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Abstract. We provide a framework for the assignment of multiple robots
to goal locations, when robot travel times are uncertain. Our premise is
that time is the most valuable asset in the system. Hence, we make use of
redundant robots to counter the effect of uncertainty and minimize the
average waiting time at destinations. We apply our framework to trans-
port networks represented as graphs, and consider uncertainty in the edge
costs (i.e., travel time). Since solving the redundant assignment problem
is strongly NP-hard, we exploit structural properties of our problem to
propose a polynomial-time solution with provable sub-optimality bounds.
Our method uses distributive aggregate functions, which allow us to ef-
ficiently (i.e., incrementally) compute the effective cost of assigning re-
dundant robots. Experimental results on random graphs show that the
deployment of redundant robots through our method reduces waiting
times at goal locations, when edge traversals are uncertain.

1 Introduction

Technological advances are enabling the large-scale deployment of robots to solve
various types of logistics problems, such as product delivery [9], warehousing [3],
and mobility-on-demand [18]. Robot teams also hold the promise of delivering
robust performance in unstructured or extreme environments [22, 11]. The com-
monality of many of these applications is that they require the assignment of
robots to destinations. In general, a solution to the assignment problem can
be computed by a centralized unit that collects all robot-to-goal assignment
costs (e.g., expected travel times) to determine the optimal assignment (e.g., by
running the Hungarian algorithm). However, the optimality of this assignment
hinges on the accuracy of the assignment cost estimates, i.e., the cost of travers-
ing any path in the underlying representation. Unpredictable events along robot
paths cause uncertain travel times. For example, in structured environments, we
may encounter traffic accidents and congestion; in unstructured environments,
we may encounter unsafe terrains and risky traversal conditions.

We are interested in applications that require a fast arrival of robots at
their destinations, but where knowledge about expected robot travel times may
be imprecise or incomplete due to uncertain path conditions. Although robot

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162916517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Prorok

assignments under random costs have gained a considerable amount of atten-
tion [12, 16, 15], the focus has primarily been on providing analyses of the per-
formance under noisy conditions. In this work, we propose a complementary
method by making use of robot redundancy. In other words, the core idea of
our work is to exploit redundancy to counter the adverse affect of uncertainty.
Although the idea of engineering robust systems with redundant resources is not
new in a broad sense [13, 8], we are the first to consider redundant mechanisms
for the problem of mobile robot assignment under uncertainty, with arbitrary
and potentially correlated probability distributions. We believe that providing
redundant robots will be a fundamental design feature for systems where time is
the primary asset (e.g., rescue scenarios), and where an over-provisioning with
respect to the number of robots is a minor concern.

Background. Our problem belongs to the class of Single-Task Robots,
Multi-Robot Tasks (ST-MR) [7], which considers the assignment of groups of
robots that have a combined utility for any given task. The aim is to split the
set of robots to form task-specific coalitions, such that the average task utilities
over all coalition-to-task assignments is maximized (or, in our case, the aver-
age cost minimized). Formally, this can be cast as a set-partitioning problem,
which is strongly NP-hard [6]. However, if we pay special attention to the objec-
tive function, the problem may reveal additional structure that can be exploited
to find near-optimal solutions. In particular, for utility functions that satisfy a
property of diminishing returns, otherwise known as submodularity, near-optimal
approximations can be found [5]. As we show in this work, and in a previous re-
port [19], our approach provides diminishing returns in the number of redundant
robots assigned to each goal. This yields a supermodular cost function, justifying
the usage of efficient, greedy assignment algorithms.

Contributions. In this paper, we solve the problem of selecting optimal re-
dundant robot-to-goal matchings on transport graphs with uncertain edge costs.
Our objective is to minimize the waiting time at the goals, whilst respecting an
upper limit on how many (redundant) robots may be assigned. A previous report
proved the supermodularity of our objective [19], and considered the special case
where robot positions are uncertain, yet path costs are fixed. The present pa-
per focuses on uncertain edge costs, which implies variances on path costs, and
introduces the additional complexity of selecting among numerous partially cor-
related uncertain path choices. We show that we can capture these additional
elements with a matroid constraint, and thus, can provide a polynomial-time
algorithm that uses distributive aggregate functions to efficiently assemble the
gain of assigning redundant robots. Finally, we provide evaluations on random
graphs with uncertain, correlated edge costs.

