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A newly discovered neural stem cell population is generated
by the optic lobe neuroepithelium during embryogenesis

in Drosophila melanogaster
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ABSTRACT

Neural stem cells must balance symmetric and asymmetric cell
divisions to generate a functioning brain of the correct size. In both the
developing Drosophila visual system and mammalian cerebral cortex,
symmetrically dividing neuroepithelial cells transform gradually into
asymmetrically dividing progenitors that generate neurons and glia.
As a result, it has been widely accepted that stem cells in these
tissues switch from a symmetric, expansive phase of cell divisions to
a later neurogenic phase of cell divisions. In the Drosophila optic lobe,
this switch is thought to occur during larval development. However,
we have found that neuroepithelial cells start to produce neuroblasts
during embryonic development, demonstrating a much earlier role for
neuroblasts in the developing visual system. These neuroblasts
undergo neurogenic divisions, enter quiescence and are retained
post-embryonically, together with neuroepithelial cells. Later in
development, neuroepithelial cells undergo further cell divisions
before transforming into larval neuroblasts. Our results demonstrate
that the optic lobe neuroepithelium gives rise to neurons and glia over
60 h earlier than was thought previously.
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INTRODUCTION

Neural stem cells in the developing brain must regulate their
proliferation precisely to generate a functional nervous system. An
imbalance between symmetric and asymmetric stem cell divisions
can lead to the inadequate production of differentiated progeny or,
conversely, to tumour formation. Importantly, work in Drosophila
has shown that specific brain tumours arise from the mis-regulation
of distinct populations of neural stem cells. In brain tumour (brat)
mutants, asymmetrically dividing Type II neuroblasts generate
aberrant lineages, whereas symmetrically dividing neuroepithelial
cells are the tumour cells of origin in lethal(3)malignant brain
tumour [I(3)mbt] mutants (Bowman et al., 2008; Richter et al.,
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2011). Thus, identifying different types of neural stem cells and
their functions is central to understanding both normal brain
development and the diverse causes of tumourigenesis.

The Drosophila optic lobe, which forms the visual processing
system of the adult brain, is an established system for studying
neural stem cells in vivo (Eggeret al., 2011). The development of the
medulla, the largest visual ganglion, shares many parallels with the
development of the mammalian cerebral cortex (Brand and Livesey,
2011; Egger et al., 2011). In both tissues, symmetrically dividing
neural stem cells (neuroepithelial cells) expand the stem cell pool
before transforming into asymmetrically dividing neural stem cells
(also called neuroblasts in Drosophila) that produce neurons and
glia (Fig. S1A) (Egger et al., 2007; Noctor et al., 2004). Previous
studies of neuroepithelial cells and neuroblasts in the optic lobe have
focussed largely on larval stages (Egger et al., 2011, 2010; Yasugi
et al.,, 2010, 2008). Neuroepithelial cells divide symmetrically
in the early larva before a proneural wave sweeps across the
neuroepithelium at mid-larval stages, converting neuroepithelial
cells into neuroblasts (Yasugi et al., 2008). Here, we demonstrate
that this transition begins much earlier, and that neuroepithelial cells
and neuroblasts co-exist from embryonic stages.

RESULTS AND DISCUSSION

Neuroepithelial cells divide in the embryo

The optic lobe primordium is first apparent as a dense patch of cells
in the head ectoderm of stage 11 embryos (Hartenstein and Campos-
Ortega, 1984; Poulsen, 1950; Turner and Mahowald, 1979). These
cells undergo four cell divisions before invaginating from the
ectoderm as a neuroepithelial sheet and attaching to the lateral
surface of the brain between embryonic stages 12 and 13 (Fig. 1A)
(Green et al., 1993).

Neuroepithelial cells can be identified by their expression of
Fasciclin II (FaslI), the orthologue of neural cell adhesion molecule
(NCAM) (Grenningloh et al., 1991; Younossi-Hartenstein et al.,
1997). To determine the proliferation pattern of neuroepithelial cells
in the embryo, we co-stained for FaslI and the cell division marker
phospho-histone H3 (pH3). We found pH3™" neuroepithelial cells at
all developmental stages between optic primordium invagination
and the end of embryogenesis (Fig. 1Bi-iii and Fig. S1B). Thus, the
neuroepithelium divides throughout embryogenesis, in contrast to a
previous suggestion that the optic primordium is dormant in the
embryo (Green et al., 1993).

