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We present the extension of an efficient and highly parallelisable framework for incompressible
fluid flow simulations to viscoplastic fluids. The system is governed by incompressible conservation
of mass, the Cauchy momentum equation, and a generalised Newtonian constitutive law. In order
to simulate a wide range of viscoplastic fluids, we employ the Herschel-Bulkley model for yield-
stress fluids with nonlinear stress-strain dependency above the yield limit. We utilise Papanastasiou
regularisation in our algorithm to deal with the singularity in apparent viscosity. The resulting system of
partial differential equations is solved using the IAMR (Incompressible Adaptive Mesh Refinement)
code, which uses second-order Godunov methodology for the advective terms and semi-implicit
diffusion in the context of an approximate projection method to solve adaptively refined meshes. By
augmenting the IAMR code with the ability to simulate regularised Herschel-Bulkley fluids, we obtain
efficient numerical software for time-dependent viscoplastic flow in three dimensions, which can be
used to investigate systems not considered previously due to computational expense. We validate
results from simulations using this new capability against previously published data for Bingham
plastics and power-law fluids in the two-dimensional lid-driven cavity. In doing so, we expand the range
of Bingham and Reynolds numbers which have been considered in the benchmark tests. Moreover,
extensions to time-dependent flow of Herschel-Bulkley fluids and three spatial dimensions offer new
insights into the flow of viscoplastic fluids in this test case, and we provide missing benchmark results
for these extensions. Published by AIP Publishing. https://doi.org/10.1063/1.5049202

I. INTRODUCTION

Viscoplastic fluids are non-Newtonian fluids which are
characterised by a minimum induced stress necessary for flow
to occur. For this reason, they are also commonly referred
to as yield-stress fluids. When the imposed stress does not
exceed the threshold value, the material is modelled as a
rigid solid. In regions where the yield stress is exceeded,
however, the material flows like a fluid. The ability of the
material to support a stress under certain circumstances gives
rise to phenomena such as non-flat surfaces at rest under grav-
ity and the coexistence of yielded (flowing) and unyielded
(rigid) regions within the fluid. The former can be demon-
strated by distorting the surface of mayonnaise in a jar: gravity
alone is not strong enough to surpass the yield stress and
the surface remains in its distorted state. In addition to being
fundamentally interesting from the perspectives of rheology,
fluid mechanics, and mathematical modeling, yield stress flu-
ids occur naturally and are paramount to the success of ani-
mals such as mudskippers1 and snails.2 Their importance in
industries ranging from medicine3–6 to oil and gas explo-
ration7–9 has led to extensive research contributions in the
field.

Just as for Newtonian fluids, the pursuit of knowledge
about viscoplastic fluids has relied heavily on computational
methods in the last fifty years. Compared to the Newtonian

a)Electronic mail: ksk38@cam.ac.uk

case, however, the numerical simulations are much more
demanding in terms of processing time. This is largely due
to the existence of a yield stress, since this results in a singu-
larity at zero strain rate for the apparent viscosity of the fluid.
Traditional methods for computing the solution are rendered
useless for this case since infinite viscosities cannot be rep-
resented in the unyielded regions. There are now two main
branches of algorithms designed to deal with this problem.
The first utilises mathematical regularisation to approximate
the viscosity function in the low-strain limit. In doing so, the
rigid body approximation is effectively replaced by a fluid with
very high viscosity in the unyielded regions. A regularisation
parameter controls how close this approximation is to the ide-
alised viscoplastic case. On the other hand, the problem can
be reformulated in the framework of non-smooth optimisation
theory and solved using augmented Lagrangians. Such meth-
ods can solve the unregularised problem without introducing
any approximations but generally require more computational
resources to find the solution.10

The regularisation approach was first explored by
Bercovier and Engelman in 1980,11 who utilised a simple
yet efficient work-around by adding a small constant to the
computed strain-rate so that even in the zero-strain limit the
viscosity would remain finite. An alternative method pro-
posed by Tanner and Milthorpe a few years later was the
bi-viscosity model,12 in which the viscoplastic fluid is char-
acterised by a separate, large viscosity when the strain-rate is
below a given threshold (see, e.g., Ref. 13). An exponential
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regularisation factor was then introduced by Papanastasiou
in 1987,14 and this method of regularisation is still widely
used in modern codes which deal with viscoplasticity through
regularisation. Important investigations based on Papanasta-
siou regularisation include those of Mitsoulis et al.15–18 and
Syrakos et al.19–21

Augmented Lagrangian methods were first applied to the
viscoplastic flow problem in 1983 by Fortin and Glowinski,22

but the variational formulation on which it relies was derived
by Duvaut and Lions in 1976, who studied existence, unique-
ness, and regularity of solutions to the problem.23 The aug-
mented Lagrangian algorithm itself is due to the work of
Hestenes.24 Although the simulation of viscoplastic flow using
this optimisation technique constitutes an important milestone
in the history of its numerical treatments, the regularisation
approach was much more popular due to the large discrep-
ancy in computational resource requirements. Advances in
convex optimisation over the next few decades led to the work
of Saramito and Roquet,25 where significant improvements
were achieved in terms of convergence rates, and hence, com-
putational efficiency. Other contributions26 further confirmed
the potential, and in recent years, state-of-the-art algorithms
are actively being developed, notably by Treskatis et al.,27

Saramito,28 Bleyer,29 and Dimakopoulos et al.30 Due to the
ability to solve the unregularised viscoplasticity problem, these
methods have become increasingly popular since algorithmic
advances have led to significant speed-up of their runtime.
It is important to note, however, that these methods are still
more costly than regularised approaches, so although they
allow computation of exact locations of yield surfaces, they are
unnecessarily expensive when this is less important, and a gen-
eral understanding of the flow field is desirable. An example is
within cement displacement complexities for engineering pur-
poses,31 where the desirable insight is pressure distributions
and the cement displacement efficiency.32

Numerical treatment of viscoplastic flow problems has
significantly improved over the last decades. Researchers inter-
ested in analysing such flows are, however, still limited by
the computational cost associated with their solution. Notably,
most research published in the field considers only two spatial
dimensions and only steady-state solutions. Although open-
source libraries such as FEniCS33 and OpenFOAM34 can be
used to simulate regularised viscoplastic fluids in three dimen-
sions, our contribution aims to provide a massively parallelis-
able tool for contemporary supercomputer architectures, with
capabilities for structured AMR (Adaptive Mesh Refinement).
In order to achieve this, we begin with the Incompressible
Adaptive Mesh Refinement (IAMR)35 code that uses a second-
order accurate, approximate projection method to solve the
incompressible Navier-Stokes equations. The code is built
on the AMReX software framework for developing parallel
block-structured AMR applications. We have implemented
the Papanastasiou regularised Herschel-Bulkley (HB) model
for the apparent viscosity function in IAMR so that it can be
used to simulate generalised Newtonian fluids. As such, we
are able to take advantage of modern supercomputer archi-
tectures in our simulation of viscoplastic fluids. For the first
time, results are presented for the transient, three-dimensional
lid-driven cavity problem for viscoplastic fluids. Notably, the

evolution of the three-dimensional yield surface from rest to
steady-state is tracked, before the lid velocity is set to zero,
allowing cessation of the viscoplastic fluid.