2 Problem Description

We consider a system composed of M goals and N available robots. The size
of the total robot deployment is constrained by Nd, with M ≤ Nd ≤ N . This
constraint is relevant for applications that run continuous assignments with fluc-
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Fig. 1. Sketch of redundant robot-to-
goal matching, for a total of N = 6
available robots, M = 2 goals, K = 2
path options, and a deployment size
of Nd = 5. Edges in O represent the
initial assignment, and edges in A rep-
resent the redundant assignment. The
random variable Cijk represents the
uncertain travel time it takes robot i

to reach goal j via path k.

tuating task demand, and enables the reservation of some robots for future de-
ployments. Furthermore, it allows operators to limit the cost of redundant robot
deployments, for example by monitoring and capping energy consumption. Our
problem considers the assignment of robots to goals via a path, where, for each
robot-to-goal assignment, multiple possible paths with random costs exist. With-
out loss of generality, we assume that K possible paths exist between each robot
and each goal. We seek to find a minimum cost matching, such that all goals
are covered, and any goal may be assigned multiple robots, while respecting the
limit on the maximum deployment size Nd.

Assignment with Random Path Costs. Consider a graph B = (U ,F , C).
The set of vertices U is partitioned into two subsets Ur and Ug, such that Ur =⋃

i ri, i = 1, . . . , N contains all robot nodes, Ug =
⋃

j gj , j = 1, . . . ,M contains
all goal nodes, and U = Ur ∪ Ug, Ur ∩ Ug = ∅. We define a fixed number
K of possible path routes that lead any robot to any goal. The edge set F =
{(i, j, k)|i ∈ Ur, j ∈ Ug, k ∈ 1, . . . ,K, ∀ i, j, k} is complete, meaning that any
robot can reach any goal node, and that up to K possible path choices exist
for any pair (i, j). The tuple (i, j, k) indicates that robot i is assigned to goal j
through path k. Since the travel time for a robot to reach its goal is uncertain, we
represent the weight of each edge (i, j, k) by a random variable Cijk ∈ C, where C
is a set of random variables. The set C has a joint distribution D. Hence, Cijk can
be arbitrarily defined for any edge; in particular, edge costs may be correlated,
and we do not make use of i.i.d. assumptions.

We are interested in settings where an initial non-redundant assignment has
been made. We consider an initial assignment O ⊂ F , such that ∀j|{i|(i, j, k) ∈
O}| = 1, ∀i|{j|(i, j, k) ∈ O}| ≤ 1, and ∀i, j|{k|(i, j, k) ∈ O}| ≤ 1. In other words,
O covers every goal with one robot, and any robot is assigned to at most one
goal through one given path. Given an initial assignment, the aim of this paper
is to find an optimal set of assignments A⋆ ⊂ F \ O for the remaining Nd −M
robots 1. From here on, we denote F \ O by FO. Fig. 1 illustrates a simple
robot-to-goal matching.

1Without O, any solution that is smaller in size than M would lead to an infinite
waiting time, and hence, the objective function looses its supermodular property. The
assumption that we already have an initial assignment is necessary, for the develop-
ments that follow.
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Optimization Problem. The main novelty of our approach is the use of
redundant robots to help counter the adverse effect of uncertainty. If the system
admits a sufficiently large number of robots (i.e., Nd −M > 0), we can assign
multiple robots to the same goal, while still ensuring that all goals are assigned
at least one robot. A key consideration is that the performance at each goal is
measured by an aggregate cost function that considers the joint performance of
all assigned robots at that goal.