Why was the embryonic neuroepithelium suggested to be
dormant? BrdU incorporation assays had shown that
neuroepithelial cells do not undergo S phase after invagination
(Green et al., 1993). We tested the phase of the cell cycle in which
neuroepithelial cells reside as they undergo invagination. We
assessed expression of Cyclin A (CycA), a G2-phase cyclin protein,
and found that neuroepithelial cells were all CycA* when they
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Fig. 1. Embryonic neuroepithelial cells divide
and generate EONs. (A) Schematic depicting

the position of the neuroepithelium (purple) as it
invaginates from the head ectoderm and attaches
to the side of the brain lobe in the embryo. A,
anterior; P, posterior; D, dorsal; V, ventral.

(Bi-iii) Neuroepithelial cells (Fasll*, white)
co-stained for the mitosis marker pH3 (red) at the
indicated embryonic stages. Arrowheads indicate
dividing neuroepithelial cells. (Ci-iii)
Neuroepithelial cells (white) co-stained for the
S/G2 cyclin CycA (blue) at the indicated embryonic
stages. Neuroepithelial cells lose CycA expression
progressively. Arrowheads in Cii indicate individual
neuroepithelial cells that express CycA. (D) Dpn*
cells (red, arrowed) appear in close proximity to the
neuroepithelium (white) during embryogenesis.
(E,E’) RFP expressed using R31H09-GAL4 (cyan
in E) labels the embryonic neuroepithelium (white
in E’). RFP is inherited by neighbouring Dpn* cells
(red, arrowed). These Dpn™ cells express R9D11-
mCD8-GFP (green). (F) EON production from the
embryonic neuroepithelium. The optic primordium
invaginates while in G2 (CycA*, blue) to give rise to
the embryonic neuroepithelium. Neuroepithelial
cells undergo mitosis once, losing CycA
expression, to produce EONs (green and red).
Surface ectoderm cells are indicated in yellow.
Brain surface is downwards; interior is upwards.
(Bi-E’) Single section confocal images.
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invaginated from the ectoderm (Fig. 1Ci). Neuroepithelial cells lost
CycA expression over time, concomitant with cell divisions, until
they were all CycA™ at the end of embryogenesis (Fig. 1Ci-iii).
Thus, we found that neuroepithelial cells invaginate in G2 before
dividing, explaining both our results and previous observations
(Green et al., 1993). As neuroepithelial cells do not undergo S phase
in the embryo after invagination (Green et al., 1993), we infer that
they divide once each (Fig. 1F).

The embryonic neuroepithelium generates neuroblasts
We next assessed the role of neuroepithelial cell divisions in the
embryo. We found no significant increase in the number of
neuroepithelial cells over time (Fig. S1C), indicating that these cell
divisions do not serve to increase the size of the neuroepithelium. We
therefore tested whether the embryonic neuroepithelium produces
neuroblasts, in a similar manner to the late larval neuroepithelium.
We stained for the Hes family transcription factor Deadpan
(Dpn), which labels all identified neuroblasts in the Drosophila

M > GO

brain (Bier et al., 1992). We found Dpn™ cells in close proximity to
the neuroepithelium beginning at embryonic stage 12 (Fig. 1D). To
test the lineage relationship between neuroepithelial cells and these
neuroblasts, we expressed red fluorescent protein (RFP) in the
neuroepithelium and assessed whether RFP was inherited by the
Dpn” cells. Interestingly, we found that GAL45*3 and ogre-GALA4,
two GAL4 drivers that label the larval neuroepithelium (Dillard
et al., 2018; Egger et al., 2007), did not express in the embryonic
neuroepithelium (data not shown). We therefore identified a GAL4
driver, R31H09-GALA4, that labels the embryonic neuroepithelium
(Fig. 1E). When we expressed RFP using R31H09-GAL4, we found
that RFP was inherited by the Dpn™ cells (Fig. 1E). We conclude
that the embryonic neuroepithelium produces neuroblasts, and refer
to these neuroblasts as EONs (embryonic optic neuroblasts).

