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The anisotropic minimum-dissipation (AMD) model for large-eddy simulation (LES)

has been recently developed, and here the model performance is examined in strat-

ified plane Couette flow. To our knowledge this is the first use of the AMD model

for resolved LES of stratified wall-bounded flow. A comparison with previously pub-

lished direct numerical simulations (DNS) provides insight into model and grid re-

quirements. Prandtl numbers of Pr = 0.7 − 70 and a range of Richardson numbers

show that the AMD LES performs well even with a strong stabilising buoyancy

flux. We identify three new requirements for accurate LES of stratified wall-bounded

flow. First, the LES must resolve the turbulent structures at the edge of the viscous

sublayer in order to satisfy the Obukov length scale condition, L+
s > 200. Other-

wise the LES solution may laminarise where the DNS solution remains turbulent.

Second, the LES must have enough vertical grid resolution within the viscous and

diffusive sublayers to resolve the wall fluxes. Third, the grid must be reasonably

isotropic (vertical-to-horizontal grid aspect ratio > 0.25) at the edge of the sublayer

and through the turbulent interior for the AMD LES to correctly simulate the scalar

flux. When these model requirements are fulfilled the AMD LES performs very well,

producing vertical mean profiles, friction Reynolds number and Nusselt number con-

sistent with DNS solutions at significantly higher grid resolution.
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I. INTRODUCTION

Accurate numerical simulation of flow containing a large range of length scales is essential

in many fluid dynamics problems with geophysical, industrial and planetary applications.

However resolving all length scales is often unfeasible due to high computational costs.

One approach is to use large-eddy simulations (LES) which resolve the large scale turbulent

structures while parametrising the sub-grid scale stresses1,2. A common type of LES involves

locally increasing the molecular viscosity with an added eddy viscosity, in order to include

the contribution of sub-grid scales in dissipating an appropriate amount of energy from the

kinetic energy cascade3. There are many types of eddy-viscosity models, each with positive

and negative attributes, and each must be thoroughly tested to determine the appropriate

model for the chosen flow. Here we examine a recently derived eddy-viscosity model and

test its performance in a stratified wall-bounded flow to provide insight into grid resolution

and anisotropy and other LES requirements.

One of the first advances in LES was the constant Smagorinsky model developed in 1963,

where the eddy viscosity is defined in terms of the resolved rate-of-strain tensor4,5. The

constant Smagorinsky model, and LES models in general, often struggle with laminar flow

states where the sub-grid scale energy vanishes. Some success has been achieved with the dy-

namic Smagorinsky model6 which uses an additional test filter, but is more computationally

expensive and can be numerically unstable due to the spurious backscatter of energy. Vre-

man 7 considered the dissipation behaviour associated with turbulent stresses and developed

a model that turns off when the turbulent stresses do not cause energy transfer to sub-grid

scales, effectively providing an eddy viscosity that vanishes for laminar flow. Compared to

the dynamic Smagorinsky model, the Vreman model performs equally well in simulations of

a temporal mixed layer and turbulent channel flow, but in other flows the Vreman model

gives spurious eddy dissipation associated with the backscatter of energy and solid body

rotation.

Recent years have seen the introduction of LES models based on the minimum eddy

viscosity required to dissipate the energy associated with sub-filter scales of motion, with

a focus on maintaining scale separation between large and small scales of motion. The

first parameterisation of this type was the QR model which uses the Poincaré inequality to

provide an upper bound on the sub-grid scale energy. This results in the eddy viscosity being
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dependent on invariants of the resolved rate-of-strain tensor. The QR model turns off for

laminar flow, has low computational cost and matches the exact sub-filter tensor on isotropic

grids8,9. However the QR model has had mixed results in test cases, with ongoing questions

regarding the definition of the model constant and a failure to work well on anisotropic grids.

The anisotropic minimum-dissipation (AMD) model was derived by Rozema et al. 10

following similar principles to the QR model but with a modified Poincaré inequality (defined

in terms of velocity gradients scaled by the relevant filter widths) to begin addressing grid

anisotropy. This results in an eddy viscosity dependent on invariants of the resolved rate-of-

strain and rate-of-rotation tensors when the grid is isotropic3, however this eddy viscosity

is not frame invariant on anisotropic grids11. Nevertheless the AMD model has had success

simulating a temporal mixed layer and turbulent channel flow on anisotropic grids10. Abkar,

Bae, and Moin 12 extended the AMD parametrisation to flow with a passive scalar and later

Abkar and Moin 13 continued this work to flow with stratification, which they successfully

tested on simulations of an atmospheric boundary layer that were coarsely resolved with

a near-wall model. Verstappen 9,11 proposed an additional requirement for LES models:

that any spurious small-scale energy produced by nonlinearity in the convective term is

counterbalanced by the eddy dissipation resulting from the closure model. This requirement

also ensures scale separation between the resolved and sub-grid scales. For isotropic grids

the AMD model automatically fulfils this requirement. On anisotropic grids, the Verstappen

requirement requires a relatively minor change to the AMD model in the form of scaling the

velocity and displacement terms by the relevant filter width to provide a tighter limit on

the sub-grid scale energy. The resulting eddy viscosity is then frame invariant11. While the

AMD LES model with the Verstappen requirement has produced good results in turbulent

channel flow, there remains some discussion over the appropriate filter width11,14.

Here, the AMD model is examined in resolved LES, where the scales of motion containing

at least 80% energy are resolved and there is no need for a near-wall model1. The AMD

model is used with the Verstappen requirement as outlined in the background theory in §II.

The test case is stratified plane Couette flow, as discussed in §III, chosen because there are

direct numerical simulations (DNS) to compare against, there is a transition from turbulent

to laminar flow with increasing stratification, and in many respects this flow is a challenging

test case because once it laminarises it will not become turbulent again15,16. The model

performance is evaluated in §IV to find guidelines for implementing the AMD LES model
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when the flow is wall-bounded and stratified. Further discussion and conclusions are in §V.

