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Dynamic prediction of survival in cystic fibrosis: 

A landmarking analysis using UK patient registry data 

 

ABSTRACT 

Background 

Cystic fibrosis (CF) is an inherited, chronic, progressive condition affecting around 10,000 

individuals in the UK and over 70,000 worldwide. Survival in CF has improved considerably 

over recent decades and it is important to provide up to date information on patient prognosis. 

Methods 

The UK Cystic Fibrosis Registry is a secure centralized database, which collects annual data 

on almost all CF patients in the UK. Data from 43,592 annual records from 2005-2015 on 6181 

individuals were used to develop a dynamic survival prediction model that provides 

personalised estimates of survival probabilities given a patient’s current health status using 16 

predictors. The model was developed using the landmarking approach, giving predicted 

survival curves up to 10 years from ages 18 to 50. Several models were compared using cross-

validation. 

Results 

The final model has good discrimination (C-indexes 0.873, 0.843, 0.804 for 2-, 5-, 10-year 

survival prediction) and low prediction error (Brier scores 0.036, 0.076, 0.133). It identifies 

individuals at low and high risk of short- and long-term mortality based on their current status. 

For patients aged 20 during 2013-2015, for example, over 80% had a greater than 95% 

probability of 2-year survival and 40% were predicted to survive 10 years or more.  

Conclusions 

Dynamic personalised prediction models can guide treatment decisions and provide 

personalised information for patients. Our application illustrates the utility of the landmarking 

approach for making the best use of longitudinal and survival data and shows how models can 

be defined and compared in terms of predictive performance. 

 

Keywords: Cox regression; Cystic fibrosis; Dynamic prediction; Landmarking; Longitudinal 

data; Patient registry; Personalised prediction; Survival.  
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INTRODUCTION 

 

Cystic fibrosis (CF) is an inherited, chronic, progressive condition affecting around 10,000 

individuals in the UK and over 70,000 worldwide.1,2 In the UK CF affects  about 1 in 2500 live 

births 3. Children with CF are generally diagnosed in the first few months of life, with universal 

newborn screening implemented in 2007 in the UK, though some people with milder 

phenotypes are diagnosed into adulthood.4 

 

Survival in CF has improved considerably over recent decades. Of individuals born around 

1970, over half died before reaching their mid-to-late teens.5,6 By contrast, the estimated 

median survival age for a person born with CF today in the UK is 48 for males and 44 for 

females.1,7 It is important to be able to provide patients with up to date information on their 

prognosis, and to provide clinicians with information to guide treatment decisions, including 

listing for lung transplantation. 

 

Data from national CF patient registries with longitudinal measures of health status and long 

term follow-up have created the opportunity to develop models for predicting survival based 

on individual characteristics.8,9 Although there have been many studies of factors associated 

with survival in CF (see Buzetti et al.10 and MacNeill3 for overviews),  fewer have focused on 

prediction. We identified three models for survival prediction in UK patients, but all are based 

on small samples or subsets of patients.11–13 Survival prediction models in CF have been 

developed using national patient registries by Liou et al.14 and Mayer-Hamblett et al.15 (United 

States), Aaron et al.16 (Canada), and Nkam et al.17 (France). Until recently there have been no 

detailed studies of survival using the UK CF Registry. Keogh et al.18 provided estimates of 

survival using UK CF Registry data given the baseline characteristics of sex, genotype and age 

of diagnosis. In this paper we develop a model for personalised prediction of survival in the 

UK making use of time-dependent measures of health status. 

 

The aims of this article are twofold. Our first aim was to use data from the UK CF Registry to 

develop a dynamic survival prediction model that provides estimates of the probability of short-

term, mid-term and long-term survival given a patient’s current and past health status.19  We 

used the landmarking approach applied to UK CF Registry data on adults from 2005-2015, 20,21 

giving predicted survival curves up to 10 years from each landmark age,which can be any age 

post-diagnosis. The model therefore provides predictions for individuals living with the CF 

who already survived to a given age. The model is dynamic in that it enables predictions to be 

updated over time, using updated measures of time-dependent predictors alongside a patient’s 

current age. Our second aim was to provide an example for other researchers of how to develop 

a dynamic prediction model using landmarking, illustrating the utility of this approach for 

making the best use of longitudinal and survival data, and showing how different models can 

be defined and compared in terms of their predictive performance. 

 

METHODS 

 

Design and data source 

 

We undertook a landmarking analysis using data from the UK CF Registry, a national, secure 

database sponsored and managed by the Cystic Fibrosis Trust.19 The Registry was established 

in 1995 and records demographic data and longitudinal health data on nearly all people with 

CF in the UK, to date capturing data on over 12,000 individuals. NHS Research Ethics approval 

has been granted for the collection of data into the Registry. Each patient or their parent 
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provided written informed consent for collection of data in the Registry and use of 

pseudonymized data in research. In the UK, CF patients are treated in specialist centres and 

data for the Registry are collected in a standardized way at designated (approximately) annual 

visits. Data collected cover over 250 variables in several domains, alongside mortality data. 

We restricted our analyses to a set of 17 variables (Table 1) recorded routinely in the Registry 

and previously found to be associated with survival, based on a review of the literature. 
3,10,11,13,15–17,22–28 This set consists of  3 baseline variables – sex; genotype (F508del alleles); 

age of diagnosis  -  calendar year, and 13 internal time-dependent variables - forced expiratory 

volume in 1 second as percentage predicted  (FEV1%); forced ventricular capacity as 

percentage predicted (FVC%); height; weight; infection status for four organisms 

(Pseudomonas aeruginosa, Staphylococcus  aureus, Burkholderia cepacia, Methicillin-

resistant Staphylococcus aureus (MRSA)); CF-related diabetes (CFRD); pancreatic 

insufficiency; days in hospital on intravenous (IV) antibiotics; days at home on IV antibiotics; 

and other hospitalisation. FEV1% and FVC% were calculated using the global lung initiative 

(GLI) equations.29 We investigated using BMI instead of weight and height, but found that 

models including weight and height separately were better fitting, based on Akaike’s 

Information Criterion.30 The two variables for days on IV antibiotics are used as surrogate 

indicators for pulmonary exacerbations.31,32 

Analyses are based on follow-up during the study period 2005-2015, so that some individuals 

have at least 10 years of follow-up, enabling estimation of survival up to 10 years. Individuals 

who died or were lost-to-follow-up before 2005 were therefore excluded. In order to focus on 

adults, we only used data on individuals from age 18 onwards during the study period.  

The landmarking approach 

The landmarking approach for dynamic prediction of survival was first described by van 

Houwelingen.20 A detailed account is provided by van Houwelingen and Putter.21 In brief, at a 

given age (a ‘landmark age’) from which a prediction is to be made, the data are restricted to 

individuals who have not yet had the event (in this case, death) or been censored. Values of 

predictor variables available up to the landmark age are used as covariates in a model for the 

probability of survival up to some time horizon, conditional on survival to the landmark age. 

Typically, the focus is on survival to a single time horizon (𝑡ℎ𝑜𝑟), e.g. two years after the 

landmark age (𝑡ℎ𝑜𝑟 = 2), and censoring is imposed at 𝑡ℎ𝑜𝑟 so that only events up to that time 

are used in the survival analysis. For a chronic condition like CF, however, it is of interest to 

study survival to several time horizons. We use the Cox model and its extensions to model 

survivor curves up to 10 years after each landmark age.  

Landmark data sets were created from landmark ages 𝑙 = 18, … ,50 (Supplementary Figure 1, 

Supplementary Section S1). Data on individuals aged over 50 are sparse. The 𝑙th landmark 

data set included all individuals known to be alive at age 𝑙 during 2005-2015, who had not 

received a transplant prior to age 𝑙, who were diagnosed with CF before age 𝑙, and who joined 

the Registry before age 𝑙. Individuals lost to follow up before age 𝑙 were excluded. We excluded 

people who received a transplant prior to age 𝑙  because the variables of importance for survival 

in transplanted patients are likely to be quite different from those of importance for 

untransplanted individuals.33 Individuals transplanted after age 𝑙 were included in the 𝑙th 

landmark data set and their deaths were counted as events in the survival analysis. The 

predictors in the 𝑙th landmark data set were the three baseline variables, calendar year and 

variables that summarise the measurements of the remaining 13 time-dependent predictors up 

to age 𝑙. We summarise time-dependent measurements in two ways. Firstly, we used the most 

recently available measure at time 𝑙 of each time-dependent variable. This ‘last-observation-

carried-forward’ (LOCF) approach was used in the original descriptions of landmarking.20,21 
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Secondly, we fitted a mixed effects model to data available on time-dependent variables up to 

the landmark age and used the resulting fitted values and slopes at the landmark age as 

predictors, since some studies have suggested that this makes better use of the data than 

LOCF.34–36 We implemented this two-stage landmarking approach by fitting a multivariate 

mixed model to three continuous time-dependent variables - FEV1%, FVC%, weight - up to 

each landmark age (Supplementary Section S2, Supplementary Table 2).  

A single stacked data set was created, by stacking the 33 landmark data sets (𝑙 = 18, … ,50), 

for use in pooled models (see below). Many individuals appear multiple times in the stacked 

data set because they are eligible for several landmark data sets. Robust standard errors were 

used to account for this. 

Model building 

The aim was to obtain a dynamic prediction model that performs well for predicting 2-, 5- and 

10-year survival from each landmark age. We considered a number of multivariable Cox 

models (Table 2) before selecting a final model based on assessment of their predictive 

performance. Further details on the models and on how predicted survival probabilities were 

obtained are given in Supplementary Section S2.  

Models 1-5 use the LOCF values for the 13 time-dependent predictors. We began by fitting 

separate survival models from each landmark age 𝑙 (Model 1).  An alternative is to fit a pooled 

model (a ‘supermodel’) to the stacked data set. The simplest supermodel (Model 2) allowed a 

separate baseline hazard for each landmark age, but assumed common predictor coefficients 

across all landmark ages. Models 1 and 2 were initially fitted using a time horizon of 10 years 

(𝑡ℎ𝑜𝑟 = 10), which enables us to obtain predicted survival probabilities for any time up to 10 

years after the landmark age. We also investigated whether 2- and 5-year survival could be 

better predicted by using 𝑡ℎ𝑜𝑟 = 2 and 𝑡ℎ𝑜𝑟 = 5 respectively. One might expect to better 

predict 2-year survival (for example) by using  𝑡ℎ𝑜𝑟 = 2 instead of 𝑡ℎ𝑜𝑟 = 10 because the 

effects of time-dependent variables are expected to change less over 2 years than 10 years. 

