system that

capture the information necessary to describe long-range interactions without

suffering from the steep increase in complexity with increasing interaction range

that affects local machine learning potentials. The two- and three-body poten-

tials described earlier are good candidates, as they have inherently low dimen-

sionalities regardless of the interaction range. They should work especially well

if the long-range interactions can easily be decomposed into two- and three-body

terms, as is the case for dispersion and electrostatics in many molecular sys-

tems [11]. Another possible descriptor is soap with the width of the Gaussians

that represent the atoms set very large, in effect changing the length scale of the

information that the descriptor captures. Such a descriptor could be useful for

capturing long-ranged many-body effects.

In summary, while the parametric fitting method takes advantage of the

physics of the dispersion and electrostatic interactions involved to arrive at a

compact, inexpensive force model, the nonparametric fitting method trades this

efficiency for generality, allowing it to capture what the approximations in the

parametric method may have left out. The parametric, physics-aware strategy
3See, for example, http://www.nwchem-sw.org/index.php/Benchmarks
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has been used successfully in nearly all interatomic potentials, so it may well be

accurate enough for the class of problems the new gap is designed to address.

In the long term, however, a nonparametric fit of the intermolecular forces may

turn out to be a better, more flexible, and more accurate strategy.
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Conclusions

The locality algorithm in this work was developed to provide a rigorous, quant-

itative estimate of the range of the forces in a system. This algorithm can help

us not only understand the physics of a molecule, but since it works with the

force directly, it can help us see why existing interatomic potentials work and

how we can design better potentials in the future. The algorithm was tested on

linear hydrocarbon systems with various chemical mutations. It was found that

the tight-binding model predicted strictly localized forces as expected, while the

dft forces were much less local (by about two orders of magnitude at a distance

of 10Å). The dft forces were even less local when conjugation and especially

oxygenation mutations were considered, with oxygenation worsening the error

by about one order of magnitude at 10Å. The effects of these mutations agree

broadly with chemical intuition about the types of forces in a molecule.

In the future, the algorithm could be used on many other types of systems.

For instance, it might be applied to the free motion of separate molecules outside

the local neighbourhoods in order to probe truly intermolecular forces. Another

potentially fruitful study would be to mutate the molecules before freezing the

local environments so as to investigate the forces on different types of atoms.
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Rather than carrying out such extended studies of the locality algorithm it-

self, this work turned to an application of the results already available. These

results were used to inform the design of a family of intramolecular potentials,

based on gap, for linear hydrocarbons. The new potentials reproduced the dft

training data as good as or better than an existing potential, airebo, and ap-

proached the maximum accuracy available with local nearest-neighbour poten-

tials. If they are combined with a suitable intermolecular force model, these new

potentials offer the promise of tackling problems in hydrocarbon simulation that

were previously hindered by the lack of sufficiently accurate potentials. If this

approach is successful, it would enable the creation of potentials for a wide vari-

ety of related organic compounds with unprecedented accuracy.
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Appendix A

Technical Notes

The code mentioned in Section 2.1.1 was written in Python version 2.7.91 us-

ing components from the SciPy ecosystem2, including the libraries NumPy 1.9.2,

SciPy 0.15.1, theMatplotlib [55] plotting package (version 1.4.3), and IPython [56]

version 3.2.0 for interactivework and data analysis. The code interfaced to quip [29]

(Git revision 5b152d5with minor modifications) using the included quippywrap-

per, which also included an interface to the molpro (version 2012.1) computa-

tional chemistry package. The initial molecular configurations for the dynamics

and themolecular graphics in this document were produced using Avogadro [57].

This project also made use of the gap code distributed for use with quip; more

details are in Section 4.2.3. The analysis and plotting of the gap models also

made use of IPython and Matplotlib.

1http://python.org
2http://scipy.org/
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