II. THEORETICAL BACKGROUND

The eddy-viscosity model for LES examined here is applied to the incompressible Navier–

Stokes equation under the Boussinesq approximation with a linear equation of state, along

with conservation of mass and heat, which have been filtered at the resolved spatial scale to

give
∂ui
∂t

+
∂uj ui
∂xj

= − ∂p

∂xi
+ ν

∂

∂xj

∂ui
∂xj

+ gαθei2 −
∂τij
∂xj

, (1)

∂θ

∂t
+
∂uj θ

∂xj
= κ

∂

∂xj

∂θ

∂xj
− ∂λj
∂xj

, (2)

∂ui
∂xi

= 0, (3)

where p is pressure, θ is temperature, and g is gravity12,17. The delta function is eij and

Einstein summation is implied. The flow has molecular viscosity ν and diffusivity κ, and a

coefficient of thermal expansion α. The overbar denotes filtering at the resolved spatial scale

which for our purposes corresponds to the resolved grid scale. The sub-filter stress tensor is

τij = uiuj − ui uj with the deviatoric part of the stress tensor τ dij modelled as

τ dij = τij −
1

3
eijτkk = −2νSGSSij, (4)

where νSGS is the sub-grid scale eddy viscosity and Sij = 1
2

(∂iuj(x, t) + ∂jui(x, t)) is the

resolved rate-of-strain tensor. The sub-filter scalar flux λj = uiθ − ui θ is modelled as

λj = −κSGS∂jθ, (5)

where κSGS is the sub-grid scale scalar diffusivity. For ease of reading we now drop the

overbar, recalling that spatial filtering is implied.

The anisotropic minimum-dissipation model derived by Rozema et al. 10 in a stratified

environment following Abkar and Moin 13 but modified to fulfil the Verstappen 11 requirement

(by normalising the displacement, velocity and the velocity gradient by the filter width δ to

ensure that the resulting eddy dissipation properly counteracts the spurious kinetic energy

transferred by convective nonlinearity) gives sub-grid scale viscosity,

νSGS = (Cδ)2 max{−(∂̂kûi)(∂̂kûj)Ŝij + êi2gα(∂̂kûi)∂̂kθ, 0}
(∂̂lûm)(∂̂lûm)

, (6)
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where C is a modified Poincaré constant,

x̂i =
xi
δi
, ûi(x̂, t) =

ui(x, t)

δi
, ∂̂iûj(x̂, t) =

δi
δj
∂iuj(x, t), êi2 =

ei2
δ2

, (7)

where δi is the filter width in the direction of xi, and the normalised rate-of-strain tensor is

Ŝij =
1

2

(
∂̂iûj(x̂, t) + ∂̂jûi(x̂, t)

)
. (8)

For flows that are not very strongly stratified the second term in (6) is small and the sub-grid

scale viscosity becomes

νSGS = (Cδ)2 max{−(∂̂kûi)(∂̂kûj)Ŝij, 0}
(∂̂lûm)(∂̂lûm)

. (9)

Alternatively, (9) can be written in terms of invariants of the velocity gradient,

νSGS = (Cδ)2 max{−(Î3 − Î4), 0}
Î1 − Î2

, (10)

where

Î1 = tr(Ŝ2), Î2 = tr(Ω̂2), Î3 = tr(Ŝ3), Î4 = tr(ŜΩ̂2), (11)

and the normalised rate-of-rotation tensor is

Ω̂ij =
1

2

(
∂̂iûj(x̂, t)− ∂̂jûi(x̂, t)

)
. (12)

The AMD model was extended by Abkar, Bae, and Moin 12 to provide a sub-grid scalar

diffusivity,

κSGS = (Cδ)2 max{−(∂̂kûi)(∂̂kθ)∂̂iθ, 0}
(∂̂lθ)(∂̂lθ)

. (13)

As discussed by Verstappen 11 , and further in Trias et al. 14 , the choice filter width δ in

(9) and (13) is not obvious and remains a topic of ongoing discussion. Here we follow the

suggestion of Verstappen 11 to use the square root of the harmonic mean of the squares of

the filter widths in each direction (δx, δy, δz),

1

δ2
=

1

3

(
1

δ2
x

+
1

δ2
y

+
1

δ2
z

)
(14)

where the Poincaré constant is C2 = 1/12. The definition of the filter widths in each direction

(δx, δy, δz) is dependent on the type of grid discretisation chosen, as further discussed in §IV.
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III. STRATIFIED PLANE COUETTE FLOW

Here, we test the performance of the AMD LES model described above for stratified

plane Couette flow. The flow domain is bounded in the vertical (y) direction by two non-slip

impermeable walls with horizontal velocity ±Uw at y = ±h respectively. The temperatures

at the upper and lower walls are held constant at ±Θw to provide a stable stratification. The

domain is periodic in the horizontal x–z directions. The resulting stratified plane Couette

flow has governing parameters of Reynolds, Richardson, and Prandtl numbers

Re =
Uwh

ν
, Ri =

gαΘwh

U2
w

, P r =
ν

κ
, (15)

respectively.

The mean velocity and temperature are defined as U = 〈u〉 and Θ = 〈θ〉 respectively,

where 〈...〉 denotes horizontal averages over the statistically homogeneous x–z plane. The

friction velocity and temperature are

u2
τ =

τw
ρ0

= ν
∣∣∣∣∂U∂y

∣∣∣∣
y=±h

, θτ =
qw
uτ

=
κ

uτ

∣∣∣∣∂Θ

∂y

∣∣∣∣
y=±h

, (16)

respectively, where ρ0 is a reference density. The wall stress τw and heat flux qw supply

shear and stratification to the system. For a statistically steady turbulent state where the

flow is fully developed in a time-averaged sense the momentum and heat flux are constant

with height.

At large enough Ri (for chosen Re, Pr) turbulence is damped out by strong stratification

and the flow laminarises. Between this laminar regime and fully turbulent flow is a transition

region in which turbulence is intermittent, with patches of the flow becoming turbulent and

then relaminarising. Relaminarisation is defined by the flow behaviour in the region close

to the wall, where the fluctuations are largest and the small-scale turbulent structures are

produced. To describe this transition to intermittency and then laminarisation, Deusebio,

Caulfield, and Taylor 15 used the Obukov length scale which, assuming a linear equation of

state, is defined as

L =
u3
τ

kmgαqw
, (17)

where km is the von Kármán constant for momentum (km ≈ 0.4). This length scale is the

only one that can be created out of u2
τ and θτ . The ratio of length scales that define when
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the stratified plane Couette flow is expected to be turbulent is

L+ =
L

δν
(18)

where δν = ν/uτ is the near wall viscous length scale. Deusebio, Caulfield, and Taylor 15

found that L+ > 200 is required for stratified plane Couette flow to remain fully turbulent

in direct numerical simulations. In simulations of stably stratified surface layer in the atmo-

sphere, Flores and Riley 18 used L+ < 100 as the criteria for relaminarisation. Flores and

Riley 18 proposed that when y = L is beyond the start of the log layer (at y+ ≈ 100) there is a

region outside the viscous sublayer but below the Obukov length scale in which the dynamic

sublayer can generate turbulent structures without the effects of strong stratification.