However, this was not found to be the case and all subsequent models were fitted with 𝑡ℎ𝑜𝑟 =
10. Since we found that the supermodel gave better predictive performance, subsequently 

investigated models were all extensions of Model 2.  

Model 3 allows predictor coefficients (log hazard ratios) to vary smoothly with 𝑙. Model 4 

allows the predictor coefficients to vary with time since landmark (𝑡 − 𝑙). Model 5 uses a 

common baseline hazard with the impact of landmark age on the hazard modelled using 

regression terms. Model 6 extends Model 2 by using the fitted value and slope at each landmark 

age for each of FEV1%, FVC% and weight from the multivariate mixed models (one for each 

landmark age) as additional time-dependent predictors (as well as the LOCF values). By 

incorporating slopes from the mixed models, the prediction model includes information about 

trajectories of FEV1%, FVC% and weight up to each landmark age. For height and the 

categorical time-dependent variables we used LOCF in all models. In all models continuous 

variables were assumed to have linear effects; modelling them using splines brought negligible 

changes in predictive performance. 

Model assessment 

The data were divided into a “training+validation” (TV) set - an 80% random sample of the 

stacked data, stratified by landmark age - and a “holdout” set - the remaining 20%.37 The TV 

set was used for model development and assessment. Details are given in Supplementary 

Section S3. 



6 

 

The predictive performances of different models were compared in terms of discrimination, 

using the C-index,38–40 and prediction error, using the Brier score.41,42 C-indexes and Brier 

scores were calculated separately for each landmark age for prediction of 2-, 5- and 10-year 

survival. We also obtained overall C-indexes and Brier scores across landmark ages for 2-, 5- 

and 10-year survival. A Monte-Carlo cross-validation procedure was used to avoid over-

optimism about predictive performance.43  

The final model was selected as that with the best predictive performance, though where several 

models had similar performance we favoured a simpler model. The final model was applied to 

the holdout data to estimate its performance in a new set of individuals. Lastly, the final model 

was fitted to the complete data and is reported in full for use by other researchers. 

All analyses were performed using R. Supplementary Section S4 provides details on software. 

RESULTS 

Data overview 

The stacked data set has 43,592 rows and 6181 unique individuals, of whom 931 died within 

10 years of follow-up (Supplementary Section S2).  Censoring is entirely due to the end of 

follow-up at the end of 2015, rather than loss-to-follow-up.  Many individuals appear in 

multiple landmark data sets. Supplementary Figure 1 illustrates how the data arose. Figure 1 

summarises the number of individuals in each landmark data set, and the number of deaths 

within 2, 5 and 10 years of each landmark age. Supplementary Table 1 gives more detailed 

information. Table 3 summarises the predictors at landmark ages 20, 30, 40 and 50.  

Comparison of dynamic prediction models 

Overall C-indexes and Brier scores from Models 1-6 are shown in Table 4. Model 1, in which 

separate models were fitted from each landmark, gave overall C-Indexes of 0.841, 0.811 and 

0.771 for 2-, 5- and 10-year survival respectively, and corresponding Brier scores of 0.038, 

0.082 and 0.147, indicating better predictive performance for short-term survival. A 

supermodel fitted across landmark ages (Model 2) brought gains in terms of both 

discrimination and prediction error. The C-indexes for 2-, 5- and 10-year survival increased to 

0.873, 0.843 and 0.804, and the Brier scores reduced to 0.036, 0.076, and 0.133. Landmark-

age-specific C-indexes and Brier scores (Supplementary Figures 2 and 3) show that the gains 

in predictive performance from using the supermodel are particularly important for older 

landmark ages. This is because there are less data at those ages and hence more to be gained 

by drawing strength from other landmark ages by using a supermodel.  

Allowing the predictor coefficients to depend on landmark age in a smooth way (Model 3) 

resulted in very similar results to Model 2. Including time-varying coefficients for all predictors 

(Model 4) resulted in worse predictive performance compared with Model 2. Restricting the 

time-varying coefficients to FEV1%, the strongest predictor, gave very similar results to Model 

2. Using splines instead of a linear form for the time-varying coefficients did not bring any 

improvements.  This lack of advantage of using time-varying coefficients in part reflects our 

finding that using a shorter time-horizon (𝑡ℎ𝑜𝑟 = 2 or 5) did not improve prediction. Using a 

common baseline hazard, with the impact of landmark age modelled using regression terms 

(Model 5), resulted in considerably worse predictive performance than Model 2.  

Inclusion of the fitted values and slopes from mixed models for FEV1%, FVC% and weight in 

addition to the LOCF terms brought small improvements in the C-indexes and Brier scores. 

Further investigations found that including the mixed model terms without the corresponding 

LOCF terms resulted in worse predictive performance than Models 2 and 6.  
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Final model 

Based on the above comparisons, we selected Model 2 as the final model: increasing model 

complexity had not resulted in improvements in predictive performance, suggesting a trade-off 

between increased complexity and estimation of more parameters. While there were small 

gains in predictive performance from using mixed models for three of the continuous variables 

(Model 6), these were fairly negligible and came at the expense of a significantly more 

complicated procedure for obtaining predicted survival probabilities. Also, Model 2 requires 

only the most recent values of predictors at the landmark age, while the mixed modelling 

approach (Model 6) requires a series of measures up to the landmark age. Furthermore, Model 

2 is more straightforward to explain and report to potential users.  

Figure 2 shows calibration plots for the final model for landmark ages 20, 30, 40, and 50, which 

compare model-based predicted survival probabilities with ‘observed’ probabilities. For 2-year 

and 5-year survival the points lie close to the line of equality, indicating good agreement 

between predicted probabilities from the model and the observed probabilities. There is also 

good agreement for 10-year survival for landmark ages 20, 30 and 40. At landmark age 50 the 

agreement between predicted and observed 10-year survival probabilities is less good, which 

may be partly due to sparse data at the older ages. These results indicate that the model is well 

calibrated for prediction of 2- and 5-year survival from all landmark ages, and for 10-year 

survival at least up to age 40.  

Application in the holdout data 

The final model was fitted to the complete TV data and applied to the holdout data to 

demonstrate its use in practice. The resulting overall C-indexes for 2-, 5- and 10-year survival 

were 0.854, 0.843, and 0.815. The corresponding overall Brier scores were 0.034, 0.077, and 

0.125, representing percentage reductions in prediction error against the Kaplan-Meier 

estimates of survival probabilities of 12.22%, 20.92%, and 23.86%. Supplementary Table 3 

summarises observed survival within groups defined by the predicted survival probabilities.   

 

Full model specification 

The final model was fitted to the complete data (the TV and holdout data combined). Estimated 

baseline hazards ℎ0𝑙(𝑡) are given in Supplementary Materials (Section S5); in combination 

with the regression coefficients in Table 5, these provide a full specification of the dynamic 

prediction model. Higher FEV1%, FVC% and weight were strongly associated with reduced 

hazard. B. cepacia infection, CFRD, and more hospital IV days were strongly associated with 

increased hazard. Using the final model fitted to the complete data, we calculated 2-, 5- and 

10-year predicted survival probabilities from ages 20, 30, 40 and 50 for individuals in the CF 

Registry at these ages during the most recent 3-year period for which data were available (2013-

2015). Figure 3 and Supplementary Figures 4-6 illustrate typical profiles of individuals within 

groups defined by predicted survival probabilities and show corresponding predicted survivor 

curves. Figure 4 shows the distributions of the predicted probabilities.  At age 20, over 80% of 

individuals had a greater than 95% probability of 2-year survival, and over 35% of 10-year 

survival. At landmark ages 30, 40 and 50, over 75% of individuals had a greater than 90% 

probability to survive 2 years, and over 50% had a greater than 90% probability to survive 5 

years. These plots further demonstrate how the model could be used to identify patients at 

greatest risk and those with a good prognosis.  
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DISCUSSION 

We have developed a model for dynamic prediction of survival for people with CF in the UK 

using UK CF Registry data. We used a landmarking approach applied to CF data for the first 

time, making efficient use of the longitudinal data, by using information from the same 

individual at several ages and incorporating updated measures of health status. The model 

enables predictions of survival up to 10 years for adults with CF aged up to 50 and can be used 

to identify high risk patients, making use of information on 16 variables. There are several 

potential roles for practical use of the model, including  for guiding treatment decisions,  

informing referral for lung transplantation44, and  providing personalised information going far 

beyond the population-level statistics that are currently available, which is important for 

patients (Keogh 2017, unpublished manuscript).  

We have outlined a systematic approach to development of a dynamic prediction model using 

landmarking, incorporating the assessment of models of different levels of complexity by 

comparing their predictive performance. There have been relatively few practical applications 

of landmarking.34,45,46 Unlike previous applications we have provided predicted survival curves 

instead of focusing on a single time-horizon, and we provided results on model performance 

for 2-, 5- and 10-year survival. Prediction of long-term survival is of particular relevance for 

chronic conditions such as CF, and ours is the first prediction model based on UK CF Registry 

data. Of the three earlier prediction models using national patient registry data , two used 

logistic regression,14,17 and so did not handle censoring, and did not make efficient use of the  

longitudinal data. Aaron et al.16 used a stochastic process model. No previous prediction 

models in CF have considered survival to more than one time point or beyond 5 years.12–17,22,25    

Comparisons of predictive performance with models obtained in other populations are 

summarised in Supplementary Section S Future work may result in new models for the UK 

population that could be compared with ours and it is important that similar measures of 

predictive performance are presented across studies to facilitate comparisons. We used the 

landmarking approach to perform dynamic prediction. An alternative approach uses joint 

modelling of the longitudinal and survival processes.47–49 Landmarking had several strengths 

over joint modelling for this application. Firstly, landmarking enabled us to handle transplanted 

individuals in a straightforward way. We excluded previously transplanted individuals at each 

landmark age, but retained post-transplant deaths in the data set for estimating survival after 

each landmark age. Our predictions therefore refer to individuals who are untransplanted at the 

time of making the prediction. Development of a prediction model for post-transplant survival 

is an area for further work. It is not clear how transplanted individuals should be handled in the 

joint modelling approach, especially using readily available software. Secondly, the set of 

predictors included 12 time-dependent variables of different types (continuous, categorical, 

binary). Although joint modelling has recently been extended for use with multivariate 

longitudinal outcomes,50 its feasibility for use with a large number of such variables of different 

types remains in question. The two-stage landmarking approach,34–36 which used mixed models 

for continuous time-dependent predictors (Model 6), did not result in material gains compared 

with using the LOCF method. Landmarking also has the advantage of being based on methods, 

notably Cox regression, that are familiar to a clinical audience, which facilitates its explanation. 