Definition 1 (Aggregate Cost). We define an aggregate function Λ : 2F 7→
R that operates over the set of edges incident to a given node, and returns a
scalar that represents the aggregate cost over the weights of these edges. If Ij(A)
is the set of incident edges to node j in the set of edges A, and is equal to
{(i, j, k)|∀i, kwith (i, j, k) ∈ A}, then we can write the aggregate cost for goal j
as

Λ(Ij(A)). (1)

This definition allows us to formulate our objective function. For a given set A
of edges that define robot to goal assignments, we wish to measure the average
aggregate cost over all goals, in expectation over the random edge costs:

JO(A) =
1

M

M∑

j=1

E
C
[Λ(Ij(A ∪O))] . (2)

We note that when no redundant robots are deployed, the assignment is reduced
to the set O, for which the performance is measured as

J0 = JO(∅) =
1

M

M∑

j=1

E
C
[Cijk|(i, j, k) ∈ O]. (3)

We formalize our problem as follows.

Problem 1. Optimal matching of redundant robots under cardinality constraints
and with multiple path choices: GivenN available robots,M goals with uncertain
robot-to-goal assignment costs, K possible paths from each robot to each goal,
and an initial assignment O, find a matching A ⊆ FO of redundant robots to
goals such that the average cost over all goals is minimized, and the total number
of robots deployed is Nd. This is formally stated as:

argmin
A⊆FO

JO(A) (4)

subject to ∀i|{j|(i, j, k) ∈ A ∪O}| ≤ 1 (5)

|A| = Nd −M (6)

Fig. 2 shows an example of an assignment problem with multiple path choices.
In this particular example, robot R1 has already been assigned to the goal and
R2 must choose between paths B and C. Path B is correlated with path A
(they share two edges). Path C appears to take longer, and the intuitive choice
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Fig. 2. Example scenario. Robot R1 is assigned to the goal via path A. Robot R2 is a
redundant robot, and must choose between paths B and C.
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Fig. 3. Joint distributions of travel times, for (a) paths A and B, and (b) paths A and
C. The Pearson correlation coefficient is (a) 0.89 and (b) 0.0. The red line shows axis
equality (i.e., equal travel times). If robot R2 chooses path C, there is a small chance
that the waiting time at the goal will be improved upon, despite being slower than
path B on average.

would be path B. However, as Fig. 3 shows, there is a small chance that path C
leads to an improved waiting time at the goal, which cannot occur would robot
R2 choose path B. Hence, the goal of our method is to identify combinations
of robot assignments and paths that lead to the highest possible performance
improvement. In the experimental section (Sec. 6) we show how this leads to a
notion of robot complementarity and diversity.

3 Preliminaries

Our method is underpinned by the following key insight: as we assign addi-
tional robots to a given goal, the assignment cost for that goal decreases by a
diminishing amount. This property is known as supermodularity. In addition,
the cardinality constraint imposed by our maximum deployment size Nd can be
represented by a matroid that also respects multiple path options. These two
properties aid us in finding an efficient algorithm to solve the redundant assign-
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ment problem, as elaborated later in Sec. 4. The following definitions introduce
the underlying concepts.

Definition 2 (Marginal decrease). For a finite set F and a given set function
J : 2F 7→ R, the marginal decrease of J at a subset A ⊆ F with respect to an
element x ∈ F \ A is:

∆J(x|A) , J(A)− J(A ∪ {x}). (7)

Definition 3 (Supermodular function). Let J : 2F 7→ R and A ⊆ B ⊆ F .
The set function J is supermodular if and only if for any x ∈ F \ B:

∆J (x|A) ≥ ∆J (x|B) (8)

The definition implies that adding an element x to a set A results in a larger
marginal decrease than when x is added to a superset of A. This property is
known as a property of diminishing returns from an added element x as the set
it is added to grows larger.

Remark 1. A function J is submodular if −J is supermodular.

Definition 4 (Matroid). Given a finite ground set F and I ⊆ 2F a family of
subsets of F , an independence system is an ordered pair (F , I) with the following
two properties: (i) ∅ ∈ I, and (ii) for every A ∈ I, with B ⊆ A, implies that B ∈
I. The second property is known as downwards-closed — in other words, every
subset of an independent set is independent. An independence system (F , I) is a
matroid if it also satisfies the augmentation property, that is, for every A,B ∈ I,
with |A| > |B|, there exists an element a ∈ A \ B such that {a} ∪ B ∈ I.