For further reading on developments in viscoplastic flu-
ids, we refer the reader to the review papers by Barnes36 and
Balmforth et al.37 Additionally, two excellent review papers
on advances in numerical simulations of these fluids appeared
in a recent special edition of Rheologica Acta.10,18 In Sec. II,
we will introduce the governing partial differential equations
(PDEs) and discuss relevant fluid rheologies. Section III is
devoted to the numerical algorithm employed to simulate the
fluid flow, including the regularisation strategy. Thorough val-
idation is performed in Sec. IV, before we evaluate the code
for Herschel-Bulkley fluids and three dimensions in Sec. V.
Section VI concludes the article.

II. MATHEMATICAL FORMULATION

Our domain Ω ⊂ Rd is in either two or three dimensions,
i.e., d ∈ {2, 3}. For rank-2 tensors, we prescribe the scaled
Frobenius norm

|A| =
√

1
2

tr(A A>), (1)

as is customary in viscoplastic fluid mechanics. We take
the gradient of a vector u as the tensor with components
(∇u)ij = ∂uj/∂xi, and the symmetric part of this gradient is
given by Du = 1

2

(
∇ + ∇>

)
u. The divergence of a tensor field

is defined such that (∇ · A)j =
∑d

i=1 ∂Aij/∂xi. Variables are
functions of position x ∈ Ω and time t ≥ 0.

A. Governing partial differential equations

We denote by ρ ∈ R the material density. The velocity
field is introduced as u(x, t) ∈ Rd , with components u, 3, and
4. The Cauchy stress tensorσ is defined as the sum of isotropic
and deviatoric parts,σ =−pI + τ. Here, the pressure p(x, t) ∈ R
is multiplied by the identity tensor, while the deviatoric part
of the stress tensor is denoted as τ(x, t) ∈ Rd×d

sym . The fluid
motion is then governed by incompressible mass conservation
and momentum balance through the Cauchy equation

∇ · u = 0, (2a)

∂u
∂t

+ u · ∇u =
1
ρ

(−∇p + ∇ · τ + f ). (2b)

Here, we have introduced f to describe external body forces
such as gravity acting on the fluid. Note that the mass conser-
vation equation is simplified to (2a) due to incompressibility,
i.e., constant density within a fluid parcel.

B. Rheology

We shall in the following restrict ourselves to relatively
simple equations of state, of the form τ = τ(γ̇), where the
stress response is solely dependent on the rate-of-strain ten-
sor γ̇ =Du ∈ Rn×n

sym. Although the Herschel-Bulkley model
captures all aspects of the fluids considered, references for
validation are only available for power-law and Bingham flu-
ids. For this reason, we introduce these simpler rheological
models first and illustrate how they can be combined.
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FIG. 1. Herschel-Bulkley fluid: stress magnitude (left)
and apparent viscosity (right) as functions of the magni-
tude of the rate-of-strain tensor γ̇.

Newtonian flow is characterised by a dynamic coefficient
of viscosity µ > 0 which is independent of the strain, yielding
a linear relationship between rate-of-strain and stress in the
rheological equation

τ = 2µγ̇. (3)

For fluids where the dependency of the stress on the rate-of-
strain tensor is nonlinear, the apparent viscosity is a useful
concept when considering rheological responses to strain. It is
a generalisation of the constant viscosity for Newtonian flow,
where we allow the viscosity to be a function of the magnitude
of the rate-of-strain tensor. Denoting the apparent viscosity by
η, we thus have

η =
|τ |

2|γ̇ |
. (4)

Many fluids are accurately modelled by a non-Newtonian
behavior that captures shear-dependency through a smooth
increase or decrease in apparent viscosity. Such fluids include
pseudoplastics (shear-thinning, ∂η/∂ |γ̇ | < 0) and dilatants
(shear-thickening, ∂η/∂ |γ̇ | > 0). A model which captures
this behavior is the power-law fluid, with rheological
equation

τ = 2nµ|γ̇ |n−1γ̇ (5)

and apparent viscosity

η = 2n−1µ|γ̇ |n−1. (6)

A specific power-law fluid is characterised by its flow behavior
index n > 0 (and µ, which is usually referred to as the consis-
tency for power-law fluids and has units Pa sn). From (5), it is
immediately clear that the Newtonian case with n = 1 separates
pseudoplastics (n < 1) from dilatants (n > 1).

Viscoplastic fluids have a stress threshold τ0 > 0 (the
yield stress), below which they do not flow. We note that it is
possible to describe elastic deformation for materials which
do not flow, but we shall be considering constitutive equations
which assume a rigid body approximation, i.e., zero strain rate
below the yield stress.

The simplest type of viscoplastic fluid is the Bingham
fluid,38,39 characterised by zero strain rate below the yield
stress. In the yielded region, however, the stress depends lin-
early on the rate-of-strain magnitude, just like a Newtonian
fluid. The stress-strain curve thus intercepts the |τ|-axis at
the point (0, τ0). As such, the Bingham fluid is a generalised
Newtonian, with rheological equation




γ̇ = 0 if |τ | ≤ τ0

τ = 2µγ̇ + τ0
|γ̇ | γ̇ if |τ | > τ0

(7)

and apparent viscosity

η = µ +
τ0

2|γ̇ |
. (8)

For Bingham plastics, we refer to µ as the plastic viscosity and
note that η has a singularity for γ̇ = 0, as expected.