Recent comparisons of landmarking with joint modelling using simulation studies have tended 

to find joint modelling to perform slightly better than landmarking. 35,36,51 However, they have 

focused on simple simulation scenarios favouring the joint model and have not considered 

landmark supermodels.  

A major strength of our study is the use of the UK CF Registry data to create the dynamic 

prediction model. The Registry collects longitudinal data on almost all UK CF patients, and 
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the structured data collection means there is little missing data and little loss-to-follow-up. A 

limitation is that predicted survival probabilities cannot account for improvements in survival 

that are not yet known about, e.g. due to new treatments.52,53 However, treatments manifest 

themselves in measures of health status, and so it is likely that the prediction model could still 

apply. That is, the distribution of health status measures in the CF population may change, but 

the associations of health status measures with survival remain the same. The standardized 

format of the Registry data collection means that the model could be assessed and updated if 

necessary after a few years.  

We selected a set of predictors previously associated with survival in CF and collected 

routinely in the Registry.3,10 FEV1% is the strongest predictor, though predictive performance 

is improved by incorporating the additional variables (Supplementary Table 4).  Further 

investigations using variable selection techniques tended to result in a model containing most 

of the variables. Extensions of variable selection techniques to the context of dynamic 

prediction remains an area for further methodological work. There are many other variables in 

the Registry and an area for further work is to investigate whether using additional variables 

could improve predictive performance. We took the decision not to use data on treatment use 

as predictors. As noted above, the impact of treatments on survival is expected to manifest 

primarily via the health status measures used as predictors. Further investigations also found 

that adding information on use of two treatments did not materially improve prediction 

(Supplementary Table 4). Furthermore, the models created in this work are designed with 

prediction in mind and the estimated coefficients associated with the predictor variables do not 

necessarily represent causal effects. Inclusion of treatment variables could create danger of 

misinterpretation of the impacts of treatment on survival prediction curves as causal effects, 

which could result in inappropriate withholding of treatment if treatment is (non-causally) 

associated with worse prognosis. Estimation of  treatment effects using patient registry data is 

an area of growing interest, 54,55 but involves a separate question from that focused on in this 

paper.  

Our model is for adults with CF. There are relatively few deaths in CF patients aged under 18 

in the UK and different variables may be important for survival prediction in children.12,56 We 

restricted to predictions for adults aged up to 50 because the data above age 50 are sparse. 

Investigations into the health of older people with CF are of interest.  

In summary we have developed a novel landmarking model for dynamic prediction of survival 

for people with CF in the UK. Further work involves the practical implementation of our model 

in a form suitable for use by clinicians, potentially as an add-on to patient information that can 

already be viewed via the Registry interface. In addition, it is important that patients and care-

givers are supported to interpret personalised survival predictions.57–59 
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Table 1. Variables considered as predictors. All are time-dependent except the ‘baseline 

variables’. 

Variable category Variables Description Further information 

    
Baseline variables Sex Male (0), Female (1)  

 Genotype F508del: Homozygous 

F508del: Heterozygous 

F508del: No copies 

 

 Age of diagnosis In years.  

    
Calendar year Calendar year 2005-2015 (coded as 0-10)  

    
Lung function FEV1%  FEV1% predicted, obtained using 

GLI equations. 
Measured at the annual review visit. 

 FVC% FVC% predicted, obtained using 

GLI equations. 

    
Height and weight Weight Kilograms (kg) 

Measured at the annual review visit. 
 Height Centimetres (cm) 

    
Microbiology Pseudomonas 

aeruginosa 

No (0), Yes (1) 

Any finding based on microbiology 

results since the last annual review. 

 Burkholderia cepacia  No (0), Yes (1) 

 Staphylococcus aureus No (0), Yes (1) 

 Methicillin-resistant 

Staphylococcus aureus 

(MRSA) 

No (0), Yes (1) 

    
Complications Pancreatic 

insufficiencya 

No (0), Yes (1) 

All -in the year prior to the annual 

review. 

 CF related diabetesa No (0), Yes (1) 

 Number of hospital IV 

daysb 

0 days (reference category) 

1-14 days 

15-28 days 

29+ days 

 Number of home IV 

daysb 

0 days (reference category) 

1-14 days 

15-28 days 

29+ days 

 Hospitalisation (not for 

IVs) 

No (0), Yes (1) 

a Once an individual was recorded as being pancreatic insufficient (“Yes” (1)) they were considered to be pancreatic 

insufficient at all subsequent time points.  Once an individual was recorded as having CFRD (“Yes” (1)) they were 

considered to have CFRD at all subsequent time points.   
b Number of hospital and home IV days are used as surrogate indicators of pulmonary exacerbations. 
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Table 2. Summary of dynamic prediction models investigated. In all analyses the timescale is 

age (𝑡). Landmark age is denoted 𝑙. For models 1 and 2, using age as the time scale or time-

since-landmark as the timescale are exactly equivalent. 
 

Model Form of the log hazard: log ℎ𝑙(𝑡|𝑋(𝑙), 𝑋∗(𝑙), 𝑍) Description 

   

Model 1 log ℎ0𝑙(𝑡) + 𝛽𝑙
𝑇𝑋(𝑙) + 𝛾𝑙

𝑇𝑍, 𝑙 = 1, … , 𝐿  Separate model fitted at each landmark age 

   

Model 2 log ℎ0𝑙(𝑡) + 𝛽𝑇𝑋(𝑙) + 𝛾𝑇𝑍 Supermodel with separate baseline hazards for 𝑙 = 1, … , 𝐿 

and common predictor coefficients across landmark ages.  

   

Model 3 log ℎ0𝑙(𝑡) + 𝛽(𝑙)𝑇𝑋(𝑙) + 𝛾(𝑙)𝑇𝑍  Supermodel with separate baseline hazards for 𝑙 = 1, … , 𝐿 

and predictor coefficients modelled as a function of 

landmark age 𝑙. 
   

Model 4 log ℎ0𝑙(𝑡) + 𝛽(𝑡 − 𝑙)𝑇𝑋(𝑙) + 𝛾(𝑡 − 𝑙)𝑇𝑍  Supermodel with separate baseline hazards for 𝑙 = 1, … , 𝐿 

and time-varying predictor coefficients, but common 

across landmark ages. 

   

Model 5 log ℎ0(𝑡) + 𝛽𝑇𝑋(𝑙) + 𝛾𝑇𝑍 + 𝑓(𝑙; 𝛿) Supermodel with an overall baseline hazard, common 

predictor coefficients across landmark ages, and landmark 

effects 𝑓(𝑙; 𝛿). 

   

Model 6 log ℎ0𝑙(𝑡) + 𝛽𝑇𝑋(𝑙) + 𝛾𝑇𝑍 + 𝜃𝑇𝑋∗(𝑙) As in Model 2, but with additional predictors 𝑋∗(𝑙) from 

the multivariate mixed model. 

ℎ𝑙(𝑡|𝑋(𝑙), 𝑋∗(𝑙), 𝑍): Hazard at time 𝑡 given 𝑋(𝑙), 𝑍 and 𝑋∗(𝑙), and given eligibility for the 𝑙th landmark data set 

(Supplementary Section S1).  

ℎ0𝑙(𝑡): Baseline hazard at time 𝑡 given eligibility for the 𝑙th landmark data set (Supplementary Section S1)..  

𝑍: Vector of baseline predictors (sex, genotype and age of diagnosis). 

𝑋(𝑙): Vector of the LOCF values at landmark age 𝑙 for time-dependent predictors (calendar year, FEV1%, FVC%, weight, 

height, CFRD. pancreatic insufficiency, P. aeruginosa, B. cepacia, S. aureus, MRSA, non-IV hospitalization, number of IV 

days). 

𝑋∗(𝑙): Vector of predicted values and slopes for FEV1%, FVC% and weight from a multivariate mixed model. 
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Table 3. Descriptive statistics at landmark ages 20, 30, 40 and 50. Summaries are given as the number (N) and percent for categorical variables and as median and 

interquartile range (IQR) for continuous variables.  