We identified a ~4 kb fragment of the earmuff (erm) enhancer
(R9D11) that drives expression in EONSs consistently, allowing us to
track the production of EONs from the embryonic neuroepithelium.
(Fig. 1E’). Using R9D11-mCD8-GFP (R9D11 driving expression
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of membrane-targeted GFP) (Pfeiffer et al., 2008; Zhu et al., 2011),
we found that EONs are produced continuously between stage 12
and stage 17 of embryogenesis, with a final number of 8.6+0.7
EON:Ss per brain lobe (Fig. S1D,Ei-iii). EONs were first apparent in
the neuroepithelial layer (FasIT" Dpn* R9D11%) and were extruded
medially into the brain, where they downregulated FaslI expression
(Fig. SI1Ei-iii). Importantly, our results demonstrate that
neuroepithelial cells produce neuroblasts much earlier (~60 h
earlier) than thought previously (mid-larval stage) (Fig. 1F).

EONSs derive from two spatial domains of the
neuroepithelium

We noticed that EONs were generated at specific discontinuous
points along the embryonic neuroepithelium. In the larval brain, the
neuroepithelium is patterned into spatial domains along the anterior-
posterior axis by expression of Vsx1, Optix, decapentaplegic (dpp)
and wingless (wg) (Fig. S2A) (Erclik et al., 2008; Gold and Brand,
2014; Kaphingst and Kunes, 1994; reviewed by Bertet, 2017). In
addition, the ventral (but not dorsal) half of the neuroepithelium
expresses hedgehog (hh) (Fig. S2A) (Chen et al., 2016; Evans et al.,
2009). All spatial domains of the neuroepithelium generate
neuroblasts in the larva. As we did not find a continuous band of
EONs in the embryo, we reasoned that they might arise from a
subset of spatial domains of the neuroepithelium.

We found that almost all EONs are produced by the VsxI*
(central) domain of the embryonic neuroepithelium, straddling the
presumptive dorsal-ventral boundary (Fig. 2A-B, Fig. S2B,B’).
These EONs themselves expressed VsxI (Fig. 2B). We observed
that the wg ™ tips of the neuroepithelium produce a minority of EONs
as assessed using wg-LacZ, a reporter inserted at the endogenous wg
locus (Kassis et al., 1992) (Fig. S2C,C’). Thus, we conclude that the
central domain, and to a lesser extent the tips of the embryonic
neuroepithelium, produces neuroblasts. Interestingly, we found
no evidence for Optix or dpp expression in the embryonic
neuroepithelium (Fig. 2A, Fig. S2D-E’), suggesting that these
domains become patterned and start to produce neuroblasts later
in development.

A
EONs
EONs EONs
y A |
embryonic
m neuroepithelium
wg dVsx1
D  EGFR signalling D’ EGFR signalling

Pnt-GFP

The embryonic neuroepithelium expresses transition

zone markers

In the larval brain, neuroepithelial cells are transformed into
neuroblasts at a transition zone. The transition zone expresses the
proneural gene lethal of scute [I(1)sc] and the microRNA miR-7 and
is regulated by signalling pathways, including the EGFR and Notch
pathways (Fig. S3A) (Caygill and Brand, 2017; Egger et al., 2010;
Yasugi et al., 2008, 2010). We found discrete regions of L(1)sc
expression in the embryonic neuroepithelium that corresponded
spatially with EON production (Fig. 2C). L(1)sc” cells exhibited
many features of the larval transition zone: they were positive
for EGFR signalling (Fig. 2D-D’), had low Notch signalling
(Fig. 2E-E’) and expressed miR-7 (Fig. S3B). Consistent with
a neuroepithelium to neuroblast transition, EONs expressed the
neuroepithelial cell markers E-Cadherin (E-Cad) and FaslI as they
were generated but later downregulated expression of these genes
(Fig. S3C-D").