In many applications, it is desirable to capture both the
yield stress of viscoplastic fluids and the power-law depen-
dency occurring once the fluid starts flowing. A widely used
rheological model for such fluids is due to the work of
Herschel and Bulkley.40 The Herschel-Bulkley fluid facili-
tates a very general description of non-Newtonian fluids, as
it is a yield stress fluid with a nonlinear stress-strain depen-
dency in the yielded region. As such, it can be thought of as
a hybrid between Bingham plastics and power law fluids. The
constitutive equation is




γ̇ = 0 if |τ | ≤ τ0

τ = 2nµ|γ̇ |n−1γ̇ + τ0
|γ̇ | γ̇ if |τ | > τ0

, (9)

while the apparent viscosity is

η = 2n−1µ|γ̇ |n−1 +
τ0

2|γ̇ |
. (10)

Bingham plastics are a special case of Herschel-Bulkley flu-
ids in exactly the same manner as Newtonian fluids follow
a specific power-law constitutive equation. Plots of the rheo-
logical characteristic for Herschel-Bulkley fluids are shown in
Fig. 1, for various values of n. Note that the Bingham fluid is
recovered for n = 1.

III. NUMERICAL ALGORITHM
A. Incompressible flow solver

An approximate projection method for solving the vari-
able density incompressible Navier-Stokes equations on an
adaptive mesh hierarchy has been implemented in the IAMR
code. The algorithm was described for the constant viscos-
ity case by Almgren et al.,35 with extensions to low Mach
number reacting flows with temperature-dependent viscosity
provided by Pember et al.41 and Day and Bell,42 among others.
In addition to solving the Navier-Stokes equations for veloc-
ity and pressure, the IAMR code allows for the (conservative
or passive) advection of any number of scalar quantities. The
implementation is such that the code can be run on architec-
tures from single-core laptops through to massively parallel
supercomputers.

In the approximate projection method as implemented
in IAMR, an advection-diffusion step is used to advance the
velocity in time; the solution is then (approximately) projected
onto the space of divergence-free fields. The motivation for an
approximate rather than exact projection is covered in detail
in the literature.43–45
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Velocity is defined at cell centres at integer time steps
and is denoted by um

i,j,k . The pressure, on the other hand, is
specified at cell corners and is staggered in time so that it is

denoted as p
m+ 1

2

i+ 1
2 ,j+ 1

2 ,k+ 1
2

. When no subscript is given (e.g., um),

we address the distribution of u throughout the computa-
tional domain at time tm. Considerations such as initialisa-
tion and boundary treatments are ignored at present, and we
set external forces equal to zero. Instead, we focus on the
steps required in order to evolve the solution a single time
step ∆t.

The first part of the advection-diffusion step is to extrapo-
late normal velocity components to each cell face at time tm+ 1

2 .
This is done through a second-order Taylor series expansion.
Consider the cell centre (i, j, k), and suppose we want to extrap-
olate the first velocity component u to the face (i+ 1

2 , j, k). Then
the truncated Taylor series is

u
m+ 1

2

i+ 1
2 ,j,k
≈ um

i,j,k +
∆x
2

(
∂u
∂x

)m

i,j,k
+
∆t
2

(
∂u
∂t

)m

i,j,k
. (11)

Taking the first component of (2b), we have(
∂u
∂t

)m

i,j,k
= −

(
u
∂u
∂x

)m

i,j,k
−

(
v
∂u
∂y

)m

i,j,k
−

(
w
∂u
∂z

)m

i,j,k

−
1
ρ

(
∂p
∂x

)m− 1
2

i,j,k
+

1
ρ

(
∂τ11

∂x
+
∂τ21

∂y
+
∂τ31

∂z
+

)m

i,j,k
,

(12)

which can be substituted into the last term of the Taylor
expansion to avoid any dependence on temporal deriva-
tives. In order to compute these extrapolated values, how-
ever, it is necessary to calculate discrete approximations
of the spatial derivatives. This is done separately for each
part. The first derivative of normal velocity is evaluated
using a monotonicity-limited fourth-order slope approxima-
tion S as introduced by Colella in 1985.46 Since the pressure
field is defined at grid nodes, cell-centred approximations of
the pressure gradient G are computed by finite differences.
Finally, transverse derivative terms such as 3∂u/∂y are eval-
uated by a separate extrapolation and subsequent upwinding
procedure, (

v
∂u
∂y

)m

i,j,k
≈ *

,

̂
v
∂u
∂y

+
-

m

i,j,k

. (13)

With these discrete representations in place, the intermediate
normal velocity at face i + 1

2 can be approximated based on the
cell to its left (i, j, k) as

u
m+ 1

2 ,L

i+ 1
2 ,j,k
= um

i,j,k +

(
∆x
2
− um

i,j,k
∆t
2

)
(Su)m

i,j,k

−
∆t
2

*
,

̂
v
∂u
∂y

+
-

m

i,j,k

−
∆t
2

*
,

E
w
∂u
∂z

+
-

m

i,j,k

−
∆t
2ρ

((
−(Gxp)

m− 1
2

i,j,k + (Dxτ)m
i,j,k

))
. (14a)

Similarly, an approximation based on the state to its right
(i + 1, j, k) is

u
m+ 1

2 ,R

i+ 1
2 ,j,k
= um

i+1,j,k +

(
∆x
2

+ um
i+1,j,k

∆t
2

)
(Su)m

i+1,j,k

−
∆t
2

*
,

̂
v
∂u
∂y

+
-

m

i+1,j,k

−
∆t
2

*
,

E
w
∂u
∂z

+
-

m

i+1,j,k

−
∆t
2ρ

(
−(Gxp)

m− 1
2

i+1,j,k + (Dxτ)m
i+1,j,k

)
. (14b)

These extrapolations need to be computed for tangential veloc-
ity components as well. At each face, we then have two
extrapolated approximations for um+ 1

2 , one from each cell
adjoining at the face. In order to pick the most accurate of
these, we construct a face-based advection velocity uadv. The
final, upwinded, extrapolated approximation at each face is
denoted as ũm+ 1

2 .
With these extrapolated and upwinded approximations in

place, (2b) is discretised in time to construct a new-time provi-
sional velocity field, u∗, without enforcing (2a), i.e., we define
u∗ using

u∗ − um

∆t
= −

[
uMAC · ∇ũ

]m+1
/
2 +

1
ρ

(
−Gpm−1

/
2 +

1
2
(
∇ · τ(um)

+∇ · τ(u∗)
)

+ f m
)
, (15)

where Gpm−1
/
2 is a lagged approximation to the pressure gra-

dient ∇p and the density ρ is a constant. IAMR is designed
for more general flows with variable density; however, for the
flows considered in this paper, the density is constant in space
and time.