Variable  Landmark age 20 Landmark age 30 Landmark age 40 Landmark age 50 

  N % N % N % N % 

Sex Male  1443   52.9   863   56.3   385   59.8   160   60.8   
 Female  1283   47.1   670   43.7   259   40.2   103   39.2   
          Genotype 2 copies  1549   56.8   820   53.5   263   40.8   87   33.1   

 1 copy  956   35.1   567   37.0   312   48.4   141   53.6   
 Other  221   8.1   146   9.5   69   10.7   35   13.3   
          Age of diagnosis (years) Median (IQR)  0.3   (0.1, 2.0)   0.7   (0.1, 3.5)   2.0   (0.3, 18.1)   13.0   (1.0, 36.0)   

          Calendar year Median (IQR)  2010   (2008, 2013)   2011   (2009, 2013)   2011   (2008, 2013)   2012   (2009, 2014)   

          FEV1% Median (IQR)  69.4   (52.1, 85.6)   60.5   (42.8, 78.6)   55.3   (38.1, 74.7)   53.9   (36.6, 72.3)   

          FVC%  Median (IQR)  83.0   (68.6, 95.8)   79.9   (63.4, 92.3)   77.6   (61.2, 91.3)   74.7   (62.6, 89.6)   

          Weight (kg) Median (IQR)  57.0   (50.4, 65.3)   63.0   (55.3, 72.2)   66.1   (58.9, 75.6)   69.0   (60.5, 79.5)   

          Height (cm) Median (IQR)  166.3   (160.0, 173.1)   169.0   (162.0, 176.0)   169.0   (162.9, 175.0)   169.5   (162.0, 176.0)   

          P. aeruginosa No  1127   41.3   471   30.7   234   36.3   107   40.7   

 Yes  1599   58.7   1062   69.3   410   63.7   156   59.3   
          B. cepacia No  2621   96.1   1445   94.3   604   93.8   253   96.2   

   Yes  105   3.9   88   5.7   40   6.2   10   3.8   

          S. aureus No  1580   58.0   940   61.3   410   63.7   167   63.5   

    Yes  1146   42.0   593   38.7   234   36.3   96   36.5   

          MRSA No  2651   97.2   1480   96.5   628   97.5   255   97.0   
   Yes  75   2.8   53   3.5   16   2.5    8   3.0   

          Pancreatic insufficiency No  224   8.2   189   12.3   150   23.3   87   33.1   

 Yes  2502   91.8   1344   87.7   494   76.7   176   66.9   
          CF related diabetes No  1968   72.2   914   59.6   382   59.3   158   60.1   

 Yes  758   27.8   619   40.4   262   40.7   105   39.9   

          Hospitalisation (not for IVs) No  2649   97.2   1483   96.7   626   97.2   250   95.1   

 Yes  77   2.8   50   3.3   18   2.8   13   4.9   

          Number of hospital IV days 0 days  1648   60.5   958   62.5   458   71.1   187   71.1   
 1-14 days  487   17.9   274   17.9   109   16.9   37   14.1   

 15-28 days  245   9.0   125   8.2   36   5.6   19   7.2   

 29+ days  346   12.7   176   11.5   41   6.4   20   7.6   

          Number of home IV days 0 days  1852   67.9   931   60.7   425   66.0   188   71.5   

 1-14 days  340   12.5   227   14.8   85   13.2   28   10.6   

 15-28 days  229   8.4   132   8.6   50   7.8   20   7.6   

 29+ days  305   11.2   243   15.9   84   13.0   27   10.3   
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Table 4. Overall C-Indexes, Brier scores, and Brier score percentage reductionsa for 

prediction of 2-year, 5-year and 10-year survival from Models 1-6.  

 C-Index  Brier score  Brier score % reductiona 

 2-year 5-year 10-year  2-year 5-year 10-year  2-year 5-year 10-year 

            
Model 1 0.841 0.811 0.771  0.038 0.082 0.147  9.56 15.54 11.67 

Model 2 0.873 0.843 0.804  0.036 0.076 0.133  14.85 21.79 20.58 

Model 3 0.872 0.843 0.803  0.036 0.076 0.132  14.798 22.32 21.14 

Model 4b 0.837 0.837 0.797  0.043 0.088 0.168  -2.29 9.85 -0.70 

Model 4c 0.873 0.843 0.804  0.036 0.076 0.133  14.68 21.61 20.09 

Model 5  0.849 0.813 0.766  0.039 0.087 0.158  7.53 11.00 5.57 

Model 6 0.873 0.844 0.805  0.036 0.076 0.132  14.73 21.84 20.91 
Model 1: separate landmark models 

Model 2: supermodel with common 𝛽 coefficients across landmarks and separate baseline hazard for each landmark age 

Model 3: supermodel with interactions between each covariate and , 𝑙 and separate baseline hazard for each landmark age 

Model 4: supermodel with time-varying 𝛽 coefficients and separate baseline hazard for each landmark age 

Model 5: supermodel with common 𝛽 coefficients across landmarks, overall baseline hazard, and landmark effects  
Model 6: as in Model 2, with the addition of mixed model terms to the predictors.  

a Percentage reduction in the Brier score relative to the Brier score obtained from Kaplan-Meier estimates of survival 

probabilities (fitted separately from each landmark age with no predictors).  
b Including time-varying coefficients for all variables. 

c Including time-varying coefficients for FEV1% only. 
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Table 5. Results from fitting the final selected model to the complete data. HR: hazard ratio. 

CI: confidence interval. The confidence intervals and p-values were obtained using robust 

standard errors.  

Variable  HR 95% CI P-value 

     
Sex Male 1 (ref)   

 Female  0.87   (0.72,1.06)   0.16   

     
Genotype 2 copies 1 (ref)   

 1 copy  0.98   (0.83,1.15)   0.78   

 Other  1.05   (0.78,1.43)   0.74   

     
Age of diagnosis     0.99   (0.98,1.00)   0.17   

Calendar year     0.97   (0.95,1.00)   0.03   

FEV1%   0.97   (0.96,0.97)   <0.001   

FVC%   0.99   (0.98,1.00)   <0.001   

Weight (kg)   0.98   (0.97,0.99)   <0.001   

Height (cm)   0.99   (0.98,1.00)   0.17   

P. aeruginosa No 1 (ref)   

 Yes  1.04   (0.90,1.19)   0.63   

     
B. cepacia No 1 (ref)   

 Yes  1.91   (1.51,2.40)   <0.001   

     
S. aureus No 1 (ref)   

 Yes  0.87   (0.77,0.98)   0.02   

     
MRSA No 1 (ref)   

 Yes  1.02   (0.77,1.34)   0.90   

     
Pancreatic insufficiency No 1 (ref)   

 Yes  1.07   (0.80,1.42)   0.65   

     
CF related diabetes No 1 (ref)   

 Yes  1.48   (1.29,1.70)   <0.001   

     
Hospitalisation (not for IVs) No 1 (ref)   

 Yes  1.06   (0.79,1.41)   0.71   

     
Number of hospital IV days 0 days 1 (ref)   

 1-14 days  1.13   (0.99,1.28)   0.07   

 15-28 days  1.52   (1.31,1.76)   <0.001   

 29+ days  2.37   (2.05,2.74)   <0.001   

     

Number of home IV days 0 days 1 (ref)   

 1-14 days  1.03   (0.90,1.19)   0.66   

 15-28 days  1.06   (0.90,1.26)   0.47   

 29+ days  1.39   (1.20,1.61)   <0.001   
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Figure 1. Overview of number of individuals in each landmark data set. On the left: Number 

of individuals alive at each landmark age at any point during the study period. On the right: 

Number of deaths within 2-, 5- and 10-years after each landmark age, among those alive at 

each landmark age. 

  
  

 

Figure 2. Calibration plots using the final model (Model 2) for prediction of 2-year, 5-year 

and 10-year survival from landmark ages 20, 30, 40 and 50. The vertical axis shows the mean 

model-based x-year survival probability (x=2,5,10) in quintiles of the model-based 

probabilities. The horizontal axis shows the mean x-year survival probability obtained using 

Kaplan-Meier estimates in quintiles of the model-based probabilities. The five points have 

been joined by a line. [This plot is shown in colour in Supplementary Figure 5]. 
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Figure 3. Predicted survival curves from landmark age 30 for example individuals in groups 

defined by 5-year survival probabilities. For individuals in the Registry at age 30 between 

2013 and 2015 we obtained their predicted 5-year survival probabilities and categorized into 

groups with 5-year survival probabilities <0.5, (0.5,0.7,], (0.7,0.8], (0.8,0.9], (0.9,0.95], 

(0.95,0.99], (0.99, 1]. An example individual was created for each group. Corresponding 

results for landmark ages 20, 40 and 50 are shown in Supplementary Figure 4 

(i) Characteristics of example individualsa in groups defined by 5-year survival probability.  

5-year survival probability group <0.5 (0.5,0.7] (0.7,0.8] (0.8,0.9] (0.9,0.95] (0.95,0.99] (0.99,1] 

Example person 1 2 3 4 5 6 7 

Males/Femalesb        

Genotype (no. copies of F508del) 2 2 2 2 2 2 1 

Age of diagnosis (years)  0, 0    0, 0    0, 1    0, 1    0, 0    0, 1    5, 3   

FEV1%  29, 25    24, 38    35, 32    36, 43    51, 54    71, 76    91, 97     

FVC%  31, 36    49, 57    57, 50    63, 61    69, 70    88, 89    100, 102     

Weight (kg)  48, 48    64, 47    60, 52    62, 55    69, 56    70, 58    77, 68     

Height (cm)  170, 156    172, 156    173, 156    172, 162  173, 163    174, 162    178, 166     

P. aeruginosa No, Yes Yes Yes Yes Yes Yes Yes 

B. cepacia Yes, No No No No No No No 

S. aureus No No No No No No No, Yes 

MRSA No No No No No No No 

Pancreatic insufficiency Yes Yes Yes Yes Yes Yes Yes 

CF related diabetes Yes Yes Yes Yes Yes No No 

Hospitalisation (not for IVs) No No No No No No No 

Number of hospital IV days 29+  29+  29+, 0 0  0  0  0  

Number of hospital IV days 0, 29+ 0, 29+ 0, 29+ 0 0 0 0 
aWe created an example individual for each group using the median values of the continuous predictors and the most 

common value of each categorical variable within that group. This was done separately for males and females. 
b Values are shown as ‘male, female’, except were the value for males and females was the same. 

(ii) Predicted survivor curves based on the final model for example individuals with characteristics shown in the table above. 
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Figure 4. Plots showing the distribution of 2-, 5- and 10-year survival probabilities from 

landmark ages 20, 30, 40 and 50 for individuals in the Registry at those ages between 2013 

and 2015. [This plot is shown in colour in Supplementary Figure 6]. 
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Supplementary materials for: 

Dynamic prediction of survival in cystic fibrosis:  

A landmarking analysis using UK patient registry data 
 

S1. Creation of landmark data sets 

Supplementary Figure 1 illustrates how the landmark data sets arose. An individual was included in the 

landmark data set at age 𝑙 if they met all of the following criteria: 

 They reached age 𝑙 between 1st January 2005 and 31st December 2015. 

 They joined the Registry prior to reaching age 𝑙. The date of joining the Registry is the date of 

the first annual review at which data were obtained. 