There exists a large DNS database of stratified plane Couette flow which is ideal to test

the LES models against. In these DNS, Deusebio, Caulfield, and Taylor 15 focused on varying

Re and Ri while Zhou, Taylor, and Caulfield 16 varied Ri and Pr. Here we choose a subset

of these runs to test the AMD LES model performance.

IV. AMD LES MODEL PERFORMANCE

Our numerical simulation set-up closely follows the DNS by Deusebio, Caulfield, and

Taylor 15 and Zhou, Taylor, and Caulfield 16 but typically with coarser grids and with an

LES model for the sub-grid scale contributions. We briefly summarise the numerical method

here, with full descriptions of the numerical algorithms found in Taylor 19 and Bewley 20 .

The governing equations (1–3) are discretised using Fourier modes in the two horizontal

directions and second order finite differences in the vertical direction. The time-stepping

uses a low-storage third-order Runge–Kutta method for the nonlinear terms and a semi-

implicit Crank–Nicholson method for the viscous and diffusive terms. A 2/3 dealiasing rule

is applied moving from Fourier back to physical space21. In terms of computer time, inclusion

of the AMD LES model slows down the run time by a factor of two for an equal number of

grid points.

In the vertical direction, where the second order finite differences scheme is used for the

grid discretisation, the filter width for the AMD LES model is defined following Verstappen 11

as δy = (yj+1 − yj−1), where j is the grid cell. In the two horizontal directions the grid is

discretised using Fourier modes and a 2/3 dealiasing rule is applied moving from Fourier

7



back to physical space. The filter widths are then δx = (3/2)(xi+1 − xi−1) = 3∆x and

δz = (3/2)(zk+1−zk−1) = 3∆z where i and k are the grid cells and ∆x and ∆z are the grid cell

size in each respective direction. However, there is an argument that the filter width should

be dependent on the accuracy of the discrete derivative operator in each direction11. This

results in horizontal filter widths δx = (3/2)∆x and δz = (3/2)∆z, while the vertical filter

width for the second order accurate scheme is unchanged. The latter definition is effectively

the same as that used by Abkar, Bae, and Moin 12 and Abkar and Moin 13 who, rather than

changing the definition of the filter width, changed the Poincaré constant depending on the

discretisation method. In a series of additional runs (not shown here) both filter width

definitions were extensively tested, and the mean and turbulent statistics results were so

similar that the most appropriate filter width is not clear. Here we simply present results

that use δx = 3∆x and δz = 3∆z.

In addition to the comparison with DNS, the AMD LES model performance is also com-

pared with the constant and dynamic Smagorinsky LES models. The constant Smagorinksy

model4 is based solely on the resolved rate-of-strain tensor to give sub-grid scale viscosity

νSGS = (Csδ)
2
√

2SijSij. (19)

To model the sub-grid scale diffusivity κSGS we assume that the sub-grid scale Prandtl num-

ber PrSGS = 1. For the filter width the conventional geometric mean δ = (δxδyδz)
1/3 is used

with a constant value Cs = 0.13 as suggested by Deardorff 5 . The dynamic Smagorinsky

model was derived by Germano et al. 6 . This procedure follows the constant Smagorinsky

model in calculating the sub-grid scale stress tensor and the scalar flux, but uses the dynamic

procedure to evaluate the respective dynamic Smagorinsky coefficients. The dynamic coef-

ficients are estimated by comparing the scales between a test case filter and the LES filter

width. As discussed in Germano et al. 6 , the planes horizontal to the walls were averaged

to improve numerical stability. The dynamic Smagorinsky model is empirical and does not

assume a priori knowledge of the flow, and has been successfully used in wall-bounded strat-

ified flow17. The full implementation of the dynamic Smagorinsky into the code used here

is detailed by Taylor 19 . The computer run time of the dynamic Smagorinsky implemented

here was found to be comparable but somewhat faster than the AMD LES model.
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A. Varying Ri, Pr

Here, we compare the performance of the LES model with a subset of the DNS database

for fixed Reynolds number and several values of the Prandtl and Richardson numbers. Specif-

ically, the Reynolds number is Re = 4250, Prandtl number is varied between Pr = 0.7, 7, 70

and a range of Ri is examined, as outlined in Table I. The cases with Pr = 0.7 and 7

correspond approximately to the diffusion of heat in air and water respectively. Although

Pr = 70 does not have a known physical analogue, it is useful to test behaviour with varying

Pr. Note that we follow Zhou, Taylor, and Caulfield 16 and refer to Θ as temperature even

when Pr = 70. The domain sizes are chosen to directly match the DNS by Zhou, Taylor, and

Caulfield 16 which follow from baseline cases by Deusebio, Caulfield, and Taylor 15 . Deuse-

bio, Caulfield, and Taylor 15 noted that the domain size is not expected to affect the fully

turbulent flow, but may influence the results when the flow is intermittent. For the LES

in Table I the number of grid cells is reduced by 1/4 in the horizontal and approximately

1/3 in the vertical compared to the resolved DNS. The horizontal grid resolution choice was

guided by AMD LES of channel flow with no tracer and Reynolds number roughly double

that used here10. Halving this grid resolution is then appropriate for the Pr = 0.7 run here,

which aligns with a 1/4 horizontal grid resolution reduction compared to the DNS of Zhou,

Taylor, and Caulfield 16 . This 1/4 reduction was used for all the higher Prandtl number

runs also. When Pr > 1 the vertical grid requires more points to resolve the conductive

sublayers and so the number of grid cells was only reduced by roughly 1/3 compared to the

DNS. Grid stretching in the vertical ensured high resolution in the sublayers. The viscous

and conductive sublayers at the boundaries need to be fully resolved (at least in the vertical

direction) as momentum and heat is transferred by molecular components in these regions.

The runs with Ri = 0 were initialised from a coarse resolution DNS that is included in

Table I for comparison. Runs with stratification were each initialised from the end state of

the previous run (at weaker stratification) by abruptly increasing Ri. The typical evolution

of a LES solution from a step increase in Ri to turbulent steady state occurred on a timescale

of tUw/h > 300. LES solutions that were initialised from an unresolved DNS with switching

on the sub-grid scale model took a little longer to reach steady state with tUw/h > 500.