EONSs generate neurons and glia

Neuroblasts in the larval brain divide asymmetrically to generate
intermediate progenitor cells (called ganglion mother cells,
GMCs) that, in turn, divide once to produce neurons and glia.
We found that, like larval neuroblasts, EONs were positive for
Wor (Worniu, Fig. S4A,A’) and Mira (Miranda, Fig. 3A,A"),
localised Pros (Prospero) and Mira asymmetrically at mitosis
(Tkeshima-Kataoka et al., 1997) (Fig. S4B.B’), and divided
asymmetrically to generate Dpn~ progeny (Fig. 3B,B’). EON
lineages were identifiable as R9D11-mCD8-GFP™ cells contacting
EONs (Fig. 3B,B’). To identify the cell types produced by EONS,
we stained for markers specific to GMCs, neurons or glia. We
found cells with nuclear Pros (Fig. S4C,C’), Elav (Embryonically
lethal abnormal vision, Fig. 3C,C’) or Repo (Reversed polarity,
Fig. 3D-D’) next to EONS, corresponding to GMCs, neurons and
glia, respectively. By the end of embryogenesis, we found an
average of 16.1£1.7 neurons and 3.7+1.4 glia per brain lobe that
were in contact with EONs and expressed R9D11-mCD8-GFP
(n=10 brain lobes).

Notch signalling
. Stage 15

Fasll my-GFP

Fig. 2. The embryonic neuroepithelium expresses transition zone markers and produces EONs at specific spatial domains. (A) Spatial patterning
domains in the embryonic neuroepithelium and neuroblast generation (compare with Fig. S2A). The Visx1*, wg* and hh* domains are present, but the Optix* and
dpp* domains are not yet established. The Vsx7* domain generates most EONs; the wg™* tips generate a minority of EONs. Axes as in Fig. 1F. (B) EONs (R9D11-
mCD8-GFP™, green) are produced from the Vsx7* domain (red) of the neuroepithelium (outlined). Arrow indicates EON generation. Maximum intensity projection
of five 1 pm slices in z. (C) Neuroepithelial cells (Fasll*, white) express L(1)sc (red, arrowhead) in close proximity to EONs (green, arrow). (D,D’) L(1)sc* cells (red)
in the neuroepithelium (white) have high EGFR signalling, as assessed using the Pnt-GFP reporter (green) (Boisclair Lachance et al., 2014). (E,E’) L(1)sc” cells
(red) in the neuroepithelium (white) have low Notch signalling, as assessed using the HLHmy-GFP reporter (green) (Almeida and Bray, 2005). (B-E’) Single

section confocal images.
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Fig. 3. EONs generate neurons and glia. (A,A’) EONs (Dpn*/R9D11-mCD8-GFP*, red and green, arrowheads) express the gene Mira (cyan), which is
expressed by neuroblasts. (B,B’) EONs (red and green) divide and generate Dpn~ progeny (asterisks). Arrowheads indicate a dividing EON, assessed by

co-staining for pH3 (white). (C,C’) EONSs (red and green) generate Elav* neurons (blue, arrowheads). (D

,D’) EONs (red and green) generate Repo* glia (white,

arrowheads). Maximum intensity projection of three 1 ym slices in z. (A-C’) Single section confocal images.

We confirmed the lineage relationship between EONs and
neurons using the FLEXAMP (flip-out LexA amplification)
technique, a memory cassette tool (Bertet et al., 2014). We found
that neurons were labelled when we expressed FLEXAMP in EONs
during embryogenesis (Fig. S4D-E). We conclude that, like
canonical neuroblasts, EONs undergo neurogenic divisions and
generate differentiated progeny.

EONSs undergo GO0 quiescence and persist into the larval
brain

At the end of embryogenesis, the majority of neuroblasts in the
central brain and ventral nerve cord enter mitotic quiescence or are
eliminated by apoptosis (Maurange and Gould, 2005; Truman and
Bate, 1988; White et al., 1994). Quiescent neuroblasts persist into
the larval brain and later become reactivated in a nutrition-
dependent manner to generate neurons and glia in a second round
of neurogenesis (Britton and Edgar, 1998; Chell and Brand, 2010;
Otsuki and Brand, 2018; Sousa-Nunes et al., 2011; Spéder and
Brand, 2014; Truman and Bate, 1988). We assessed whether EONs
undergo quiescence or apoptosis at the end of embryogenesis.