 They were diagnosed with CF prior to reaching age 𝑙. 
 They have not received an organ transplant of any type prior to reaching age 𝑙. 
 They have measures of all time-dependent variables recorded prior to reaching age 𝑙.  

 

We refer to an individual as “eligible for the 𝑙th landmark data set” if she/he satisfied these five 

conditions. Supplementary Table 1 summarises the landmark data sets in terms of number of 

individuals, number of deaths within 2, 5 and 10 years of the landmark age, and number of censorings.  

 

S2. Survival prediction models 

Time scale and follow-up 

In all models the time origin is date of birth and analyses are performed using left-truncation at the 

landmark age. The censoring time was the earliest of death, 31st December 2015 and a specified time 

horizon 𝑡ℎ𝑜𝑟. Since dates of birth and death were only available in month/year format, the day was 

imputed as the 15th of the month. For example, an individual aged 18 on 1st January 2005 (who has been 

diagnosed, joined the Registry, and not received a transplant) contributes up to 11 years of follow-up 

until the end of 2015 to the landmark data set for age 18 and up to 10 years of follow-up for the landmark 

dataset for age 19 (if they do not die, become lost-to-follow-up, or have a transplant between ages 18 

and 19), and so on. An individual aged 18 on 1st January 2014 contributes up to 2 years of follow-up to 

the landmark data set for age 18 and up to 1 year of follow-up for the landmark dataset for age 19.  

 

The UK CF Registry aims to capture deaths from all causes. Of the 931 deaths used in this study, 775 

(83.2%) were due to respiratory or cardiorespiratory failure, 55 (5.9%) were transplantation-related, 13  

(1.4%) were due to liver disease or failure, 9 (1.0%) were due to cancer, 9 (1.0%) were due to trauma 

or suicide, 34 (3.7%) were due to “other causes” (recorded in a separate field and including “End state 

cystic fibrosis” and “Haemoptysis”), 35 (3.9%) were due to an unknown cause, and for 1 individual the 

cause was not recorded. 

 

We assumed that all deaths are captured and the main results presented assume censoring is entirely 

administrative. In a sensitivity analysis we treated individuals not recorded at an annual follow-up for 

over 2 years as lost-to-follow-up. This did not materially alter the results – the C-indexes for 2-5- and 

10-year survival from the final model (Model 2) were 0.874, 0.847, 0.807 respectively, and 

corresponding Brier scores were 0.036, 0.075, 0.130.  

 

Landmark survival models 

 

We let 𝑍 denote the vector of baseline predictors (sex, genotype and age of diagnosis) and 𝑋(𝑙) denote 

the vector of the last-observation-carried-forward (LOCF) values for time-dependent predictors 

(calendar year, FEV%, FEV%, weight, height, CFRD. pancreatic insufficiency, Pseudomonas 

aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Methicillin-resistant Staphylococcus 

aureus (MRSA), non-IV hospitalization, number of IV days) at landmark age 𝑙. 
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Model 1 for the log conditional hazard is 

 

log ℎ𝑙(𝑡|𝑋(𝑙), 𝑍) = log ℎ0𝑙(𝑡) + 𝛽𝑙
𝑇𝑋(𝑙) + 𝛾𝑙

𝑇𝑍, 𝑙 = 1, … , 𝐿              Model 1 

 

where ℎ0𝑙(𝑡) is the baseline hazard at age 𝑡 conditional on eligibility for the 𝑙th landmark data set, and 

𝛽𝑙 and 𝛾𝑙 are vectors of log hazard ratios specific to landmark age 𝑙. Model 1 is in fact 𝐿 models, which 

are fitted in each landmark data set 𝑙 = 1, … , 𝐿.  

 

Model 2 for the log conditional hazard is 

 

log ℎ𝑙(𝑡|𝑋(𝑙), 𝑍) = log ℎ0𝑙(𝑡) + 𝛽𝑇𝑋(𝑙) + 𝛾𝑇𝑍          Model 2 
 

where ℎ0𝑙(𝑡) is again the baseline hazard at age 𝑡 conditional on eligibility for the 𝑙th landmark data set 

(𝑙 = 1, … , 𝐿). 𝛽 and 𝛾 are vectors of log hazard ratios, which are assumed to be the same for all 𝑙. Model 

2 therefore allows a separate baseline hazard from each landmark age, but common predictor 

coefficients across all landmark ages. It is fitted in the stacked data set using Cox regression with a 

stratified baseline hazard.1,2 We note that for Models 1 and 2, using age as the time scale or time-since-

landmark as the timescale are exactly equivalent. 

 

Models 1 and 2 make the proportional hazards assumption that the association of the predictors 𝑋(𝑙) 

and 𝑍 with the hazard is the same over time since 𝑙, i.e. that the 𝛽𝑙 and 𝛽 parameters are not time-

dependent. Models 1 and 2 were initially fitted using a time horizon of 10 years (𝑡ℎ𝑜𝑟 = 10), which 

enables us to obtain predicted survival probabilities for any time up to 10 years. We also investigated 

whether 2-year and 5-year survival could be better predicted by using a shorter time horizon by fitting 

Models 1 and 2 using 𝑡ℎ𝑜𝑟 = 2 and 𝑡ℎ𝑜𝑟 = 5 respectively.  

 

Model 3 extends Model 2 by allowing the log hazard ratios to depend on 𝑙 in a smooth way: 

 

log ℎ𝑙(𝑡|𝑋(𝑙), 𝑍) = log ℎ0𝑙(𝑡) + 𝛽(𝑙)𝑇𝑋(𝑙) + 𝛾(𝑙)𝑇𝑍          Model 3 
 

where 𝛽(𝑙) and 𝛾(𝑙) denote vectors of log hazard ratios that are functions of 𝑙. We considered linear 

forms 𝛽(𝑙) = 𝛽0 + 𝛽 × (𝑙 − 18) and 𝛾(𝑙) = 𝛾0 + 𝛾 × (𝑙 − 18) and restricted cubic spline forms with 

knots at 18, 30, 40 and 50. The results reported in Table 4 of the main text are from the analysis using 

the linear form for 𝛽(𝑙), as using restricted cubic splines did not materially improve predictive 

performance.  

 

In Model 4 the supermodel was extended to allow time-varying coefficients, with the association 

between the predictors and the hazard dependent on time-since landmark (𝑡 − 𝑙): 

 

log ℎ𝑙(𝑡|𝑋(𝑙), 𝑍) = log ℎ0𝑙(𝑡) + 𝛽(𝑡 − 𝑙)𝑇𝑋(𝑙) + 𝛾(𝑡 − 𝑙)𝑇𝑍          Model 4 
 

where 𝛽(𝑡 − 𝑙) and 𝛾(𝑡 − 𝑙) denote vectors of log hazard ratios that are functions of 𝑡 − 𝑙. We 

considered linear forms 𝛽(𝑡 − 𝑙) = 𝛽0 + 𝛽 × (𝑡 − 𝑙) and 𝛾(𝑡 − 𝑙) = 𝛾0 + 𝛾 × (𝑡 − 𝑙) and restricted 

cubic spline forms with knots at 𝑡 − 𝑙 = 2,5,8. The results reported in Table 4 of the main text are from 

the analysis using the linear form for 𝛽(𝑡 − 𝑙), as using restricted cubic splines did not materially 

improve predictive performance. 

 

Model 5 uses an overall baseline hazard instead of separate baseline hazards for each landmark age, 

with the impact of landmark age modelled using regression terms: 

log ℎ𝑙(𝑡|𝑋(𝑙), 𝑍) = log ℎ0(𝑡) + 𝛽𝑇𝑋(𝑙) + 𝛾𝑇𝑍 + 𝑓(𝑙; 𝛿)         Model 5 
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where ℎ0(𝑡) is a common baseline hazard and 𝑓(𝑙; 𝛿) is a function of landmark age. We used a restricted 

cubic spline form for 𝑓(𝑙; 𝛿) with knots at 18, 30, 40 and 50.  

In Model 6 we extended Model 2 by adding the fitted values and slopes from the multivariate mixed 

model (see below) for FEV%, FVC% and weight to the set of time-dependent predictors at each 

landmark age: 

log ℎ𝑙(𝑡|𝑋(𝑙), 𝑍) = log ℎ0𝑙(𝑡) + 𝛽𝑇𝑋(𝑙) + 𝛾𝑇𝑍 + 𝜃𝑇𝑋∗(𝑙)          Model 6 
 

where 𝑋∗(𝑙) denotes the vector of predicted values and slopes for FEV%, FVC% and weight from the 

multivariate mixed model. 

 

All models were fitted by maximum partial likelihood.  

 

Multivariate mixed model 

 

A multivariate linear mixed model for FEV1%, FVC%, BMI and weight was fitted to the repeated 

measures up to landmark age 𝑙 (𝑙 = 1, … , 𝐿) for individuals in the landmark data set at age 𝑙. Separate 

models were fitted for each landmark age. The longitudinal variables were modelled as a linear function 

of age with a random intercept and slope. We also included fixed effects of all the other predictors, 

including both baseline and time-dependent predictors. For each individual in landmark dataset 𝑙 (𝑙 =

1, … , 𝐿) the individual fitted values and slopes for FEV1%, FVC% and weight at age 𝑙 were obtained. 

The numbers of longitudinal measurements used in the multivariate mixed models are summarised in 

Supplementary Table 2. 