Once in statistically steady state the simulations were then continued for another 100h/Uw

time steps to allow time averaging of turbulent fluctuations. The exception was Pr = 70
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Run Type Pr Ri (Nx, Ny, Nz) Sf ∆y+
w Reτ Nu

1 DNS 0.7 0 (256, 129, 256) 1.75 0.80 233 10.6

2 DNS* 0.7 0 (64, 49, 64) 3.0 0.40 254 12.9

3 LES 0.7 0 (64, 49, 64) 3.0 0.35 223 10.6

4 LES 0.7 0.01 (64, 49, 64) 3.0 0.33 212 9.6

5 LES 0.7 0.04 (64, 65, 64) 2.5 0.44 183 7.1

6 DNS 7 0 (512, 257, 512) 1.75 0.39 233 31.8

7 DNS* 7 0 (128, 97, 128) 3.0 0.17 245 37.1

8 LES 7 0 (128, 97, 128) 3.0 0.16 233 34.3

9 LES 7 0.01 (128, 97, 128) 3.0 0.16 228 33.0

10 LES 7 0.04 (128, 97, 128) 3.0 0.15 209 28.1

11 LES 7 0.08 (128, 97, 128) 3.0 0.13 181 20.5

12 LES 7 0.12 (128, 129, 128) 2.0 0.31 130 9.87

13 DNS 70 0.04 (768, 769, 768) 1.75 0.13 231 69.3

14 LES 70 0.04 (128, 385, 128) 3.0 0.036 228 70.4

15 LES 70 0.16 (128, 385, 128) 3.0 0.033 208 53.4

TABLE I. Summary of runs varying Pr and Ri. The number of grid cells in each direction is

(Nx, Ny, Nz) and all cases have domain geometry (Lx, Ly, Lz)/h = (4π, 2, 2π) except Pr = 70

cases where (Lx, Ly, Lz)/h = (2π, 2, π). The grid is stretched in the y direction according to

yj = h tanh(Sf [2(j − 1)/Ny − 1])/ tanh(Sf ) such that the resolution is higher near the walls,

where the vertical grid cell size adjacent to the wall is ∆y+
w . Other results include the friction

Reynolds number Reτ and the Nusselt number Nu. The star superscript indicates coarse resolution

unresolved DNS. DNS for other values of Ri have not been included due to space limitations but

can be found in Zhou, Taylor, and Caulfield 16 . Typical values of the resolution in wall units

for unstratified LES with Pr = 0.7 are (∆x+,∆y+
c ,∆z

+) = (49.9, 31.0, 24.9), with Pr = 7 are

(∆x+,∆y+
c ,∆z

+) = (24.1, 15.2, 12.0) and with Pr = 70 are (∆x+,∆y+
c ,∆z

+) = (11.2, 3.56, 5.60),

where y+
c refers to the grid cell at the domain centre. As discussed in the text, the LES filter

widths are (δx, δy, δz) = (3∆x, 2∆y, 3∆z).
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cases which were only time averaged over 50h/Uw due to increased computational resources

required for these simulations. At the strongest stratification considered for Pr = 0.7

(Ri = 0.04) and Pr = 7 (Ri = 0.12) the LES solution laminarised for the grid resolution

used in the less stratified runs, even when Ri was increased incrementally rather than an

abrupt change. Thus the grid resolution in the vertical was increased for these runs (Runs 5

and 12) to ensure that the solution remained turbulent. The conditions required to ensure

turbulent intermittency are further discussed in §IV B.

The basic structure of the flow is well represented by the AMD LES model as compared

to the DNS, as shown by the closely matched mean profiles in Figure 1. An increase in the

Richardson number (for constant Pr) increases the strength of the stabilising stratification

leading to a reduction in turbulent motions, an increase in the velocity gradient through the

interior (Figure 1a), and a decrease in the wall shear stress. The turbulent motions advect

heat away from the edge of the viscous sublayer and through the interior, and so an increase

in Ri also results in greater stratification through the interior (Figure 1c) and a smaller wall

heat flux. As discussed in Zhou, Taylor, and Caulfield 16 , an increase in Prandtl number

increases the magnitude of the change in mean temperature in the conductive sublayer. Due

to the Dirichlet boundary conditions at both walls, this reduces the temperature gradient

in the channel interior (Figure 1d) and allows the flow to remain turbulent for larger values

of Ri, resulting in a reduced velocity gradient through the interior (Figure 1b).

The non-dimensionalised wall stress and heat fluxes are the friction Reynolds number

and the Nusselt number, defined as

Reτ =
uτh

ν
, Nu =

qwh

κΘw

, (20)

respectively. The DNS and LES solutions for Reτ and Nu are shown in Figure 2, with AMD

LES model values additionally reported in Table I. As discussed previously in terms of wall

fluxes, an increase in Ri leads to decreasing Reτ and Nu and a flow less prone to turbulence.

In contrast, an increase in Pr leads to an increase in Reτ and/or a decrease in Nu/Pr, both

of which result in a flow more prone to turbulence. In general, Reτ is well resolved by the

AMD LES while Nu is overestimated by approximately 10%. The constant Smagorinsky

LES overestimates Nu by 50–60%. Note that the Pr = 7 and Ri = 0.12 solution with the

constant Smagorinsky sub-grid scale model (run with the same grid as that in the AMD

LES case of Run 12) has not been included in Figure 2 because it quickly became laminar,
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FIG. 1. Vertical profiles of mean (a, b) velocity U/Uw and (c, d) temperature Θ/Θw. Fully resolved

DNS solutions (unbroken lines) and AMD LES solutions (broken lines) are shown. In (a, c) Prandtl

number is held constant at Pr = 7 and Richardson number is varied as Ri = 0 (black), Ri = 0.04

(magenta) and Ri = 0.12 (blue). In (b, d) Richardson number is held constant at Ri = 0.04 and

Prandtl number is varied as Pr = 0.7 (orange), Pr = 7 (magenta) and Pr = 70 (green).

putting it in a different flow regime than the other results. The dynamic Smagorinsky LES

does slightly worse than the AMD LES in Reτ but slightly better in Nu.