For an optimization problem min J(A) such that A ⊂ I, where J is super-
modular and I is an independence system, we can apply a greedy approximation
algorithm. This approach works as follows. At each iteration k, an element a is
added to the solution set Ak−1 such that it maximizes the marginal decrease
given this current set,

a← argmaxx∈FE(Ak−1,I)
∆J(x|Ak−1) (9)

where FE denotes the set of eligible elements, given the independence system I
and ground set F , defined as

FE(Ak, I) , {x ∈ F \ Ak | Ak ∪ {x} ∈ I}. (10)

A key property is that optimization with this algorithm yields a 1/2 approxima-
tion ratio [4]. In our case, this is equivalent to Greedy returning a set A⋆ with
ratio J(A⋆) ≤ 1

2 (J
⋆ + J0) where J⋆ is the optimal cost, and J0 is the system’s

baseline performance (without redundant assignments) [19]. For matroid rank r
and ground set size n, Greedy requires O(nr) calls to the objective function.



Redundant Robot Assignment 7

4 Algorithmic Approach

The section above establishes that if we are given a supermodular objective func-
tion that satisfies a matroid constraint, we can employ a greedy algorithm to
solve our problem within known optimality bounds. However, to maintain the
efficiency of such a greedy assignment algorithm, we need to ensure that the
evaluation of the objective function itself is efficient (and can be computed in
polynomial time). Towards this end, we develop a dynamic programming ap-
proach that hinges on a definition of incrementally computable functions, which
we apply to our redundant assignment problem. The following paragraphs elab-
orate our methodology — first, in Sec. 4.1, we show that the matroid constraint
applies to our problem setting, and second, in Sec. 4.2, we show how Greedy is
implemented efficiently through a dynamic programming approach. The result-
ing routine is shown in Algorithm 1.

4.1 Matroid Constraint

In the following we show that the problem of assigning redundant robots with
multiple path options satisfies the properties of a matroid. Following constraints (5)
and (6), our problem considers the matroid (FO, IO), with

IO , {A|A ⊆ FO ∧ |A| ≤ Nd −M ∧ ∀i|{j|(i, j, k) ∈ A ∪O}| ≤ 1}. (11)

By the definition of a matroid, any valid assignment must be an element of the
family of independent sets IO. Firstly, the empty set is a valid solution, in which
case our objective function is reduced to J0, as given by (3). Secondly, our system
is downwards-closed: for any valid robot-to-goal assignment A ∈ IO, any subset
of assignments B ⊆ A is also a valid assignment by (5). Thirdly, we can show that
our system satisfies the augmentation property. For any two valid assignments
A and B, |A| > |B| implies that there is at least one robot assigned to a goal in
set A that is unassigned in set B, irrespective of what path was selected. Hence,
adding that robot-to-goal assignment to set B still satisfies (5) and maintains the
validity of the solution. We note that the augmentation property implies that
all maximal solution sets have the same cardinality Nd −M , which corresponds
to the rank of our matroid.

4.2 Greedy Assignment with Dynamic Programming

Our work considers uncertainty models, represented by arbitrary distributions
that are also capable of capturing correlations between random variables. Our
approach is to consider a sampling-based method that takes S samples from
the MNK-dimensional joint distribution D 2. Our aim is to ensure that the
computation of the aggregate cost Λ that assembles the performances of the
redundant robots (see Def. 1) does not incur additional complexity that depends

2We note that if an analytical model is known, this can be used instead.
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Algorithm 1 Greedy Redundant Assignment with Dynamic Programming

Input: Graph B = (U ,F , C), size of deployment Nd, initial assignment O
Output: Set of edges A defining redundant assignments
1: A ← ∅
2: FO ← F \ O
3: IO ← Eq. (11)
4: Ĉ ← sample S samples from MNK−dimensional distribution D
5: for Ĉijk ∈ Ĉ do