Predicted survival probabilities 

From each model the predicted survival probability to time 𝑡 after the landmark age, conditional on 

survival to the landmark age, on baseline variables 𝑍 and on values of time-dependent predictors at the 

landmark age 𝑋(𝑙),  𝑆(𝑙 + 𝑡|𝑋(𝑙), 𝑍, 𝑇 > 𝑙), was obtained using the relationship 

𝑆(𝑙 + 𝑡|𝑋(𝑙), 𝑍, 𝑇 > 𝑙) = exp {− ∫ ℎ(𝑢|𝑋(𝑙), 𝑍, 𝑢 > 𝑙)
𝑙+𝑡

𝑙

𝑑𝑢} 

For models without time-varying hazard ratios (Models 1-3 and 5-6) we used the estimator: 

𝑆̂(𝑙 + 𝑡|𝑋(𝑙), 𝑍, 𝑇 > 𝑙) = exp {−𝑒𝛽̂𝑇𝑋(𝑙)+𝛾̂𝑇𝑍 ∑ ℎ̂0𝑢
𝑙<𝑢≤𝑙+𝑡

} 

where ℎ̂0𝑢 denotes the baseline hazard at time 𝑢 estimated from the increments in Breslow’s estimate 

of the cumulative baseline hazard  and the sum is over event times.3 For Model 4, which has time-

varying hazard ratios, we used the estimator 

𝑆̂(𝑙 + 𝑡|𝑋(𝑙), 𝑍, 𝑇 > 𝑙) = exp {− ∑ ℎ̂0𝑢𝑒𝛽̂𝑇(𝑢−𝑙)𝑋(𝑙)+𝛾̂𝑇(𝑢−1)𝑍

𝑙<𝑢≤𝑙+𝑡
} 

S3. Model assessment 

 

Overview 

 

Models were assessed and compared based on the “3-in-1” procedure described by Yong et al (2013), 

which incorporates model building using cross-validation, final model choice, and statistical inference.4 

The data were first divided into a “training+validation” (TV) set and a “holdout” set. The TV set is used 

in the model development and assessment. The holdout set is reserved for applying the selected model 

at the end. No models are fitted using the holdout data. The TV set is a sample of 80% from the stacked 
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data, stratified by landmark age. The holdout set is formed from the remaining 20% of individuals at 

each landmark age. Some individuals appear in both the TV and holdout stacked data sets, but not with 

the same landmark age. 

For model assessment we used the C-index,5–8 the Brier score,9,10 and percentage reduction in the Brier 

score relative to the null model (i.e. the model excluding all predictors, using Kaplan-Meier estimates).11 

The C-index and Brier scores were obtained using inverse probability of censoring weights. For Model 

4 we accommodated the time-varying coefficients into the estimation of the C-Index and Brier score.8 

A Monte-Carlo cross-validation procedure was used within the TV data set to avoid over-optimism due 

to overfitting 12. The procedure was as follows: 

(i) An 80% stratified random sample, with stratification by landmark age 𝑙, was obtained from the TV 

data set. 

(ii) The model was fitted on the 80% sample. 

(iii) The fitted model was used to obtain predicted survival probabilities to a given time from each 

landmark age 𝑙 (see below) for the 20% not in the sample. 

(iv) Model performance measures (C-index, Brier score, and percentage reduction in the Brier score) 

were obtained in the 20% not in the sample on which the model was fitted. 

(v) Steps (i)-(iv) were repeated 200 times and we obtained the average C-index, Brier score and Brier 

score reduction across the 200 samples.  

Model assessment measures were obtained for 2-year, 5-year and 10-year survival from each landmark 

age. Therefore there are 99 averaged C-indices and Brier scores for each model (33 × 3, where 33 is 

the number of landmark ages 18-50). For each model we also obtained an overall C-index and Brier 

score which are not age-adjusted. Further details are given below. To simplify the notation we give the 

details of the C-index and Brier score as if applied to the complete stacked data (the TV and holdout 

data combined). 

 

Truncated C-Index 

The following description of the C-index follows that of Gerds et al..7 Let 𝑇𝑖 and 𝐶𝑖 denote respectively 

the event time and censoring time for individual 𝑖. We observe 𝑇̃𝑖 = min(𝑇𝑖 , 𝐶𝑖) and the event indicator 

Δ𝑖 = 1(𝑇𝑖 < 𝐶𝑖). Let 𝑆̂𝑙(𝑙 + 𝑡|𝑋(𝑙), 𝑍) denote the estimated probability of survival beyond age 𝑙 +

𝑡 conditional on survival to age 𝑙 and given predictor values 𝑋(𝑙), 𝑍 at age 𝑙. The truncated C-index is 

𝐶𝑙(𝑡) = 𝐸𝑖𝑗{1{𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍𝑖) < 𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑗(𝑙), 𝑍𝑖)}|𝑇𝑖 < 𝑇𝑗, 𝑇𝑖 ≤ 𝑙 + 𝑡, 𝑇𝑖 > 𝑙, 𝑇𝑗 > 𝑙}              

where the expectation is with respect to two subjects 𝑖, 𝑗, both alive at age 𝑙 (𝑇𝑖 > 𝑙). Not all pairs of 

individuals 𝑖, 𝑗 are comparable. We can compare two individuals who both have the event prior to age 

𝑙 + 𝑡; two individuals, one of whom has the event prior to age 𝑙 + 𝑡 and the other of which is known to 

be alive (censored) at age 𝑙 + 𝑡. We cannot compare two individuals who are both known to be alive 

(censored) at age 𝑙 + 𝑡, two individuals both censored before age 𝑙 + 𝑡, or a pair in which one individual 

has the event and the other is censored before the other’s event time. The fact that not all pairs of 

individuals can be compared is handled using inverse probability of censoring weights (IPCW). The 

truncated C-Index can be expressed as 

𝐶𝑙(𝑡)

=
𝐸𝑖𝑗{1{𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍) < 𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑗(𝑙), 𝑍𝑗)}|𝑇𝑖 > 𝑙, 𝑇𝑗 > 𝑙}𝐸𝑖𝑗{𝑇𝑖 < 𝑇𝑗, 𝑇𝑖 ≤ 𝑙 + 𝑡|𝑇𝑖 > 𝑙, 𝑇𝑗 > 𝑙, 𝑋𝑖(𝑙), 𝑋𝑗(𝑙)}

Pr(𝑇𝑖 < 𝑇𝑗, 𝑇𝑖 ≤ 𝑙 + 𝑡|𝑇𝑖 > 𝑙, 𝑇𝑗 > 𝑙)

=
𝐸𝑖𝑗 {1{𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍𝑖) < 𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑗(𝑙), 𝑍𝑖)} ∫ 𝑆(𝑢|𝑋𝑗(𝑙), 𝑍𝑖 , 𝑢 > 𝑙)

𝑙+𝑡

𝑙
𝑆(𝑑𝑢|𝑋𝑖(𝑙), 𝑍, 𝑢 > 𝑙)|𝑇𝑖 > 𝑙, 𝑇𝑗 > 𝑙}

𝐸𝑖𝑗 {∫ 𝑆(𝑢|𝑋𝑗(𝑙), 𝑍, 𝑢 > 𝑙)
𝑙+𝑡

𝑙
𝑆(𝑢|𝑋𝑖(𝑙), 𝑍, 𝑢 > 𝑙)}
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We assume that the event and censoring time are independent conditional on the variables, i.e. 

𝐶𝑖 ∐ 𝑇𝑖|𝑋𝑖(𝑙), 𝑇𝑖 > 𝑙, 𝐶𝑖 > 𝑙, and that the probability of being uncensored at the prediction horizon 𝑙 + 𝑡 

is bounded away from 0.  This gives rise to the IPCW estimator 

𝐶̂𝑙(𝑡)

=
∑ ∑ 1{𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍) < 𝑆̂𝑙(𝑙 + 𝑡|𝑋𝑗(𝑙), 𝑍)}1{𝑇̃𝑖 < 𝑇̃𝑗}

𝑛𝑙
𝑗=1

𝑛𝑙
𝑖=1 1{𝑇̃𝑖 ≤ 𝑙 + 𝑡, Δi = 1}𝑊̂𝑖𝑗

−1

∑ ∑ 1{𝑇̃𝑖 < 𝑇̃𝑗}
𝑛𝑙
𝑗=1

𝑛𝑙
𝑖=1 1{𝑇̃𝑖 ≤ 𝑙 + 𝑡, Δi = 1}𝑊̂𝑖𝑗

−1
         

of 𝐶𝑙(𝑡), where  𝑊̂𝑖𝑗 = Pr̂(𝐶𝑗 > 𝑇̃𝑖|𝑋𝑗(𝑙), 𝑍, 𝑇̃𝑗 > 𝑙) Pr̂(𝐶𝑖 ≥ 𝑇̃𝑖|𝑋𝑖(𝑙), 𝑍, 𝑇̃𝑖 > 𝑙) is a weight, where the 

censoring probabilities used in the weight are obtained from a model to be specified (see below).  

The C-index 𝐶𝑙(𝑡) is conditional on survival to age 𝑙 and a separate estimated C-index is obtained for 

any combination of 𝑙 and 𝑡 (𝑙 = 18, … ,50; 𝑡 = 2,5,10). We also considered an overall C-index which 

is combined across landmark ages. Consider the stacked landmark data set and let 𝐿𝑖 denote the 

landmark age for record (row) 𝑖. Some individuals appear in more than one row in the stacked landmark 

data set and we define 𝐼𝐷(𝑖) to be the unique identifier (ID number) for the individual in  row 𝑖. The 

overall C-index is 

𝐶overall(𝑡) = 𝐸𝑖𝑗 {1(𝐼𝐷(𝑖) ≠ 𝐼𝐷(𝑗))1 {𝑆̂𝐿𝑖
(𝐿𝑖 + 𝑡|𝑋𝑖(𝑙), 𝑍) < 𝑆̂𝐿𝑗

(𝐿𝑗 + 𝑡|𝑋𝑗(𝑙), 𝑍)} |(𝑇𝑖 − 𝐿𝑖)

< (𝑇𝑗 − 𝐿𝑖), (𝑇𝑖 − 𝐿𝑖) ≤ 𝑡} 

where the expectation is with respect to two rows 𝑖, 𝑗 in the stacked landmark data set. Inclusion of the 

indicator 1(𝐼𝐷(𝑖) ≠ 𝐼𝐷(𝑗)) ensures that an individual is not compared with herself/himself. An 

estimator incorporating censoring weights is  

𝐶̂overall(𝑡)

=
∑ ∑ 1 {𝑆̂𝐿𝑖

(𝐿𝑖 + 𝑡|𝑋𝑖(𝑙), 𝑍) < 𝑆̂𝐿𝑗
(𝐿𝑗 + 𝑡|𝑋𝑗(𝑙), 𝑍)} 1{(𝑇̃𝑖 − 𝐿𝑖) < (𝑇̃𝑗 − 𝐿𝑖)}𝑁

𝑗=1
𝑁
𝑖=1 1{𝑇̃𝑖 − 𝐿𝑖 ≤ 𝑡, Δi = 1}𝑊̂𝑖𝑗

∗−1

∑ ∑ 1{(𝑇̃𝑖 − 𝐿𝑖) < (𝑇̃𝑗 − 𝐿𝑗}𝑁
𝑗=1

𝑁
𝑖=1 1{(𝑇̃𝑖 − 𝐿𝑖) ≤ 𝑡, Δi = 1}𝑊̂𝑖𝑗

∗−1
     

where 𝑁 is the total number of individuals in the stacked landmark data set and the weights are 

𝑊̂𝑖𝑗
∗ = Pr̂((𝐶𝑗 − 𝐿𝑗) > (𝑇̃𝑖 − 𝐿𝑖)|𝑋𝑗(𝐿𝑗), 𝑇̃𝑗 > 𝐿𝑗) Pr̂((𝐶𝑖 − 𝐿𝑖) ≥ (𝑇̃𝑖 − 𝐿𝑖)|𝑋𝑖(𝐿𝑖), 𝑇̃𝑖 > 𝐿𝑖). 