The onset of intermittency and the small scale structures near the wall are shown in the

temperature snapshots in Figure 3, which were taken within the viscous sublayer (y+ =

5). Note that, the aim of Figure 3 and 4 is only to show a qualitative comparison and

demonstrate the AMD LES model capabilities of capturing qualitative features, rather than
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FIG. 2. Comparison of (a) the friction Reynolds number and (b) the Nusselt number over a range

of Richardson numbers for DNS from Zhou, Taylor, and Caulfield 16 (circles), coarse DNS (trian-

gles) and LES with AMD (squares), constant Smagorinsky (crosses) and dynamic Smagorinsky

(diamonds) models. Prandtl numbers of 0.7 (blue), 7 (red) and 70 (magenta) are shown.

rigorously compare model output. The DNS and AMD LES are compared side-by-side and,

even at the strongest stratification where there are large laminar patches, the AMD LES

captures the qualitative features of small scale turbulence. In contrast, snapshots of stream-

wise velocity taken at the domain centre between the walls (Figure 4) show that the AMD

LES damps out more of the small scales compared to the near-wall region. This is largely

as we would expect for a sub-grid scale model that has a weaker effect near the boundary

and acts more strongly through the turbulent interior. The structures in the two centreline

snapshots for Ri = 0 may appear quality different, with two large-scale streamwise streaks

in the DNS (Figure 4a) and one in the AMD LES (Figure 4b). However, examining the

AMD LES at a different point in time revealed a flow that also displayed two large-scale

streamwise streaks (not shown here). These changing large-scale structures are simply the

turbulent flow constantly changing and evolving in time.

The log profiles of the mean flow in Figure 5 allow further examination of the model

performance in the near-wall region. The mean velocity and temperature differences relative

to values at the closer wall can be expressed in wall units as

U+ =
min(U + Uw, Uw − U)

uτ
, Θ+ =

min(Θ + Θw,Θw −Θ)

θτ
(21)

13



(a) (b) 

(c) (d) 

(e) (f) 

0 

-1 

0 

-1 

0 

-1 
x

z

0 

2π 

0 4π 4π 
0 

2π 

0 

2π 

0 

(a) (b) 

(c) (d) 

(e) (f) 

x

z

z

z

x

T

T

T

FIG. 3. Snapshot of temperature in the near wall region within the sublayer at y+ = 5 for runs

with Pr = 7. Upper row is Ri = 0, middle is Ri = 0.04, and lower is Ri = 0.12. Left column is

DNS16 with grid 512× 256× 512 and right column is LES with (b, d) grid 128× 97× 128 (Runs 8

and 10) and (f) grid 128× 129× 128 (Run 12).

respectively. In the near wall viscous and conductive sublayers the AMD model performs

very well in replicating U+ and Θ+ profiles in line with fully resolved DNS profiles (Figure 5)

consistent with predicted scaling of U+ = y+ and Θ+ = y+Pr. Outside of the sublayer (ap-

proximately y+ > 50) the AMD model performs well in the U+ profiles but underestimates

Θ+. This is because the conductive sublayer temperature difference is too large in the AMD

LES, thus the wall heat flux and Nusselt number are increased (by approximately 10%) and,

as θτ scales with Nu, the normalisation by θτ results in a reduction in the normalised inte-

rior temperature (see Figure 5). The dynamic Smagorinsky model performs similarly to the

AMD LES while the constant Smagorinsky model in Figure 5 significantly underestimates
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FIG. 4. Snapshot of stream-wise velocity at the centre of the channel for runs with Pr = 7. Upper

row is Ri = 0, middle is Ri = 0.04, and lower is Ri = 0.12. Left column is DNS16 with grid

512× 256× 512 and right column is LES with (b, d) grid 128× 97× 128 (Runs 8 and 10) and (f)

grid 128× 129× 128 (Run 12).

U+ and Θ+, even through the conductive sublayer.

The AMD model also does well replicating the turbulent statistics near the wall (Figure

6). The AMD model performs a bit better in the velocity fluctuations (Figure 6a,c,e) and

significantly better in the temperature fluctuations (Figure 6b) than the constant Smagorin-

sky model. The dynamic Smagorinsky model performs similarly to AMD LES model. Again

the AMD LES temperature fluctuations (Figure 6b) are somewhat low because the results

are normalised by θτ . As qw is also dependent on θτ this additionally explains the slightly

lower turbulent heat flux (Figure 6d), although in general the turbulent heat flux and shear

stress (Figure 6f) are well represented in the AMD LES, particularly near the wall.
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FIG. 5. (a) Velocity and (b) temperature difference from the wall value as defined in (21) against

normalised wall distance for Richardson numbers Ri = 0 (black), Ri = 0.04 (magenta) and Ri =

0.12 (blue). The solutions are to the fully resolved DNS (unbroken thick, pale lines) and LES

with sub-grid scales evaluated using the AMD (dashed lines), dynamic Smagorinsky (unbroken

thin, dark lines) and constant Smagorinsky (dotted lines; Ri = 0.12 laminar solution not shown)

models. In all cases Pr = 7.

While the AMD and dynamic Smagorinsky models have turbulent viscosity and diffusiv-

ity that decrease near the wall, in the constant Smagorinsky model these values stay large

through the near wall region and only significantly decrease in the final grid points approach-

ing the wall (Figure 7a,b). This is the reason that near wall damping is often used with

the constant Smagorinsky model but is not required in the AMD or dynamic Smagorinsky

models. The larger Nu in the constant Smagorinsky LES is in part due to the increased

heat transport across the diffusive sublayer because of the larger κSGS value in this region.

The dynamic Smagorinsky runs generally have very similar νSGS through near-wall region.

This is important as we have seen that this is the region that governs the flow and explains

why the Reτ and Nu results, along with the turbulent statistics, are so similar between the

AMD and dynamic Smagorinsky LES. Recall that the vertical grid resolution is increased

between the Ri = 0.04 to Ri = 0.12 simulations. Therefore less of the flow is parametrised

by the sub-grid scale model when Ri = 0.12, explaining the large decrease in νSGS and κSGS

with increasing Ri. The sub-grid scale Prandtl number PrSGS is four times as large for the
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FIG. 6. Near wall turbulent statistics: (a, c, e) velocity fluctuations, (b) temperature fluctuations,

(d) turbulent heat flux 〈θ′v′〉 normalised by the wall heat flux qw, and (f) turbulent shear stress

〈u′v′〉 normalised by friction velocity u2
τ . In all cases Pr = 7; line types are as in Figure 5.

dynamic Smagorinsky case compared to the AMD LES (Figure 7c). For the AMD LES,

the PrSGS through the turbulent interior in Figure 7 is largely consistent with the value of

around 0.5 reported by Abkar, Bae, and Moin 12 in AMD LES of an atmospheric boundary

layer.

It is important that the viscous and conductive sublayers (at least in the vertical direction)

are fully resolved as the AMD LES sub-grid scale viscosity becomes very small in this region

and a near-wall model has not been used. For an increase in the Prandtl number there is

a decrease in the conductive sublayer thickness of ∆y ∼ h/ReτPr
1/3. For unstratified flow,
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FIG. 7. Vertical profiles of sub-grid scale (a) viscosity νSGS and (b) diffusivity κSGS , normalised by

molecular values ν and κ respectively, and (c) sub-grid scale Prandtl number PrSGS = νSGS/κSGS .