6: samples[(i, j, k)]← Ĉijk

7: end for

8: for (i, j, k) ∈ O do

9: task state[j]← samples[(i, j, k)]
10: end for

11: for d ∈ {1, . . . , Nd −M} do
12: ∆⋆

JO
← −∞

13: FO,E ← {(i, j, k) ∈ FO \ A |A ∪ {(i, j, k)} ∈ IO}
14: for (i, j, k) ∈ FO,E do

15: curr state← 1

S

∑S

z=1
task state[j]z

16: new state← 1

S

∑S

z=1
Λ(task state[j]z, samples[(i, j, k)]z)

17: ∆JO
← curr state− new state

18: if ∆JO
> ∆⋆

JO
then

19: ∆⋆
JO
← ∆JO

20: (i⋆, j⋆, k⋆)← (i, j, k)
21: end if

22: end for

23: A ← A∪ (i⋆, j⋆, k⋆)
24: task state[j]← Λ.(task state[j], samples[(i⋆, j⋆, k⋆)]) // element-wise Λ

25: end for

26: return A

on the number of robots N , the deployment size Nd, or number of tasks M .
Our insight is that, in a number of practical cases, Λ is a distributive aggregate
function and is incrementally computable [17]. This allows us to implement a
dynamic programming approach, as shown in Algorithm 1.

Definition 5 (Distributive Aggregate Function). We define a class ∆ of
distributive aggregate functions δ : A 7→ R, for A ⊂ R, such that δ ∈ ∆ only if
δ(A∪x) can be computed incrementally, as a function of the old value δ(A) and
new value x only.

Sec. 5 gives an implementation of distributive aggregate functions for the specific
application considered in this work.

Proposition 1. Algorithm 1 is a valid instantiation of Greedy, and has com-
plexity O((Nd −M)NMKS), if (i) Λ is a distributive aggregate function, (ii)
JO is supermodular, and (iii) (FO, IO) is a matroid constraint.

Algorithm 1 works as follows. Lines 1-10 initialize the data structures. In
particular, lines 4-7 pre-sample a fixed set of S samples (which amounts to sam-
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pling S values for each of theMNK edges). Pre-sampling allows the algorithm to
maintain the supermodularity property. For the remaining number of robots to
be deployed, we proceed with a greedy assignment. Line 13 constructs the set of
eligible assignments, as in Eq. (10). Then, for all eligible assignment candidates,
we compute the marginal cost decrease incurred by adding that assignment to
goal j. In order to do this, Line 16 computes the new aggregate cost function.
This is done incrementally, since Λ is a distributive aggregate function. Over-
all, Lines 14-22 are equivalent to Eq. (9), with Lines 18-21 retaining the best
assignment candidate. Line 23 adds the best candidate to the current solution,
and Line 24 updates the aggregate cost incurred at the goal the new robot was
assigned to. Our approach requires O((Nd −M)NMK) calls to the objective
function, and the objective function is computed in O(S).

5 Application to Transport Networks

We are interested in applications that use graphs to represent possible robot
routes (from origins to goals), where the cost of traversing any individual route
(or edge) is uncertain. We represent routes via a weighted directed graph, G =
(V, E ,W). Vertices in the set V represent geographic locations. Nodes u and v
are connected by an edge if (u, v) ∈ E . We assume the graph G is a strongly
connected graph, i.e., a path exists between any pair of vertices. The kth path
between an origin node i and goal node j is denoted by tuple (i, j, k). Paths
between a same origin i and goal j are distinct if there is at least one edge in one
path that is not present in the other path. The random variable Cijk captures
the estimated travel time for robot i to reach a goal j via path k. We define a
random variable wuv ∈ W that represents the time needed to traverse an edge
(u, v). We formulate the estimated travel time on a path as:

Cijk =
∑

(u,v)∈Sijk

wuv, and thus E[Cijk] =
∑

(u,v)∈Sijk

E[wuv], (12)

where Sijk is the set of edges on path k between node i and node j.
Let us consider a ‘first-come, first-to-serve’ principle, by which only the

fastest robot to reach a task actually services it. Redundancy, as defined in
Def. 1, allows us to reduce the waiting time at the goal locations: when multiple
robots travel to the same destination, only the travel time of the fastest robot
counts. This is further specified in the following definition.