We found that EONSs persist into the larval brain, identifiable as a
cluster of Dpn" R9D11-mCD8-GFP" cells. As in the embryo,
EONs are located below the neuroepithelium, medial in the brain
(Fig. 4A-B, Movie 1). We observed 10.4+0.6 EONs per brain lobe at
0 h after larval hatching (ALH) (»=31 brain lobes), in close
agreement with the final number detected in the embryo. The only
neuroblasts known to proliferate at larval hatching are the mushroom
body and lateral neuroblasts (Ito and Hotta, 1992; Prokop and

Technau, 1991; Truman and Bate, 1988), indicating that EONs are
quiescent at this stage. It has been shown that quiescent neuroblasts
in the brain lobes and ventral nerve cord do not express Wor or Mira
(Lai and Doe, 2014; Otsuki and Brand, 2018; Tomancak et al.,
2007). In agreement with this, we found that EONs did not express
Wor or Mira at 0 h ALH (Fig. S5A-B’), despite expressing these
genes previously in the embryo (Fig. 3A,A’, Fig. S4A,A").

We discovered recently that neuroblasts can undergo two types of
quiescence (Otsuki and Brand, 2018). Most quiescent neuroblasts
arrest in G2, and only a minority in GO in the ventral nerve cord. G2
and GO are two functionally distinct types of stem cell quiescence,
as G2 neuroblasts become activated faster than GO neuroblasts in
response to nutritional inputs (Otsuki and Brand, 2018). We found
that all EONs undergo GO quiescence, as they did not express the G2
marker CycA at 0 h ALH (Fig. S5C,C’). We also found that
neuroepithelial cells, having divided throughout embryogenesis,
eventually become G0 quiescent prior to larval hatching (Fig. S5D).
Thus, all neural stem cells in the visual system undergo GO
quiescence, which is otherwise uncommon in the Drosophila brain.

EONs reactivate post-embryonically

The neuroepithelial cells that were generated in the embryo
reactivate and begin symmetric divisions during the first larval
instar (12-15 h ALH) (Datta, 1995; Nassif et al., 2003). We tested
when EONSs, which lie below the plane of the neuroepithelium,
reactivate. We found that EONs were among the last neuroblasts to
reactivate in the brain, consistent with our previous finding that GO
neuroblasts reactivate after G2 neuroblasts (Otsuki and Brand,
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Fig. 4. EONSs persist into the post-embryonic brain. (A,A’) At 0 h ALH, EONs are associated closely with the neuroepithelium (Fasll*, white and outlined).
EONs express R9D11-mCD8-GFP (green) in A and Dpn (red, circled) in A’. Single frame of a 3D reconstruction over a 17 um confocal stack. The entire 3D
reconstruction is available as Movie 1. (B) 3D schematic depicting the spatial relationship between the neuroepithelium and EONs at 0 h ALH. L, lateral; M, medial.
(Ci,ii) Single section confocal images taken at indicated depths relative to the neuroepithelium at 18 h ALH. EONs are located medial to the neuroepithelium. (Ci)
The neuroepithelium (white) has reactivated and expresses CycA (cyan). (Cii) EONs (red, circled) do not express CycA and are GO quiescent, in contrast to
neighbouring neuroblasts (red and cyan). (D) 3D schematic depicting the spatial relationship between the neuroepithelium and EONs at 18 h ALH. A, anterior; P,
posterior; L, lateral; M, medial. (E) Revised model of optic lobe medulla development. Neuroepithelial cells (grey) divide and generate neuroblasts (red and green)
in the embryo. After larval hatching, these neuroepithelial cells begin symmetric divisions. From mid-larval stages neuroepithelial cells transform into
asymmetrically dividing larval neuroblasts (red and not green). Medial-lateral axis is left-right; brain surface is towards the bottom of the schematic. Compare

to Fig. S1A.

2018). EONs were quiescent (small, CycA™ and pH37) at 18 h
ALH, in contrast to most other neuroblasts in the brain (Fig. 4Ci,ii,
D). EONs no longer expressed R9D11-mCD8-GFP at this stage;
however, they were readily identifiable based on their position
relative to the neuroepithelium. We found that EONs reactivate by
30 h ALH, as all neuroblasts surrounding the neuroepithelium have
re-entered the cell cycle (Fig. S5Ei,ii). Thus, we have shown that
EONSs generate progeny in the embryo, undergo quiescence and
become reactivated post-embryonically.