The explicit viscous term, τ(um), is evaluated using only
the velocity components at time tm; i.e., we define γ̇m = γ̇(um)
and ηm = η(γ̇m) and write τ(um) = 2ηm γ̇m. The implicit
term, τ(u∗) as well as u∗ itself, is solved for with the same ηm,
through a tensor solve of the form(

u∗ −
∆t
ρ
∇ · (ηm γ̇∗)

)
= um − ∆t[uMAC · ∇ũ]m+1

/
2

+
∆t
ρ

(
−Gpm−1

/
2 + ∇ · (ηmγm) + f m

)
.

(16)

Note that all velocity components are solved for simultane-
ously.

The final part of the algorithm is the projection step and
subsequent pressure update. The velocity field u∗ does not in
general satisfy the divergence constraint as given by (2a). We
solve

Lρφ = D

(
1
∆t

u∗ +
1
ρ

Gpm−1
/
2

)
, (17)

where D is a discrete divergence and G a discrete gradi-
ent. Lρ is a second-order accurate approximation to ∇ · 1

ρ∇.
The new-time velocity is then defined by

um+1 = u∗ − ∆t
1
ρ

Gφ (18)
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and the updated pressure by

pm+1
/
2 = φ . (19)

The resulting approximate projection satisfies the divergence
constraint to second-order accuracy and ensures stability for
the algorithm. Given suitable initial and boundary conditions,
this algorithm can be used to evolve the system in time.
For time-dependent flows approaching a steady-state solution,
we consider the system steady when

max
�����
um+1 − um

um

�����
< 10−5. (20)

For further details on the algorithm, see the original paper by
Almgren et al.35

B. Regularisation of viscosity

Equation (9) does not present any problems for unyielded
regions (γ̇ > 0), but the apparent viscosity has a singularity
when the strain rate approaches zero (and |τ|→ τ0). Compu-
tational schemes such as those implemented in IAMR cannot
be used in the presence of such singularities. Regularisation
deals with the problem by replacing the ill-behaved appar-
ent viscosity with a function that approximates the rheolog-
ical behavior, but which stays bounded for arbitrarily small
γ̇. This is done by introducing an additional parameter ε to
the apparent viscosity, which describes how big the effect of
the regularisation is. A large value of ε allows for inexpen-
sive computations even near unyielded flow, while the limit
ε → 0 recovers the unregularised description. Note that one
must be careful to choose a small enough value for ε, in
addition to fine enough mesh resolutions and convergence cri-
terion. Otherwise, the mathematical approximation will not
hold.

We employ the popular Papanastasiou regularisation,14,47

which utilises an exponential relaxation according to

1
|γ̇ |
→

1 − e−|γ̇ |/ε

|γ̇ |
. (21)

This is a good approximation for |γ̇ |/ε � 1, while in the small
strain limit we have

lim
|γ̇ |→0

1 − e−|γ̇ |/ε

|γ̇ |
= lim
|γ̇ |→0

1
|γ̇ |

*
,
1 −

∞∑
k=0

(−|γ̇ |/ε)k

k!
+
-
=

1
ε

(22)

so that it always remains bounded and recovers the unregu-
larised model in the limit ε → 0. Combination of (21) with
the apparent viscosity as given in (9) gives the regularised
viscosity as

η =

(
2n−1µ|γ̇ |n−1 +

τ0

2|γ̇ |

) (
1 − e−|γ̇ |/ε

)
. (23)

The effect of varying the regularisation parameter ε is shown
in Fig. 2. In the Papanastasiou-regularised Herschel-Bulkley
model, the singularity in apparent viscosity is replaced by the
limiting value

lim
|γ̇ |→0

η =
τ0

2ε
. (24)

C. Adaptive mesh refinement

For a vast range of flow problems, large computational
domains are required even though we are only interested in
small areas of the domain such as boundaries, interfaces,
or areas where variables exhibit complex dynamic behavior.
Refining the computational mesh in these regions is a well-
known technique in order to save memory and processing
power, and it can be applied with various degrees of sophisti-
cation. Within IAMR, and the AMReX framework in general,
hierarchically structured AMR is employed, which allows for
efficient local refinement by symmetrically splitting each cell
into 2d smaller ones, where d is the dimensionality of the prob-
lem. Furthermore, the dynamic refinement is spatio-temporal,
meaning that we employ subcycling in the discrete time steps to
avoid setting global time step restrictions based on the smallest
cells. This is crucial for dynamic AMR to be used efficiently.
Tagging criteria are utilised in order for the code to determine
which cells should be split or merged at a given refinement
step, and these can depend on the values of any directly sim-
ulated or derived variables, in addition to spatial position and
time.

For details on the implementation of structured AMR in
this code, we refer to the websites of AMReX (https://amrex-
codes.github.io/amrex/) and IAMR (https://amrex-codes.
github.io/IAMR/), where full documentation and source code
are available.

D. Parallel implementation

AMReX is a mature, open-source software framework
for building massively parallel block-structured AMR applica-
tions. AMReX contains extensive software support for explicit
and implicit grid-based operations. Multigrid solvers, includ-
ing those for tensor systems, are included for cell-based
and node-based data. AMReX uses a hybrid MPI/OpenMP
approach for parallelization; in this model individual grids are
distributed to MPI ranks, and OpenMP is used to thread over
logical tiles within the grids. Applications based on AMReX
have demonstrated excellent strong and weak scaling up to
hundreds of thousands of cores.48–51

FIG. 2. Papanastasiou regularisation for the Bingham
model: stress magnitude (left) and apparent viscosity
(right) as functions of the magnitude of the rate-of-strain
tensor |γ̇ |. For decreasing ε, we recover a closer approx-
imation to the actual Bingham model. Note that logarith-
mic axes are employed in order to highlight the behavior
in the low-strain limit.

https://amrex-codes.github.io/amrex/
https://amrex-codes.github.io/amrex/
https://amrex-codes.github.io/IAMR/
https://amrex-codes.github.io/IAMR/
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IV. VALIDATION

In order to validate our code, we consider the two-
dimensional lid-driven cavity test case. It is a historically
significant and widely used benchmark problem for viscous
flow simulations, and consequently a large amount of refer-
ence results exist in the literature. Our domain is a square of
side length L, i.e.,Ω = [0,L]2, and is filled with a fluid of con-
stant density. Initially, the system is at rest. All walls except
the top (the “lid”) are held fixed so that the boundary con-
ditions on these walls are u = (0, 0). At time t = 0, the lid is
instantaneously prescribed the tangential velocityU so that the
relevant boundary condition for t > 0 is u = (U, 0). Without
any other external forces ( f = 0), this drives a recirculating
flow in the cavity, which reaches a steady-state solution for
non-turbulent regimes.