We assumed that the probabilities in the weights 𝑊̂𝑖𝑗 do not depend on 𝑋𝑗(𝑙)  or 𝑍 and therefore used 

Pr̂(𝐶𝑗 > 𝑇̃𝑖|𝑇̃𝑗 > 𝑙) in place of s Pr̂(𝐶𝑗 > 𝑇̃𝑖|𝑋𝑗(𝑙), 𝑇̃𝑗 > 𝑙) and Pr̂(𝐶𝑖 ≥ 𝑇̃𝑖|𝑇̃𝑖 > 𝑙)  in place of Pr̂ (𝐶𝑖 ≥

𝑇̃𝑖|𝑋𝑖(𝑙), 𝑍, 𝑇̃𝑖 > 𝑙). The probabilities were estimated separately from each landmark age using Kaplan-

Meier estimates. A similar approach was used for the weights 𝑊̂𝑖𝑗
∗ .   

In summary we obtained 𝐶̂overall(𝑡) for 𝑡 = 2,5,10 and 𝐶̂𝑙(𝑡) for 𝑡 = 2,5,10 and 𝑙 = 18, … ,50. 

Brier score 

The Brier score is the mean squared prediction error. As for the C-index, we obtained separate Brier 

scores at each landmark age and an overall brier score.  In the absence of censoring an estimator of the 

Brier score is  

𝐵̂𝑙(𝑡) =
1

𝑛𝑙
∑ {𝑆̂𝑖𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍𝑖) − 𝐼𝑖(𝑇𝑖 > 𝑙 + 𝑡|𝑇𝑖 > 𝑙)}

2

𝑖∈𝐷𝑙

 

where 𝑆̂𝑖𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍𝑖) is the model-based estimated probability of survival to age 𝑙 + 𝑡 for individual 

𝑖 in the landmark data set at age 𝑙, 𝐼𝑖(𝑡 > 𝑙 + 𝑡|𝑇𝑖 > 𝑙) is the observed indicator of survival to age 𝑙 + 𝑡, 

and the sum is over the 𝑛𝑙 individuals in landmark data set 𝑙 (𝐷𝑙). An estimator incorporating inverse 

probability of censoring weights is 
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𝐵̂𝑙(𝑡) =
1

𝑛𝑙
∑ 𝐼(𝑑𝑖 = 1 ∪ 𝑇𝑖 > 𝑙 + 𝑡){𝑆̂𝑖𝑙(𝑙 + 𝑡|𝑋𝑖(𝑙), 𝑍𝑖) − 𝐼𝑖(𝑇𝑖 > 𝑙 + 𝑡|𝑇̃𝑖 > 𝑙)}

2

𝑖∈𝐷𝑙

𝑊̂𝑖
−1 

where 𝑑𝑖 is the event indicator, 𝐼(𝑑𝑖 = 1 ∪ 𝑇𝑖 > 𝑙 + 𝑡) is an indicator taking value 1 for individuals 

who have the event or whose censoring age is after 𝑡 + 𝑙, and zero otherwise, and 𝑊̂𝑖 =

Pr̂(𝐶𝑖 > min (𝑇𝑖
−, 𝑙 + 𝑡)|𝑇̃𝑖 > 𝑙) is the probability of being censored beyond age min (𝑇𝑖

−, 𝑙 + 𝑡). The 

inverse probability of censoring weights were obtained using Kaplan-Meier estimates stratified by 

landmark age. 

The overall Brier score estimator is  

𝐵̂overall(𝑡) =
1

𝑁
∑ 𝐼(𝑑𝑖 = 1 ∪ 𝑇𝑖 > 𝐿𝑖 + 𝑡){𝑆̂𝑖𝐿𝑖

(𝐿𝑖 + 𝑡|𝑋𝑖(𝐿𝑖), 𝑍𝑖) − 𝐼𝑖(𝑇𝑖 > 𝐿𝑖 + 𝑡|𝑇̃𝑖 > 𝑙)}
2

𝑖
𝑊̂𝑖

−1 

where the sum is over all rows in the stacked landmark data set and 𝑊̂𝑖 = Pr̂(𝐶𝑖 > min (𝑇𝑖
−, 𝐿𝑖 +

𝑡)|𝑇̃𝑖 > 𝐿𝑖).  

Brier scores were also obtained under a null model using Kaplan-Meier estimates of the survival 

probabilities stratified by landmark age but with no other predictors. These are denoted 𝐵̂𝑙,null(𝑡) and 

𝐵̂overall,null(𝑡). The percentage reduction in the Brier score from a given model compared with the null 

model was calculated using 100(𝐵̂𝑙,null(𝑡) − 𝐵̂𝑙(𝑡))/ 𝐵̂𝑙,null(𝑡) and 100(𝐵̂overall,null(𝑡) − 𝐵̂overall(𝑡))/

 𝐵̂𝑜verall,null(𝑡).  

In summary we obtained 𝐵̂overall(𝑡) for 𝑡 = 2,5,10 and 𝐵̂𝑙(𝑡) for 𝑡 = 2,5,10 and 𝑙 = 18, … ,50, and the 

corresponding percentages reductions in the Brier score relative to the null model.  

Calibration plots 

After selecting the final model, calibration plots were obtained to show graphically the agreement 

between predicted survival probabilities from the model and the ‘true’ probabilities. The steps for 

creating these plots were as follows: 

Steps (i)-(iii) are the same as described earlier, in the Overview section of S3.  

(iv) The predicted 2-year survival probabilities from landmark age 𝑙 were divided into quintiles and we 

obtained the mean predicted 2-year survival probability for individuals within each quintile, denoted 

𝑆̅(2)𝑙,𝑄1, 𝑆̅(2)𝑙,𝑄2, 𝑆̅(2)𝑙,𝑄3, 𝑆̅(2)𝑙,𝑄4, 𝑆̅(2)𝑙,𝑄5. We also obtained the Kaplan-Meier estimate of 2-year 

survival for the individuals within each quintile, denoted 

𝐾𝑀(2)𝑙,𝑄1, 𝐾𝑀(2)𝑙,𝑄2, 𝐾𝑀(2)𝑙,𝑄3, 𝐾𝑀(2)𝑙,𝑄4, 𝐾𝑀(2)𝑙,𝑄5. The same was done for 5-year and 10-year 

survival. 

(v) Steps (i)-(iv) were repeated 200 times and for each 𝑙 = 18, … ,50 we obtained the average of each 

𝑆̅(2)𝑙,𝑄1, … , 𝑆̅(2)𝑙,𝑄5 and the average of each 𝐾𝑀(2)𝑙,𝑄1, 𝐾 … , 𝐾𝑀(2)𝑙,𝑄5 across the 200 samples..  

(vi) The averaged 𝑆̅(2)𝑙,𝑄1, … , 𝑆̅(2)𝑙,𝑄5 from step (v) were plotted against the averaged 

𝐾𝑀(2)𝑙,𝑄1, 𝐾 … , 𝐾𝑀(2)𝑙,𝑄5.  

 

Calibration plots for landmark ages 20,30,40 and 50 are shown in the main text Figure 2. In a well-

calibrated model the five points lie on the 𝑦 = 𝑥 line.  

 

S4. Software 

All analyses were performed using R. The landmark models described in Section S2 can be fitted easily 

using the coxph function from the survival package  after some rearrangement of the data.13 Some of 

the data rearrangement can be performed using the dynpred package,14 for example using the cutLM 

function, though we did not use that here. Estimated survival probabilities can be obtained using 
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‘predict’ after coxph, though special code was written to obtain the predicted survival probabilities from 

Model 4, which included time-varying coefficients.  

There exist various packages for obtaining C-indexes and Brier scores. None of the existing functions 

for estimating the C-index appear to accommodate a stratified baseline hazard, and so we used bespoke 

code. We used ‘pew’ from the dynpred package to estimate the Brier scores; this requires pre-estimation 

of matrices of predicted survival and censoring probabilities.  

The multivariate mixed model used to obtain the additional predictors 𝑋∗(𝑙) for Model 6 was fitted 

using the lme function from the nlme package.15 Existing software, including the nlme package, does 

not appear to allow out-of-sample predictions from mixed models. We therefore used bespoke code 

which is available from https://github.com/ruthkeogh/landmark_CF. 

S5. Final model specification 

Example code for obtaining estimated survival probabilities from the final model is provided at 

https://github.com/ruthkeogh/landmark_CF. This includes csv files containing estimated cumulative 

baseline hazards for each landmark age (𝑙 = 18, … ,50). 

S6. Comparisons with other models 

In an analysis of the French CF Registry Nkam et al reported a cross-validated C-statistic of 0.90 for 

prediction of 3-year survival.16 They did not report a Brier score. Aside from focusing on 3-year 

survival and using different set of predictors, there are a number of differences between their 

approach and ours. They used a composite outcome of death and transplant, and for their logistic 

regression analysis, they excluded individuals who were censored before the end of the 3-year follow-

up period.  