Switches in stem cell division mode are thought to drive the
development of both the mammalian cerebral cortex and the
Drosophila visual system (Fig. S1A). Symmetrically dividing
neuroepithelial cells transform into asymmetrically dividing
neuroblasts in the Drosophila optic lobe during larval
development. Here, we have shown that neuroepithelial cells
begin to produce neuroblasts in the embryo, demonstrating a much
earlier function for both types of neural stem cell in the developing

visual system (Fig. 4E). Our discovery that both symmetrically and
asymmetrically dividing stem cells are present in the embryo is
important given that the mis-regulation of each type of stem cell
gives rise to tumours through distinct mechanisms (Bowman et al.,
2008; Richter et al., 2011). Our results have implications for
understanding the susceptibility of the brain to different types of
tumours during embryonic development, with relevance for the
progression of childhood tumours (Marshall et al., 2014).
Although embryonic neuroepithelial cells appear to generate
neuroblasts in a similar manner to larval neuroepithelial cells, we
uncovered several striking differences between the embryonic and
larval neuroepithelia. We found that GAL4 drivers commonly used
to label the larval neuroepithelium (GAL4%*%¢ and ogre-GAL4) are
not expressed in the embryonic neuroepithelium. Larval
neuroepithelial cells divide repeatedly and are eventually
depleted, in contrast to embryonic neuroepithelial cells that divide
once each before becoming quiescent. The larval neuroepithelium
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produces neuroblasts from all spatial domains, whereas only the
VsxI* and wg* domains produce neuroblasts in the embryo.

Importantly, our results explain recent observations that the larval
neuroepithelium expresses L(1)sc, which marks the transition zone,
much before the generation of larval neuroblasts (Dillard et al.,
2018; Sato et al., 2016). It has been proposed that the transition zone
is established at an early stage, ready to induce the neuroepithelium
to neuroblast transition later in development (Dillard et al., 2018).
Instead, our results demonstrate that L(1)sc expression in the early
larval neuroepithelium is a continuation of a neuroepithelium to
neuroblast transition that commenced in the embryo.

EONs express R9D11-mCD8-GFP as they are generated by
neuroepithelial ~cells, but later downregulate expression.
Intriguingly, we found that R9D11-mCD8-GFP is also expressed
at the transition zone in the late larval brain (Fig. S6A). Thus,
R9D11-mCDS8-GFP expression is common to newly born optic lobe
neuroblasts in both the embryo and larva. AsR9D11 is a fragment of
the erm enhancer (Pfeiffer et al., 2008), erm might have a function in
the transition from neuroepithelial cell to neuroblast.

We have discovered an embryonic phase of neurogenesis
originating from the optic lobe neuroepithelium. Although the
identities of the neurons born during this embryonic phase are as yet
unknown, we find that they lie in close proximity to Bolwig’s nerve:
part of the larval visual system (Fig. S7A). Tracking the contribution
of EONs to the adult brain was not possible in this study because
the genetic tools that label EONSs, although specific in early
development, become widely expressed later in development. The
functional contributions of EON lineages to the larval and adult
visual systems will be an intriguing topic for future study.

MATERIALS AND METHODS

Fly stocks and husbandry

Drosophila melanogaster were reared in cages at 25°C, unless indicated
otherwise. Embryos were collected onto freshly yeasted apple juice plates
overnight and staged according to Campos-Ortega and Hartenstein (1985).
For larval experiments, larvae were picked within 1 h of hatching
[designated 0 h after larval hatching (ALH)], transferred to a yeasted food
plate and reared to the desired stage before dissection.

The following stocks were used: w!/!%, GAL4°%°¢ (Manseau etal., 1997),
RI9D11-mCDS8-GFP (Zhu et al., 2011), R9D11-CD4-tdTomato (Han et al.,
2011), (miR-7)E>GFP (Li et al., 2009), wg-LacZ (1-en-11) (Kassis et al.,
1992), hh*3° (Lee et al., 1992) and HLHmy-GFP (Almeida and Bray, 2005).
The following stocks were obtained from the Bloomington Drosophila
Stock Center: dpp-lacZF*<"? (#8411), UAS-myr-mRFP (#7119), R31H09-
GAL4 (#49694), R29C07-GAL4 (‘ogre-GAL4’, #49340) and pnt-
GFP.FPTB (#42680). To perform FLEXAMP, we crossed flies carrying
yw; tub-Gal80®, UAS-flp; act>y >LHV2%IRFP_86Fh (LexA) (Yagi et al.,
2010) to flies carrying 13XLexAOp2-mCD8-GFP (Bloomington #32205),
R31H09-GAL4 and tub-GAL80" (Bloomington #7019).