In order to obtain a dimensionless form of (2), we let
x̂ = x/L, û = u/U, and t̂ = t/(L/U ). Additionally, we takeU/L
as a characteristic strain-rate, and let

ˆ̇γ =
γ̇
U
L

, η̂ =
η

2n−1µ
(
U
L

)n−1
, (25)

p̂ =
p

2n−1µ
(
U
L

)n , τ̂ =
τ

2n−1µ
(
U
L

)n . (26)

By substituting these dimensionless variables into (2), we find
that the governing equations in dimensionless form are

∂û
∂ t̂

+ û · ∇̂û =
1

Re

(
−∇̂p̂ + ∇̂ · τ̂

)
, (27a)

∇̂ · û = 0, (27b)

τ̂ = 2η̂ ˆ̇γ, (27c)

η̂ =

(
| ˆ̇γ |n +

1
2

HB

)
1 − e−Pa | ˆ̇γ |

| ˆ̇γ |
, (27d)

where we have introduced the dimensionless groups

Re =
ρU2

2n−1µ
(
U
L

)n , HB =
τ0

2n−1µ
(
U
L

)n , Pa =
U
εL

. (28)

The Reynolds number Re is the ratio of inertial forces to
(power-law) viscous ones, while the Herschel-Bulkley num-
ber HB quantifies the effect of yield stress versus power-law

viscosity. The Papanastasiou number Pa measures the degree
of regularisation employed in the apparent viscosity, with
higher Pa being a more accurate description of unregularised
viscoplasticity. It is worth noting that the Reynolds number for
Newtonian flow (n = 1) is ReN = ρUL/µ.

When we have information about the dimensionless
apparent viscosity η̂ throughout our domain at a given time,
we can compute the local Reynolds number field ReL = Re/η̂.
This value, which is proportional to the inverse of the apparent
viscosity, provides insight about which regions of the domain
are dominated by the effects of viscoplasticity, and which ones
have near-Newtonian behavior. Finally, for the special case
n = 1, we introduce the Bingham number Bi = τ0L/µU, to
allow comparisons with articles written on the simulation of
Bingham fluids.

In the remainder of this section, we use L = 1 m,
ρ = 1000 kg/m3, U = 1 m/s, and Pa = 400. It is important
to choose a high enough value of Pa when using regularised
schemes, and our choice is based on the arguments by Syrakos
et al.,19 who showed that this value results in highly accurate
simulations. The cavity is discretised spatially with 256 cells
in each dimension. The lid-driven cavity flow is then uniquely
defined by the choices of µ, n, and τ0.

To the authors’ best knowledge, reference results for
Herschel-Bulkley fluids have not been presented in the lit-
erature. There are, however, plenty of results for power-law
fluids and Bingham plastics. Since these two characterise sep-
arate components of the Herschel-Bulkley model, we expect
that validating each of them individually is a good test for our
code. Evaluation of the full Herschel-Bulkley model, based on
this validation, is given in Sec. V.

Power-law fluids have zero yield stress and are different
from the Newtonian case when the flow behavior index is dif-
ferent from unity. They were studied by Bell and Surana in
1994,52 who presented results with n = 1/2 and n = 3/2. A
third-order finite volume method with upwinding was then
used to study the same problem by Neofytou in 2005.53 The
classical way to compare results from the lid-driven cav-
ity test case is to drive the system to steady state and then
look at the velocity profiles in each direction at slices per-
pendicular to the flow. This ensures that we can compare
with results from codes that can only calculate steady-state
solutions.

Figure 3 shows our results for power-law fluid
velocity profiles and includes reference results from the

FIG. 3. Velocity profiles for power-law fluids withµ = 10
Pa sn. Left: First component of velocity through the ver-
tical slice x̂ = 0.5. Right: Second component of velocity
through the horizontal slice ŷ = 0.5.
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aforementioned papers. Additionally, we include the New-
tonian case with comparisons from the classical paper by
Ghia et al.54 It is evident that decreasing n results in less
lid-induced kinetic energy propagating further down in the
domain, whereas increasing it has the opposite effect. Our
results align very well with those found in the literature, espe-
cially those due to Neofytou, which have the highest accuracy.
We have also included the velocity profile for n = 0.1, in
order to illustrate the significant viscous resistance in the limit
n→ 0.

We recall that Bingham fluids have n = 1 and non-zero
yield stress τ0. Due to the importance of accurately captur-
ing viscoplastic behavior, we have performed extra validation
tests for this model. Figure 4 depicts velocity profiles at var-
ious Bingham numbers, with comparison to the studies of
Neofytou53 and Chai et al.55 In the latter reference, a multiple-
relaxation-time lattice Boltzmann model was employed to
simulate non-Newtonian fluids. We see that increasing the
yield-stress has an effect on the velocity profiles similar to
that of lowering n for the power-law fluids, although the Bing-
ham fluids have sharper transitions in the profile (especially
noteworthy in the x-velocity). Our results are in excellent
agreement with the relevant references, and we have also
extended the range of Bingham numbers beyond those for
which velocity profiles are available in the literature.

The second method we use for validation is locating the
position of the main vortex centre within the cavity, at steady-
state. A comprehensive study exploring this dependency was
performed in 2014 by Syrakos et al.20 We have performed
simulations to steady-state for a large number of configurations
of Re and Bi, and the resulting vortex locations are depicted
in Fig. 5, alongside the results of Syrakos et al. We reiterate
what they found in their paper: increasing the Bingham number
moves the vortex upwards and to the right, while increasing the
Reynolds number moves the vortex first toward the right, and
then downwards and left to the centre. Our results agree very
well with the reference results for the range of (Re, Bi) pairs
covered in that study. Additionally, we have covered many
more large Bingham numbers, obtaining results which follow
the patterns to be expected. This illustrates the capability of
our code to simulate fluids with very large yield stress. Please
note that the number next to each point in the figure is the
modified Reynolds number

Re∗ =
Re

(Bi + 1)
. (29)

FIG. 5. Vortex centre locations in the two-dimensional lid-driven cavity for
Bingham fluids. Empty circles are results from Syrakos et al.,20 while the
remaining symbols are results from the present study. The number next to
each point is the corresponding modified Reynolds number Re∗.