Profiles are shown for Richardson numbers Ri = 0 (black), Ri = 0.04 (magenta) and Ri = 0.12

(blue) where Pr = 7 in all cases. The solutions are to the LES with sub-grid scales evaluated

using the AMD (dashed lines), dynamic Smagorinsky (solid lines) and and constant Smagorinsky

(dotted lines; Ri = 0.12 laminar solution not shown) models.

there is no dependence of Reτ on Pr and so this calls for a factor of two increase in the grid

resolution in the vertical for one order of magnitude increase in Pr. For the most strongly

stratified case considered here (Run 12) the Reτ reduction results in a further decrease in

the sublayer thickness of another factor of two. Thus there is up to a factor of four reduction

in the conductive sublayer thickness. The LES presented here has at least 7 grid cells in the

conductive sublayer to ensure that the near-wall fluxes are properly resolved. Indeed, the

reason for the increased stretching factor in the vertical grid in the LES (Table I) is to keep

enough grid points within the conductive sublayer.
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FIG. 8. Grid spacing in all three directions for AMD LES with Ri = 0.04 and Pr = 7 (Run 10)

compared to the Ellison LE , buoyancy Lb and Ozmidov Loz length scales. The Obukov length

scale is large at L = 7.9 (not shown).

B. Length scales in stratified turbulence

The grid spacing in the vertical direction for a typical AMD LES of stratified plane

Couette flow (Run 10) is shown in Figure 8, along with the grid spacing in the two hor-

izontal directions. The grid spacing is also compared to the Ellison length scale LE =√
〈θ′2〉/(d〈θ〉/dy) which is an estimate of the size of the density overturns and the buoyancy

length scale Lb =
√
〈v′2〉/N where N2 = gαdΘ/dy is the buoyancy frequency. The vertical

grid is always fine enough to resolve LE and Lb, along with the Obukov length scale L.

Another length scale of interest is the Ozmidov length scale, the length scale above which

eddies are deformed by the stratification, defined as

Loz =

√
ε

N3
, (22)

where ε = ν(∂ui/∂xj)2 is the dissipation rate and the overbar indicates time averaging. For

the LES solution the dissipation rate includes the sub-grid scale contribution. The Ozmidov

length scale decreases with increasing stratification and with decreasing Pr. The values for

the maximum stratification cases for the three Pr values at y+ = 50 are as follows: for

Pr = 0.7 the scale is Loz/h = 0.47 (L+
oz = 85; Run 5), for Pr = 7 the scale is Loz/h = 0.24
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(L+
oz = 31; Run 12), and for Pr = 70 the scale is Loz/h = 1.1 (L+

oz = 218; Run 15). In all

cases the Ozmidov length scale was large compared to the vertical LES filter width. This

is clear even when comparing Loz/h with the maximum filter widths (centre of the domain)

which are δy/h = 0.15, δy/h = 0.6 and δy/h = 0.03 respectively for the three Prandtl cases

discussed above. At the edge of the viscous layer the grid spacing and LES filter widths are

even higher resolution. Resolving the Ozimdov length scale gives justification for omitting

the second term in the sub-grid scale viscosity in (6).

The LES of plane Couette flow with strong stratification required an increase in the ver-

tical grid resolution to prevent the solution from laminarising. The L+ criteria in Deusebio,

Caulfield, and Taylor 15 and Flores and Riley 18 is applied using a molecular viscosity. Here,

we can reformulate L+ to include the sub-grid scale contribution. The sub-grid scale vis-

cosity from the LES parameterisation adds to the molecular viscosity, resulting in a ratio of

Obukov to viscous length scale of

L+
s =

L

δe
, (23)

where δe = (ν + νSGS)/uτ and νSGS varies in space and time. Here, we define L+
s with the

time and horizontally averaged νSGS. The change in L+
s at the edge of the viscous sublayer

(at y+ = 50) with Richardson number is shown in Figure 9. This location was chosen

because if the small-scale turbulent structures generated in this region are not adequately

resolved then the solution can laminarise. For DNS L+
s = L+ as there is zero contribution

from sub-grid scale viscosity.

The AMD LES in Figure 9 all have smaller L+
s than the DNS, and when stratification

is increased there is a similar decrease in L+
s in both the DNS and AMD LES. However in

the AMD LES the value of L+
s is resolution dependent because as the grid gets finer there

are fewer unresolved scales and thus a reduction in the contribution from the sub-grid scale

viscosity results in an increase in L+
s . For example, for Ri = 0.12 and Pr = 7, the case with

97 grid cells in the vertical was found to laminarise while the case with 128 grid cells stayed

turbulent (and even in this case L+
s was close to 200). The same reasoning is true for the

Ri = 0.04 and Pr = 0.7 case which also required an increase in the vertical grid to ensure

it did not laminarise. In conclusion, to accurately model a DNS of stratified plane Couette

flow that is turbulent (L+ > 200) the LES vertical grid resolution needs to be fine enough

to maintain L+
s > 200 at y+ = 50.

We note that Flores and Riley 18 used L+ < 100 as the criteria for relaminarisation in
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FIG. 9. Obukov length scale with sub-grid scale viscosity L+
s at the edge of the viscous sublayer

y+ = 50 against varying Richardson number Ri. Dotted line shows L+
s = 200; symbols are as in

Figure 2.

simulations of an atmospheric boundary layer, as this is where the Obukov length scale

covers the log layer (defined as y+ = 100). Unlike the L+ from Flores and Riley 18 , the L+
s

ratio defined in (23) changes significantly with height: starting from L+
s = L+ at the wall

and decreasing in the channel interior due to an increase in νSGS. A height of y+ = 50 was

chosen because the edge of the log layer is not strictly y+ = 100 but is actually a transition

region and turbulent structures can develop at y+ = 50. The L+
s > 200 criteria was based on

DNS of plane Couette flow that identified the requirement of L+ > 200 for fully turbulent

flow15.