Sample fixation
Embryos were washed into a nitex basket with distilled water and
dechorionated in 50% bleach/water for 3 min. After rinsing with water,
embryos were fixed on a rolling shaker for 20 min in a 6 ml glass bottle
containing 3 ml of 4% formaldehyde/PBS and 3 ml heptane. Fixed embryos
were washed and stored in methanol at —20°C until ready to immunostain.
Larval brains were dissected in PBS and fixed on a shaker for 20 min in
4% formaldehyde/PBS. Fixed brains were washed well with PBS containing
0.3% Triton-X (PBTx) before immediate immunostaining.

Immunostaining

Fixed embryos were re-hydrated in 0.3% PBTx and blocked on a shaker for
at least 15 min in 10% normal goat serum/PBS. Embryos were incubated
overnight at 4°C with primary antibodies diluted in 0.3% PBTx. Embryos
were washed well with 0.3% PBTXx, then incubated overnight at 4°C with

secondary antibodies diluted in 0.3% PBTx. Embryos were washed well
with 0.3% PBTx then mounted in 50% glycerol/PBS. Larval brains were
processed identically to embryos, with the following alterations: (1) the re-
hydration step was omitted and (2) brains were mounted in Vectashield
(Vector laboratories).

The following primary antisera were used: mouse 22C10 1:50 (DSHB),
chicken anti-Bgal 1:1000 (Abcam, ab9361), rabbit anti-CycA 1:100
(Whitfield et al., 1990; rb270), guinea pig anti-Dpn 1:5000 (Caygill and
Brand, 2017), rat anti-Dpn 1:100 (Abcam, 11D1BC7, ab195173), rat anti-
E-Cad 1:20 (DSHB, DCAD?2 conc.), rat anti-Elav 1:100 (DSHB, 7E8A10
conc.), mouse anti-FaslI 1:20 (DSHB, 1D4 conc.), chick anti-GFP 1:2000
(Abcam, ab13970), rat anti-Mira 1:500 (a kind gift from C. Q. Doe,
University of Oregon, USA), rabbit anti-Optix 1:500 (Kenyon et al.,
2005), mouse anti-Pros 1:30 (DSHB, MR 1A conc.), rabbit anti-pH3 1:100
(Merck Millipore, 06-570), rat anti-pH3 1:200 (Abcam, ab10543), rabbit
anti-Repo 1:10,000 (a kind gift from B. Altenhein, University of Cologne,
Germany), guinea pig anti-Vsx1 1:1000 (Erclik et al., 2008) and rat anti-
Wor 1:100 (Abcam, SA3AD2, ab196362). Guinea pig anti-L(1)sc
(1:1000) was generated by C. M. Davidson, E. E. Caygill and A.H.B.
using constructs that were a kind gift from J. Skeath (Washington
University, USA). Primary antibodies were detected using Alexa Fluor-
conjugated secondary antibodies (Thermo Fisher Scientific) diluted 1:500
in 0.3% PBTx.

Lineage tracing with FLEXAMP

To perform FLEXAMP, we crossed flies carrying yw; tub-Gal80', UAS-fIp;
act>y >LHV29aRFP_g6Eh (LexA) to flies carrying 13XLexAOp2-mCD8-
GFP, R31H09-GAL4 and rub-GALS0®™. Embryos were collected for 3 h at
room temperature, then raised at 29°C (test) or 18°C (control) until larval
hatching. Larval brains were dissected at 0 h ALH and stained for GFP,
Dpn, Elav and/or 22C10 as appropriate.

Image acquisition and processing

Fluorescent images were acquired using a Leica SP8 confocal microscope.
Images were analysed using Fiji (Schindelin et al., 2012). Adobe Photoshop
was used to adjust brightness and contrast in images. Adobe Illustrator was
used to compile figures.

Quantification and statistical analysis
R was used for statistical analysis. No data were excluded.
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