This is because, following Syrakos et al.,21 it provides a more
natural measure of the transition to turbulence in the high-
Bi region. For further discussions on choice of dimension-
less parameters in viscoplastic fluid mechanics, we refer the
reader to articles by de Souza Mendes56 and Thompson and
Soares.57

The most important validation for viscoplastic fluids is
the accurate determination of yield surfaces. Regions where
the stress satisfies |τ| ≤ τ0 are known as unyielded regions.
The interface which separates yielded and unyielded regions
is called the yield surface. Since the yield surface separates two
fundamentally different states of matter (viscous fluid flow and
rigid solid behavior), locating it precisely is a valuable met-
ric for evaluating numerical results. Finally, we would like
to ensure that our time-marching scheme accurately captures
the fluid movement. In order to validate both of these two
attributes, we run a simulation starting from rest and evolv-
ing to the steady-state for the lid-driven cavity. Note that
the criteria for the system having reached steady-state are
that the maximum relative change in the velocity field from
one iteration to the next is less than some tolerance (in our
case 10−5). At this point, we set the lid velocity to zero, and

FIG. 4. Velocity profiles for Bingham fluids with
Re = 100. Left: First component of velocity through the
vertical slice x̂ = 0.5. Right: Second component of
velocity through the horizontal slice ŷ = 0.5.
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let the system come to rest again through cessation. When
the entire domain is an unyielded region, we stop the simula-
tion. Although some authors have used time-stepping schemes
to advance the system to steady-state,58,59 we are not aware
of any results illustrating the yield surface development for
instantaneous start from rest. On the other hand, the latter half
of this numerical experiment, i.e., cessation of Bingham fluids

from the lid-driven steady-state, was studied numerically by
Syrakos et al. in 2016.21 Comparisons with their yield surfaces
and time measurements therefore serve as validation for our
code.

Results with Re = 1 and Bi = 10 are depicted in Fig. 6.
The yield surface is illustrated as the single black contour line
|τ| = τ0, while the heat map shows the local Reynolds number

FIG. 6. Yield surface and local Reynolds number for time-dependent flow in the 2D lid-driven cavity. The fluid is initially at rest, and gradually transitions to
a steady state (a)–(e). At this point, the lid is stopped, allowing cessation in finite time (e)–(i). (a) t̂ = 3.5 × 10−6, (b) t̂ = 1.05 × 10−5, (c) t̂ = 9.33 × 10−5,
(d) t̂ = 9.540 × 10−4, (e) t̂ = 0.020 555, t̃ = 0, (f) t̃ = 3.89 × 10−5, (g) t̃ = 6.480 × 10−4, (h) t̃ = 1.1664 × 10−3, and (i) t̃ = 1.2729 × 10−3.
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ReL. This simple method for determining the yield surface can
be improved upon for regularised constitutive equations, see,
e.g., the work of Liu, Muller, and Denn.64 Note that the scaling
of the heat map is logarithmic (see top of Fig. 6).

For viscoplastic fluids, unyielded regions occur in two dis-
tinct manners. First, there are so-called stagnant zones, which
are connected to no-slip walls and in which the fluid has zero
velocity. On the other hand, unyielded zones with non-zero
velocity are referred to as plug zones. These are not in contact
with the walls and rotate in the interior of the cavity. In fact,
these two types of unyielded zones can never be in contact with
each other but must be separated by a layer of yielded fluid.
This is because a plug zone connected to a stagnant zone would
by association itself be stagnant and thus could not move.

The first five plots (a)–(e) show the transition from rest
to steady-state. It is clear that the fluid yields immediately at
a very thin layer near the lid since a large strain is applied
here at t̂ = 0. Additionally, there are yielded regions which
quickly propagate from the top corners and in toward the mid-
dle, eventually combining together and leaving an unyielded
plug in the upper middle part of the cavity (a)–(c). This pro-
cess occurs very quickly, in less than one percent of the time
needed to reach steady-state but should in fact happen instanta-
neously, following the discussion above. The initial connection
between the stagnant zone at the bottom and the rotating plug is
a spurious artefact due to the regularisation approach. Since we
regularise the apparent viscosity, small but non-zero velocities
are permissible in unyielded regions.

The steady-state shape of the resulting plug, and the
unyielded region at the bottom of the cavity (e), is charac-
teristic for the chosen pair of Reynolds and Bingham num-
bers. Comparisons to results by Syrakos et al. show that the

steady-state yield surfaces are indistinguishable. At this point
(t̂ = 0.020 552), the lid is abruptly halted and held still. This
removes the driving force for the flow from the system and
leads to cessation of the flow. Since cessation occurs in finite
time for viscoplastic fluids, the cessation time tc, defined as
the time until the entire cavity is in the unyielded state, is an
important characteristic. In order to measure t̂c, we introduce
a new time t̃ = t̂ − 0.020 555 2. We have chosen four times
during flow cessation to compare with Syrakos et al.21 and
the flow patterns are very similar to their published results.
Additionally, our simulations yield t̂c = 1.2844× 10−3, which
is a relative difference of less than 0.9% compared to the
previously published results. Note also the unphysical con-
nection between stagnant and plug zones in (i), which is in
agreement with the results and discussions of Syrakos et al.21

In order to rectify these spurious artefacts, one would need
a very high Papanastasiou number or use an unregularised
approach.60

V. EVALUATION
A. Herschel-Bulkley fluids

The results in Sec. IV validate our code for fluids obeying
power-law and Bingham rheologies, but there are no avail-
able comparisons in the literature for Herschel-Bulkley fluids,
which exhibit power-law dependencies in addition to a non-
zero yield stress. Consequently, simulations were performed
for viscoplastic fluids with the flow index n equal to 0.5 and
2.0. In order to cover a wide range of flow behaviors, we
also chose to vary the Herschel-Bulkley number HB and the
modified Reynolds number Re∗, as given by (29). For each
combination of n, HB, and Re∗, the system was advanced to

FIG. 7. Steady-state velocity profiles for Herschel-
Bulkley fluids with n = 0.5 (top) and n = 2.0 (bottom),
and various combinations of HB and Re∗, given in the
legend in the top left plot. Note that for the dilatants with
HB = 100, several lines almost overlap.
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steady-state, in order to obtain velocity profiles through the
centre of the domain and the final location of the main vortex.
These results can be used as benchmark references for codes
simulating Herschel-Bulkley fluids.