Typical time series of Reτ and Nu for laminar and turbulent cases are shown in Figure

10 to further demonstrate the influence of the Obukov length scale. The Ri = 0.12 solution

laminarises with 97 grid points in the vertical direction because the turbulent viscosity of

the AMD model is large enough to damp out turbulence. However the DNS solution leads to

a turbulent state for the same physical parameters16. The vertical resolution of the grid was

increased from 97 to 128 to ensure that the LES contribution of turbulent viscosity does not

become too large in the system, and this simulation (Run 12) remains turbulent. In Figure

10b the Nusselt number measured at the domain centre fluctuates around the mean value

because it has contributions from the turbulent advection term, while the Nusselt number
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FIG. 10. Time adjustment of AMD LES solutions showing (a) Reτ ; and (b) Nusselt number

evaluated at the boundary (broken) and domain centre (unbroken). The governing parameters are

Ri = 0.12 and Pr = 7. Two vertical grids are examined: 128× 129× 128 with vertical stretching

factor Sf = 2.0 (black curves; equilibrated state forms Run 12) and 128 × 97 × 128 with vertical

stretching factor Sf = 3.0 (magenta curves). The solutions were initialised from a coarse resolution

DNS on the 128 × 129 × 128 grid, and the same solution was interpolated to the 128 × 97 × 128

grid so that both cases were initialised from the same state.

measured at the wall only has contributions from conduction and is steadier in time.

The strong influence of L+
s on causing the flow to relaminarise was also noted in additional

Pr = 7 simulations that included the second term in (6). For simulations with Ri ≤ 0.08

this term does not contribute significantly to νSGS or to the mean and turbulent statistic

results. The Ri = 0.12 case laminarised because the second term in (6) slightly increased

νSGS at the edge of the viscous boundary layer and this was enough to push L+
s below the

200 value and hence caused the flow to relaminarise. This case is right on the border of

transition (without this extra term L+
s = 200.4) so any incremental increase in νSGS can

cause the flow to laminarise.
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Run Type (Nx, Ny, Nz) Sf (∆x+,∆y+
c ,∆z

+) ∆y+
w

∆y
∆x |y+=50 Reτ Nu

A DNS (512, 257, 512) 1.75 (5.06, 2.98, 2.53) 0.35 0.16 206 25.9

B LES (256, 129, 256) 2.0 (10.1, 6.64, 5.06) 0.50 0.33 206 26.0

C LES (128, 129, 128) 2.0 (21.3, 6.97, 10.7) 0.52 0.16 217 30.8

D LES (64, 129, 64) 2.0 (43.4, 7.11, 21.7) 0.53 0.08 221 33.9

E LES (128, 97, 128) 2.0 (20.7, 9.01, 10.4) 0.69 0.19 211 29.4

10 LES (128, 97, 128) 3.0 (20.5, 13.0, 10.3) 0.15 0.28 209 28.1

F LES (64, 97, 64) 3.0 (43.8, 13.8, 21.9) 0.16 0.14 223 33.0

G LES (64, 65, 64) 2.5 (43.0, 17.1, 21.5) 0.53 0.20 219 32.5

TABLE II. Summary of runs with varying number of grid cells (Nx, Ny, Nz) and vertical grid

stretching Sf . In all cases the governing parameters are held constant (Pr = 7, Ri = 0.04) to

match Run 10 in Table I, which has also been included here for comparison. Run A is DNS from

Zhou, Taylor, and Caulfield 16 . The grid cell size at the wall is ∆y+
w , the vertical-to-horizontal

aspect ratio at the edge of the viscous sublayer (y+ = 50) is ∆y
∆x |y+=50 and the friction Reynolds

numbers and Nusselt numbers are also included.

C. Sensitivity to grid resolution

The influence of grid resolution on the accuracy of the results is examined in a further

series of simulations in Table II in which the governing parameters are held constant at

Re = 4250, Ri = 0.04 and Pr = 7. Run A is the result from previous DNS and acts as the

comparison case. Runs B–G began from a coarse resolution DNS which was continued long

enough for flow to become fully established (tUw/h > 300 time steps). The LES was then

switched on and the simulation evolved for another 300 h/Uw time steps to achieve steady

state.

Runs B–D test the influence of reducing the grid resolution in the two horizontal directions

while keeping the vertical resolution and stretching constant, thereby changing only the

grid cell vertical-to-horizontal aspect ratio. Coarsening the horizontal grid alone decreases

the accuracy of Reτ and Nu. In Run D the cell aspect ratio at the edge of the viscous

sublayer is ∆y
∆x
|y+=50 < 1/8 which is becoming quite anisotropic and is likely not well resolved.
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FIG. 11. The aspect ratio of the vertical y to the horizontal x grid spacing at the edge of the viscous

sublayer y+ = 50 versus the Nusselt number as a fraction of the resolved DNS Nusselt number. In

all cases Pr = 7 and Ri = 0.04 are held constant while the aspect ratio is changed by varying the

number of horizontal and vertical grid cells, and the stretching factor of the vertical grid. Solutions

cover the AMD LES Runs 10 and B–G. The symbols indicate the number of horizontal grid cells:

64 (cyan triangles), 128 (magenta circles), and 256 (blue diamond).

Comparing Runs C and E for a fixed horizontal resolution, decreasing the vertical resolution

(which will also lower the aspect ratio) results in an improvement in Reτ and Nu values.

Comparing Runs E and 10 show that increasing the grid stretching factor in the vertical also

improves the results. The increased stretching means that there are more grid cells in the

sublayer and less through the interior, making the grid aspect ratio closer to being isotropic

through the turbulent region in which the sub-grid scale has a significant contribution. Run

F further indicates the influence of the horizontal grid scale (by comparing against Run 10)

which again shows the decrease in accuracy when the grid becomes very coarse. Run G is

a very coarse resolution simulation, but actually results in a more accurate solution than

Runs D or F because of smaller vertical-to-horizontal grid aspect ratio.

The influence of grid aspect ratio is also shown in Figure 11. The Nusselt number is

used as a measure of accuracy of the AMD LES, hence it is given as a fraction of DNS

Nusselt number to highlight influence of aspect ratio at the edge of the viscous sublayer.

In all cases the AMD LES overestimates the true Nusselt number, but as the grid becomes
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FIG. 12. The turbulent kinetic energy spectra in the (a) stream-wise and (b) across stream direc-

tions for Ri = 0.04 and Pr = 7 and different grid resolutions with the number of horizontal grid

cells shown in legend (Runs A, B, 10, G respectively). The -5/3 power law is also shown as a black

line. The spectra were taken in the centre of the two boundaries at y/h = 0.

more isotropic the results improve. In addition, as the horizontal grid resolution increases,

the solution becomes less dominated by the sub-grid scale parametrisation, which again

serves to converge the Nusselt number towards the DNS value. Thus there is a limitation

on the AMD LES grid in being reasonably isotropic through the interior where the sub-grid

scale contribution is significant. Small aspect ratios are more acceptable within the sublayer

where the contribution from the sub-grid scale model is small.