Definition 6 (Effective Waiting Time). Since only the first robot’s arrival
defines the effective waiting time at a goal node j, the aggregate cost function Λ
(see Def. 1) is equivalent to the minimum operator. The effective waiting time
(cost) at goal j is

Λ(Ij(A)) , min{Cijk|(i, j, k) ∈ Ij(A)}. (13)

This application satisfies the conditions in Proposition 1: In [19] we show that
Eq. 13 is supermodular. Further, the minimum operator is a distributive aggre-
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Fig. 4. (a) Instance of random graph. Red dots indicate robot hubs. The edges are
colored to indicate the expected travel time. (b) Comparison between Greedy, Random,
and Repeated Hungarian, with respect to the correlation of paths in the solution set.

gate function. It follows that the objective of minimizing the average effective
waiting time is supermodular. The matroid constraint is trivially satisfied.

6 Evaluation

We evaluate Algorithm 1 in simulation, on a set of random undirected connected
graphs with 200 nodes (of which Fig. 4(a) shows an example). Our default values
are N = 25 robots, Nd = 20 robots, M = 5 goals, S = 200 samples, K = 4
path options. We generate the K path options by taking the shortest (in aver-
age) K paths from i to j. Robots are initially located at 10 randomly selected
hubs. The joint distribution of travel times along all MNK edges is modeled
as a multi-variate Gaussian (truncated at 0) with a mean sampled uniformly at
random between 10 and 20. Its covariance matrix is such that the diagonal en-
tries are sampled uniformly between 25 and 100, and the off-diagonal correlation
factors are generated using a random lower-triangular matrix corresponding to
its Cholesky decomposition. This allows us to sample from the underlying dis-
tribution D. Using this distribution D, we also sample a ‘true’ (observed) travel
time for each edge, which we use for our performance evaluation (this value is
unknown to all algorithms except Best a-posteriori, as described below). The
performance of our method (Greedy) is compared to four alternate assignment
algorithms: (1) Hungarian: We implement the Hungarian method on average
waiting times for a non-redundant assignment of Nd = M robots (i.e., A = ∅).
This represents the initial assignment O, and is used as the baseline for all fol-
lowing (redundant) assignment algorithms. (2) Random: A random algorithm
assigns the redundant Nd −M robots randomly to goals. (3) Repeated Hungar-
ian: We implement repeated iterations of the Hungarian assignment algorithm
(at each iteration, assigningM redundant robots in one go), until the capNd−M
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(a) (b)

Fig. 5. Paths selected by a robot coalition initially located at two separate hubs (red
nodes), and assigned to a goal (green node) for (a) Greedy and (b) Repeated Hungarian.

is reached. (4) Best a-posteriori: This corresponds to the best a-posteriori per-
formance for a given set of robot origins and goal destinations, based on true
(observed) travel times, on which we run the Hungarian method with Nd = M
robots.

Fig. 4(b) shows the correlation of paths in the solutions found by three strate-
gies (Greedy, as well as Repeated Hungarian and Random). For each robot coali-
tion assigned to one goal, we compute the average pairwise correlation between
all pairs of paths found for the robots belonging to that coalition. The latter
value is averaged over all coalitions. We observe that the correlation of coalition
paths generated by Greedy is lower than that of both Random and Repeated
Hungarian. This indicates that paths selected by Greedy tend to be more di-
verse. This is exemplified in Fig. 5, which shows paths selected by a coalition of
5 robots using Greedy in Fig. 5(a) and Repeated Hungarian in Fig. 5(b).

Fig. 6 shows the performance of our algorithm, as measured by the normalized
waiting time J/J0. Fig. 6(a) shows how, as we increase the total robot deploy-
ment Nd, the waiting time decreases, approaching the lower bound (given best
a-posteriori). Fig. 6(b) shows how, as we increase the number of paths K to be
considered by the assignment algorithm, performance improves initially, but then
flattens out. This validates our usage of a fixed cap (K) on the number of paths
to be considered by the algorithm. Overall, we see that any redundant assign-
ment strategy improves upon non-redundant assignment. Our solution Greedy
improves significantly upon the benchmarks Random and Repeated Hungarian.