Figure 7 shows the steady-state velocity profiles for each
different parameter combination. As expected, a small flow
index enhances the effect of the yield stress, resulting in
weak velocity variations. This leads to the largely overlapping
x-velocity profiles in the upper left plot so that the y-velocity
profiles in the upper right one are more useful comparisons. In
the lower plots, however, where the fluid acts as a dilatant above
the yield criterion, there is a trade-off between the effects of
flow index and yield stress so that we obtain large velocity vari-
ations throughout the middle of the domain in both directions.

In Fig. 8, we show the steady-state locations of the main
vortex centres for each Herschel-Bulkley simulation. Compar-
ing the results with Fig. 5, we see the same effects of increasing
HB as for Bi, i.e., vortex moving upwards and to the right. Sim-
ilarly, increasing Re∗ results in the vortex moving first right and
then down toward the cavity centre. Both of these observations
are as expected since the dimensionless groups capture similar
aspects of the flow. Additionally, we note that decreasing the
flow index n has a similar effect as increasing the yield stress,
moving the vortex centre upwards and to the right. These addi-
tional data points serve as further benchmarking results for
Herschel-Bulkley fluids.

B. Adaptive mesh refinement

The use of AMR improves the efficiency of our algorithm
in two different ways, depending on whether we are inter-
ested in steady-state results or transient behavior. In the former
case, we do not care about intermediate results and would
ideally employ a large time step. Unfortunately, due to the
semi-implicit viscous solves employed in IAMR, we are
unable to reach steady-state for highly resolved simulations

FIG. 8. Steady-state vortex centres for Herschel-Bulkley fluids with dif-
ferent combinations of flow index n, Herschel Bulkley number HB, and
modified Reynolds number Re∗. The number next to each point is the
corresponding Re∗.

by iterating with large time steps. The large system requires
longer runtimes per time step, and the time step decreases
proportionally with the grid size. On the other hand, we can
rapidly advance a low-resolution simulation to steady-state and
then restart the simulation with one refinement level enabled
throughout the entire domain. Due to the initial conditions, the
finer resolution will converge after a much smaller amount of
iterations. Subsequently, the simulation can be restarted again
with a further level of refinement, and so on. In this manner,
the computational expense associated with the time-dependent
simulation to a highly resolved steady-state is greatly reduced.
As an example, advancing the 2D case with Re = 1, Bi = 10
to steady-state on a 16-core desktop computer took 83 min
and 13 s when using a resolution of 2562. By first advancing
a low-resolution system with 642 cells to steady-state (33 s),
and then refining the entire domain with two levels, the run-
time for obtaining the same steady-state result is reduced to
just under 15 min. Due to the built-in checkpoint functional-
ity in AMReX, restarting simulations with different runtime
options in this manner is straightforward.

In order to illustrate the usefulness of AMR in unsteady
simulations, we refer to Fig. 9 (Multimedia view), which shows
the full evolution of a Bingham fluid with Re = 1000 and Bi = 1
from rest to steady-state with AMR enabled. The base grid con-
sists of 64 cells in each direction, and two levels of refinement
are used to achieve high resolution near the yield surface. This
is done by tagging cells where |τ| ≤ 1.05τ0 for refinement.
Consequently, we only need to use large amounts of computa-
tional resources in some regions. Due to the block-structured
AMR implementation, the grid distribution is highly paral-
lel. Additionally, the temporal subcycling in time ensures that
we only need to decrease the step size in refined cells—not
globally.

FIG. 9. Illustration of spatio-temporal adaptive mesh refinement for tracking
the development of the yield surface, with Re = 1000 and Bi = 1. The coarsest
grid discretises with cell spacing 1/64, but the two refinement layers ensure
that the effective resolution near the yield surface is 1/256. Multimedia view:
https://doi.org/10.1063/1.5049202.1

https://doi.org/10.1063/1.5049202.1
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C. Moving to three dimensions

Since the augmented IAMR code is efficient and paral-
lelises well, it is possible to run unsteady simulations of fully
three-dimensional viscoplastic flows. As an extension of the

lid-driven cavity for Bingham fluids in 2D, we consider a unit
cube with stationary no-slip conditions on the floor and all four
walls, while the lid (at ẑ = 1) drives the flow. We expect the
results of such a simulation to be similar to the classical two-
dimensional case, which means that we can compare the two

FIG. 10. Three-dimensional time-evolution of the lid-driven cavity flow, with Re = 1 and Bi = 10. The system advances from an instantaneous start from rest to
steady-state, before the lid motion ceases and the fluid stops. The lid moves in the positive x-direction. The shapes of three-dimensional plug regions of this sort
have never been identified for the lid-driven cavity before. (a) t̂ = 1.0×10−6, (b) t̂ = 1.00×10−5, (c) t̂ = 6.82×10−5, (d) t̂ = 8.438×10−4, (e) t̂ = 1.4913×10−2,
t̃ = 0, (f) t̃ = 3.97 × 10−5, (g) t̃ = 4.847 × 10−4, (h) t̃ = 7.706 × 10−4, and (i) t̃ = 1.0564 × 10−3.
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and expect similar flow characteristics. However, we would
only get identical results by using periodic boundary condi-
tion on the walls which are parallel to the flow vortices. Since
we apply no-slip conditions, there will be three-dimensional
effects on the results, meaning that we can use them as separate
reference results. The spatial domain is discretised using 256
cells in each direction, i.e., 16 777 216 cells in total. As before,
the system is initially at rest. When steady-state is reached, we
stop the motion of the lid and allow cessation to take place.
Figure 10 illustrates how the yield surface evolves through
time. Note that it is still computed as the contour |τ| = τ0,
but in 3D we can actually visualise it as a surface. The snap-
shot times in Fig. 10 are similar to those used in Fig. 6 but
vary by small factors. Note also here the presence of numeri-
cal artefacts due to regularisation, demonstrated by connected
stagnant and plug zones. Qualitatively, the resemblance with
the 2D case is striking, as the flow clearly goes through the
same steps to reach steady-state and cessation. Having said
that, the third dimension allows a richer picture of the shape
of the yield surface. Especially fascinating is the importance
of the four vertical edges, which play a similar role as the
2D corners and lead to the yield surface stretching out in
four directions from the centre. It would not be possible to

capture this type of yield surface shape without performing
fully 3D fluid simulations. We emphasise that this is the first
time fully three-dimensional yield surfaces have been pre-
sented for the lid-driven cavity case. Previously, the only 3D
results are slices of rigid zones presented by Olshanskii61

(finite differences, 262 144 cells), and the heatmap slices
presented in the bi-viscosity simulations performed by Elias
et al.62 (819 468 elements).