The turbulent kinetic energy spectra in Figure 12 show that the largest scales of energy

were well captured in all cases at the domain centre. Integration of the spectra shows that

the simulations fulfil the resolved LES requirement for at least 80% of the energy to lie in the

resolved scales at all heights (not shown). As expected, when the grid is coarsened a greater

portion of energy lies in the high wavenumbers that are being parametrised by the LES. As

discussed in Deusebio, Caulfield, and Taylor 15 and Zhou, Taylor, and Caulfield 16 , stratified

plane Couette flow is highly dependent on near wall turbulence which sets the momentum

and scalar fluxes, thus even in the AMD LES there needs to be a decent representation of

the small scale turbulent structures, however other types of flow may be less sensitive to the
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grid resolution.

V. DISCUSSION AND CONCLUSIONS

In this paper, the AMD model for LES was examined in the context of stratified plane

Couette flow. The AMD model has highly desirable properties such as largely turning off

through the viscous and diffusive sublayers at the walls and performing well even in the

context of strong stratification which, for a suitable grid, results in a good representation of

the wall fluxes. This was the first use of the AMD model for resolved LES of a wall-bounded

stratified flow – explicitly resolving at least 80% of the turbulent kinetic energy everywhere

in the domain. The AMD model performed very well for a range of Ri and Pr producing

vertical profiles, global fluxes (Reτ and Nu), and near wall statistics that were consistent

with DNS.

The limitations of the AMD LES model were tested by varying the grid resolution and

anisotropy for one particular case of Ri = 0.04 and Pr = 7. The AMD LES model agreed

well with the DNS subject to the following requirements for stratified plane Couette flow:

1. The flow must remain sufficiently turbulent to achieve an Obukov length (as a ratio

of the viscous length scale) of L+
s > 200, where L+

s = Luτ/(ν + νSGS).

2. The grid cannot be too coarsely resolved, especially in the viscous and diffusive sub-

layers, to achieve an accurate scalar flux.

3. The grid must be reasonably isotropic through the turbulent interior, with a grid

aspect ratio of ∆y/∆x > 0.25 outside of the viscous sublayer. The sensitivity to grid

anisotropy also depends on the horizontal resolution, which can add up to 30% error

on the Nu value.

The maximum Prandtl number considered here is Pr = 70, but of particular interest

to many geophysical applications is Pr = 700 to model the diffusivity of salt. For DNS

this large Pr has been out of reach of current computer capabilities but it is feasible in

AMD LES. In terms of the outlined criteria above, a good test case with Pr = 700 would

not be too strongly stratified to ensure that the flow remains sufficiently turbulent to fulfil

requirement 1. The grid resolution should be doubled in all directions (compared to the
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Pr = 70 case) to help satisfy requirement 2, which also helps in completing requirement 3

in keeping the vertical-to-horizontal grid aspect ratio ∆y/∆x > 0.25 outside of the viscous

sublayer. In terms of computer time, in the Pr = 7, Ri = 0.04 case, the DNS (Run A) takes

150 core hours to run 10 advective time units versus 3.5 core hours for the AMD LES (Run

10). Based on these values, an estimate of computer time for 10 advective time units in the

Pr = 700 case would take 3.2 × 104 core hours for a DNS compared to 230 core hours for

an LES. The effect of varying Re has not been investigated here, but the criterion outlined

above can be used as a starting point for designing an AMD LES of a particular Re, Ri and

Pr.

The need to resolve the viscous and diffusive sublayers (requirement 2) was largely

achieved here by stretching the grid to place additional grid cells in the sublayer and ensure

that the grid spacing at the wall was small enough to accurately give the wall stress and flux.

However there is a limit on stretching the grid as it needs to remain sufficiently continuous

so that the ratio ∆yj/∆yj−1 does not become too large22, thus there is a restriction on how

many grid cells can be placed close to the wall while keeping coarse resolution in the interior.

The grid stretching restriction also applies to other empirical LES parameterisations such

as the dynamic Smagorinsky LES.

The dynamic Smagorinsky LES has run time and performance comparable to the AMD

LES model for stratified plane Couette flow. However, the dynamic Smagorinsky model

relies on horizontal averaging of the dynamic coefficients for numeric stability while the

AMD LES does not have any such requirements. Stratified plane Couette flow is reasonably

similar in the horizontal directions compared the the wall-normal direction, and so the

dynamic Smagorinsky model can work well for this flow. For a flow with more three-

dimensional structure the dynamic Smagorinsky LES would require a more sophisticated

averaging procedure23,24 while the AMD LES should be able to handle such a flow. Even with

the horizontal averaging, the dynamic Smagorinsky LES has the possibility for numerical

backscatter of energy. Due to the filtering operation and averaging of the dynamic coefficient,

the dynamic Smagorinsky model requires additional overhead in a parallelised code, while

the AMD LES model is calculated on each grid point using local gradients and so can be

parallelised in a straightforward manner.

In terms of other flows, the AMD LES may also be useful in modelling laminar-turbulent

transitional flow with stratification, where the characteristic of the sub-grid scale contri-
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bution effectively turning off in laminar regions is very helpful. However, complications

with spatially and temporally developing instabilities can see disturbance growth outside

the shear layer25 which may make it difficult to choose where high grid resolution is required

to resolve such instabilities. Nevertheless, this could be an interesting test case for the AMD

LES model. When modelling a large system with LES, a coarse resolution with a near-wall

model may be needed. Abkar and Moin 13 have had some success in LES using AMD and a

near-wall model based on Monin-Obukov similarity theory, however, such models may not

work well when the stratification is strong enough to cause patches of relaminarisation in

the flow.

The Obukov length scale is of primary importance in choosing the grid resolution for

stratified plane Couette flow, but for other stratified turbulent flows there may be additional

length scales that are important. For example the Ellison LE, buoyancy Lb or Ozmidov Loz

length scales may become important in other flows but were not a limiting factor in the

stratified plane Couette flow examined here. Similarly, the Obukov length scale L+
s may not

be a limiting factor in other types of flow. For flows that are very strongly stratified with a

small Ozmidov length scale compared to the filter length it will become appropriate to use

the full equation for the sub-grid scale viscosity (6) rather than the simplified version (9)

that does not directly include the effects of buoyancy on the modelled scales.

Stratified plane Couette flow is a challenging test case for the LES model because it

has a linearly stable laminar state which introduces requirement 1. The results of Abkar

and Moin 13 suggest that AMD LES performs even better in other stratified wall-bounded

flows. Balancing all these concerns is key to using the AMD model in LES of wall-bounded

stratified flow. Nevertheless the AMD model is able to capture turbulent intermittency and

mean and turbulent flow properties in stratified plane Couette flow.
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