12 A. Prorok

Hungarian
Random
Repeat Hung.
Greedy
Best a-post.

Deployment Size Nd

W
a
it
in
g
T
im

e
[s
]

(a)

Hungarian
Random
Repeat Hung.
Greedy
Best a-post.

K Paths

W
a
it
in
g
T
im

e
[s
]

(b)

Fig. 6. Performance of the assignment strategies, as measured by normalized waiting
time. Each data-point is averaged over 500 runs, and the shaded areas show 95%
confidence intervals. (a) Performance as a function of deployment size Nd for N = 25.
(b) Performance as a function of K paths, Nd = 20.

7 Related Work

Our problem is related to the general class of submodular welfare problems [14,
23], which stems from the field of combinatorial auctions. The welfare problem
considers a set of items and a set of players, and seeks a partition of the items
into disjoint sets assigned to players in order maximize the total welfare over the
players. The welfare is equivalent to the sum of utilities over all sets. The utility
functions satisfy the property of diminishing returns, and hence, the problem can
be formulated as one of submodular maximization. In contrast to our work, the
welfare problem does not prescribe any explicit form for the submodular func-
tion. Instead, it assumes a value oracle model, which is a black-box that returns
the utility for any given set. In this sense, our problem is a specialization of the
general submodular welfare problem. We consider a specific objective function,
where the submodularity (or, in our case, the supermodularity) arises due to the
redundancy of assigned robots with uncertain travel times. Furthermore, we also
provide a specialization of the matroid constraint, which, in our case, relates to
the constraint on maximum possible robot deployment sizes.

Another related body of work deals with the weapon-target assignment prob-
lem [1], which considers the assignment of weapons to targets so that the total
expected survival value of the targets is minimized. Similar to our problem, this
problem considers the assignment of a redundant number of items (i.e., weapons)
to a single goal (i.e., target), where assignment costs are uncertain (i.e., prob-
ability of target survival). In contrast to our work, however, the weapon-target
assignment problem only applies to binomial distributions that model the out-
come (i.e, survival) of each target as a Bernoulli random variable. Our algorithm
is capable of dealing with arbitrary (and potentially correlated) probability dis-
tributions that describe the assignment costs. In that sense, our problem is a
generalization of the weapon-target assignment problem.
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Submodular optimization for combinatorial problems has has also gained
considerable traction in the domain of multi-robot systems. Applications include
coordinated robot routing for environmental monitoring [20], leader selection
in leader-follower systems [2], sensor scheduling for localization [21], and path
planning for orienteering missions [10]. Typically, the aforementioned studies
develop explicit objective functions that are specific to the considered problem
domains. The authors then go about proving the submodularity property and
devising the appropriate assignment algorithms. This general methodology is
similar to the one presented in our paper. The particularity of our work lies in
the specificity of our objective function for redundant robot assignments under
uncertain travel times, which is not captured by objective functions developed
in prior work.

8 Conclusion

In this work, we provided a framework for redundant robot-to-goal assignment.
Our main contribution is a supermodular optimization framework that efficiently
selects robot matchings and the corresponding paths that minimize the average
waiting time at the goal locations when travel times along paths are uncer-
tain. We introduced a polynomial-time algorithm that uses distributive aggre-
gate functions to efficiently assemble the gain of assigning redundant robots.
Our evaluations on random graphs with uncertain and partially correlated edge
costs showed that redundant assignment reduces the waiting time at goals with
respect to non-redundant assignments. In particular, our proposed algorithm
significantly outperforms alternate benchmark algorithms. We also demonstrate
that our method creates robot coalitions that tend to be more complementary,
and thus, more diverse in their selected path options. In conclusion, we show
how providing redundant robots can be a key design feature for systems where
time is the primary asset, and where an over-provisioning with respect to the
number of robots is a minor concern.
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