In Fig. 11, steady-state yield surfaces are shown for vari-
ous combinations of Re and Bi. Readers who are familiar with
the two-dimensional test case (see, e.g., Ref. 20) will recognise
the similarity between those results and slices through these
three-dimensional regions. Note that the slices are taken at a
slight angle in the xy-plane. These simulations illustrate the
code’s ability to solve the governing PDEs for time-dependent
three-dimensional flows of non-Newtonian fluids following
the Herschel-Bulkley model.

While the shapes of the three-dimensional yield sur-
faces shown in Figs. 10 and 11 provide interesting insight
into the three-dimensional effects, they do not provide quan-
titative comparisons for other codes for three-dimensional
viscoplastic fluid flows. Consequently, we show the corre-
sponding steady-state velocity profiles in Fig. 12. The first

FIG. 11. Steady-state yield surface for Bingham fluids with various Reynolds and Bingham numbers in the three-dimensional lid-driven cavity. The lid moves
in the positive x-direction. (a) Re = 1, Bi = 1, (b) Re = 1, Bi = 10, (c) Re = 1, Bi = 100, (d) Re = 1000, Bi = 1, (e) Re = 1000, Bi = 10, and (f) Re = 1000, Bi = 100.
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FIG. 12. Velocity profiles in the centre of the three-
dimensional cavity, provided as reference solutions for
3D viscoplastic solvers. The effect of Reynolds and Bing-
ham numbers is clear. Note that the two cases with
Bi = 100 are indistinguishable.

velocity component is considered on the line x̂ = 0.5, ŷ = 0.5,
while the x- and z-directions are swapped for the third com-
ponent. As is evident, there are notable similarities between
the two-dimensional simulations, as expected. These profiles
can act as benchmark results for future yield stress simulation
codes.

D. Parallel performance

Among the most impressive attributes of codes built
within the AMReX framework, is the intrinsic scalability on
state-of-the-art computer architectures. Due to major advances
within parallel computing in the last few decades, accurate
measurement of how well-suited algorithms are for parallel
processing has received a lot of attention. Moreland and Old-
field provided an excellent overview of contemporary formal
metrics for such measurements.63

Suppose we are trying to solve a computational prob-
lem of size N. Then the speed-up of the parallel algorithm
is given by the ratio of the parallel execution time to that
of the best serial algorithm. The theoretically best possible
speed-up occurs if the entire task can be divided into as many
chunks of equal work as there are cores being used so that
it is distributed among the available cores without any over-
head. In this utopian case, we have speed-up equal to the
processor core count. Although speed-up is a useful metric
for analysing the parallel performance of an algorithm, it has
one caveat. Since the serial runtime is necessary in order to
compute them, it quickly becomes impractical for analysis of
large-scale applications. Computing the serial runtime for very
large N takes far too long. Scaling where the problem size is
kept fixed, and the amount of allocated resources is increased,

is known as strong scaling. On the other hand, the problem
size can be scaled so that it is proportional to the core amount.
If one core is used to solve the problem with size N∗, one
would then ideally expect the parallel runtime of a problem
with size PN∗ to remain constant when deployed on P cores.
This type of analysis is called weak scaling. Finally, it may
in some case be difficult to keep the problem size propor-
tional to the job size so that weak scaling analysis becomes
difficult to obtain. However, one can measure the amount of
work done per time, referred to as the rate. The rate is com-
puted as the ratio of problem size to parallel runtime and thus
removes the weak scaling dependency between problem size
and core amount. Sampling the rate across a selection of prob-
lem sizes and core amounts can thus help the simulation runner
pick runtime parameters which yield a high computational
efficiency.

Our main interest lies in ensuring that the scalability is
unaffected by the extension to generalised Newtonian fluids.
As such, we run a test-suite with varying problem sizes and pro-
cessor cores for the 3D lid-driven cavity test when the domain
is filled by a Bingham fluid with Re = 1 and Bi = 10. In order to
avoid the problems associated with strong and weak scaling,
we vary the number of cores and problem resolution but only
use few cores for smaller problems and many cores for larger
ones. Subsequently, we compute the rate for the cell updates,
which gives proper insight into the resulting computational
efficiency. In order to evaluate the parallel performance rather
than the effect of the system state, we use a constant time step,
advect the system by 100 time steps, and measure the average
runtime per time step for the next ten.

Figure 13 illustrates the results of average runtimes and
the rate for the scaling test. For a given problem size, the

FIG. 13. Strong scaling results for a Bingham-fluid in
the lid-driven cavity. The left plot shows the reduction in
runtime per time step as the amount of processor cores is
increased, for various problem sizes. The right plot shows
how the corresponding computation rate grows. Note that
both axes are logarithmic in the left plot, while only the
primary axis employs logarithmic scaling in the right one.
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reduction in runtime (and increase in rate) is basically optimal
until a core limit is reached. At this point, the MPI communi-
cation overhead becomes too large for further parallelisation
since the grid has already been broken down too far. However,
as the problem gets bigger this core limit naturally increases
so that the computational rate can continue increasing as long
as larger problems are solved. When simulating at a given
problem resolution, it is therefore best to choose the lowest
amount of cores which maximise the rate. Note that these
tests do not utilise OpenMP tiling and have not been opti-
mised in terms of runtime parameters for parallelisation (such
as maximum size for subgrids), and still the scalability is
excellent.

VI. CONCLUSIONS

The publicly available software suite IAMR facilitates
rapid simulations of incompressible fluids governed by the
Navier-Stokes equations in a structured, adaptive framework
with state-of-the-art parallelisation on contemporary super-
computer architectures. By augmenting this code, originally
designed for Newtonian flows, we allow it to deal with gener-
alised Newtonian fluids using a regularised Herschel-Bulkley
model. In doing so, we provide a code capable of simulat-
ing large-scale viscoplastic fluid systems efficiently enough to
investigate three-dimensional, time-dependent systems. Thor-
ough validation is performed through comparisons with results
from peer-reviewed studies of the lid-driven cavity problem,
and these benchmark results are expanded upon through a
wider range of Reynolds and Bingham numbers. Finally, we
have evaluated the ability of the code to deal with Herschel-
Bulkley fluids and investigated three-dimensional yield sur-
faces in the lid-driven cavity. For both Herschel-Bulkley fluids
and Bingham fluids in three dimensions, reference results are
provided for the first time.
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