Liou et al used a logistic regression analysis of the US CF Registry to predict 5-year survival.17 A 

calibration plot showed good performance using a validation data set. However, they did not present 

measures of predictive performance that are comparable to those in this paper. Mayer-Hamblett et al 

also used a logistic regression analysis of the US CF Registry to develop a model for predicting 2-year 

survival.18 They presented an ROC curve but did not report an area under the ROC curve, which could 

be compared to our C-Index. They presented sensitivities and specificities, and positive- and negative 

predictive values, finding that their model was better at predicting who would survive 2 years than 

who would die.  

McCarthy et al developed the CF-ABLE score using logistic regression modelling of data from the CF 

population in Ireland.19 Based on a validation data set, the area under the ROC curve was 0.82 for 4-

year survival, though it is not clear how censoring was treated. 
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Supplementary Figure 1. Summary of data exclusions and creation of data set for analysis.  
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Supplementary Table 1. Summary of number of individuals, deaths, censorings and total person time at risk in each landmark 

data set. The stacked data set is formed by combining the landmark data sets.  

  Number of deaths: N (%) Number of censorings: N (%) 

Landmark  

age 

No. 

of 

individuals 

Within 

2 years 

Within 

5 years 

Within 

10 years 

Within 

2 years 

Within 

5 years 

Within 

10 years 

 18   2725   63 (2.3)   171 (6.3)   255 (9.4)   500 (18.3)   1243 (45.6)   2290 (84.0)  

  19   2756   86 (3.1)   206 (7.5)   290 (10.5)   522 (18.9)   1244 (45.1)   2294 (83.2)  

  20   2726   104 (3.8)   218 (8.0)   303 (11.1)   505 (18.5)   1215 (44.6)   2239 (82.1)  

  21   2622   96 (3.7)   209 (8.0)   291 (11.1)   497 (19.0)   1221 (46.6)   2185 (83.3)  

  22   2526   107 (4.2)   206 (8.2)   273 (10.8)   477 (18.9)   1194 (47.3)   2104 (83.3)  

  23   2431   99 (4.1)   196 (8.1)   258 (10.6)   463 (19.0)   1159 (47.7)   2022 (83.2)  

  24   2326   85 (3.7)   182 (7.8)   234 (10.1)   501 (21.5)   1136 (48.8)   1970 (84.7)  

  25   2225   80 (3.6)   167 (7.5)   219 (9.8)   486 (21.8)   1088 (48.9)   1878 (84.4)  

  26   2079   82 (3.9)   160 (7.7)   216 (10.4)   439 (21.1)   1026 (49.4)   1760 (84.7)  

  27   1953   81 (4.1)   153 (7.8)   205 (10.5)   412 (21.1)   960 (49.2)   1647 (84.3)  

  28   1801   74 (4.1)   145 (8.1)   189 (10.5)   386 (21.4)   909 (50.5)   1540 (85.5)  

  29   1675   59 (3.5)   117 (7.0)   164 (9.8)   385 (23.0)   882 (52.7)   1436 (85.7)  

  30   1533   61 (4.0)   112 (7.3)   149 (9.7)   355 (23.2)   822 (53.6)   1323 (86.3)  

  31   1396   52 (3.7)   102 (7.3)   135 (9.7)   330 (23.6)   772 (55.3)   1205 (86.3)  

  32   1286   49 (3.8)   110 (8.6)   132 (10.3)   338 (26.3)   721 (56.1)   1112 (86.5)  

  33   1185   44 (3.7)   99 (8.4)   124 (10.5)   316 (26.7)   671 (56.6)   1011 (85.3)  

  34   1062   46 (4.3)   92 (8.7)   114 (10.7)   283 (26.6)   588 (55.4)   899 (84.7)  

  35   981   45 (4.6)   84 (8.6)   104 (10.6)   253 (25.8)   533 (54.3)   807 (82.3)  

  36   881   43 (4.9)   74 (8.4)   94 (10.7)   228 (25.9)   473 (53.7)   750 (85.1)  

  37   796   32 (4.0)   60 (7.5)   83 (10.4)   200 (25.1)   425 (53.4)   685 (86.1)  

  38   732   31 (4.2)   56 (7.7)   74 (10.1)   181 (24.7)   373 (51.0)   623 (85.1)  

  39   688   27 (3.9)   56 (8.1)   72 (10.5)   163 (23.7)   346 (50.3)   581 (84.4)  

  40   644   19 (3.0)   47 (7.3)   68 (10.6)   141 (21.9)   319 (49.5)   544 (84.5)  

  41   618   20 (3.2)   48 (7.8)   71 (11.5)   124 (20.1)   327 (52.9)   518 (83.8)  

  42   606   30 (5.0)   50 (8.3)   72 (11.9)   131 (21.6)   314 (51.8)   501 (82.7)  

  43   579   24 (4.1)   57 (9.8)   72 (12.4)   130 (22.5)   302 (52.2)   485 (83.8)  

  44   530   19 (3.6)   45 (8.5)   64 (12.1)   141 (26.6)   277 (52.3)   447 (84.3)  

  45   497   20 (4.0)   47 (9.5)   65 (13.1)   131 (26.4)   274 (55.1)   415 (83.5)  

  46   425   23 (5.4)   42 (9.9)   57 (13.4)   96 (22.6)   229 (53.9)   353 (83.1)  

  47   391   23 (5.9)   42 (10.7)   54 (13.8)   93 (23.8)   215 (55.0)   327 (83.6)  

  48   347   14 (4.0)   35 (10.1)   45 (13.0)   98 (28.2)   202 (58.2)   292 (84.1)  

  49   307   15 (4.9)   34 (11.1)   39 (12.7)   92 (30.0)   184 (59.9)   260 (84.7)  

  50   263   17 (6.5)   31 (11.8)   37 (14.1)   71 (27.0)   154 (58.6)   218 (82.9)  
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Supplementary Table 2. Summary of number of measurements of FEV1%, FVC% and weight used in multivariate mixed 

models fitted up to each landmark age. Results shown are the median, interquartile range (IAQR) and range of the number of 

measurements of each variable up to age 𝑙 for individuals in the 𝑙th landmark data set (𝑙 = 18, … ,50). 

 FEV1% FVC1% Weight 

Landmark 

age 

Median IQR Range Median IQR Range Median IQR Range 

18 7 (5,10) (1,20) 7 (5,10) (1,20) 8 (5,11) (1,21) 

19 7 (5,10) (1,21) 7 (5,10) (1,21) 8 (5,11) (1,22) 

20 7 (5,10) (1,22) 7 (5,10) (1,22) 8 (5,11) (1,22) 

21 7 (5,10) (1,21) 7 (5,10) (1,21) 8 (5,11) (1,21) 

22 8 (5,10) (1,21) 8 (5,10) (1,21) 8 (5,11) (1,21) 

23 8 (5,10) (1,22) 8 (5,10) (1,22) 8 (5,11) (1,22) 

24 8 (5,11) (1,24) 8 (5,11) (1,24) 8 (6,11) (1,24) 

25 8 (6,11) (1,24) 8 (5,11) (1,24) 8 (6,11) (1,24) 

26 8 (5,11) (1,24) 8 (5,11) (1,24) 8 (6,11) (1,25) 

27 8 (5,11) (1,23) 8 (5,11) (1,23) 8 (6,11) (1,22) 

28 8 (6,11) (1,23) 8 (6,11) (1,23) 8 (6,11) (1,23) 

29 8 (5,11) (1,22) 8 (5,11) (1,22) 8 (6,11) (1,22) 

30 8 (6,11) (1,20) 8 (6,11) (1,20) 9 (6,11) (1,21) 

31 9 (6,11) (1,21) 9 (6,11) (1,21) 9 (6,12) (1,21) 

32 9 (6,11.75) (1,23) 9 (6,11) (1,23) 9 (6,12) (1,23) 

33 8 (5,11) (1,21) 8 (5,11) (1,21) 9 (5,12) (1,22) 

34 8 (5,11) (1,23) 8 (5,11) (1,23) 8 (5,12) (1,24) 

35 8 (5,11) (1,19) 8 (5,11) (1,19) 8 (5,12) (1,19) 

36 8 (5,11) (1,19) 8 (5,11) (1,19) 8 (5,12) (1,19) 

37 8 (5,11) (1,19) 8 (5,11) (1,19) 8 (5,11) (1,18) 

38 8 (5,11) (1,19) 8 (5,11) (1,18) 8 (5,11) (1,18) 

39 7 (4,11) (1,18) 7 (4,11) (1,18) 8 (4,11) (1,19) 

40 7 (4,10) (1,19) 7 (4,10) (1,19) 7 (4.5,11) (1,18) 

41 7 (4,10) (1,18) 7 (4,10) (1,18) 7 (5,11) (1,18) 

42 7 (4,10) (1,17) 7 (4,10) (1,17) 7 (4,10) (1,17) 

43 7 (4,10) (1,18) 7 (4,10) (1,18) 7 (4,10) (1,18) 

44 7 (5,10) (1,19) 7 (5,10) (1,19) 7 (5,11) (1,19) 

45 7 (5,10) (1,20) 7 (5,10) (1,20) 7 (5,10) (1,20) 

46 7 (5,10) (1,18) 7 (5,10) (1,18) 7 (5,10) (1,18) 

47 7 (5,10) (1,19) 7 (5,10) (1,19) 8 (5,10) (1,18) 

48 7 (5,10) (1,20) 7 (5,10) (1,20) 8 (5,10.5) (1,20) 

49 8 (5,11) (1,21) 8 (5,11) (1,21) 8 (5,11) (1,20) 

50 8 (5,11) (1,16) 8 (5,11) (1,16) 8 (5,11) (1,16) 
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Supplementary Table 3. Results from the holdout data. Comparison between predicted survival probabilities from the final 

model and numbers of survivors and deaths within 2, 5 and 10 years from landmark ages 20, 30, 40 and 50. For 2-, 5-, and 

10-year survival we excluded those who were censored before 2, 5 and 10 years of follow-up respectively. Note that due to 

small numbers in some predicted probability groups we do not expect the observed percentages surviving to exactly match 

the predicted survival probabilities.  

  2-year survival 5-year survival 10-year survival 

Landmark 

age 

Probability of 

2-year, 5-year 

or 10-year 

survival from 

final model 

No. (%) 

who 

survived 2 

years 

No. (%) 

who died 

within 2 

years 

No. (%). 

who 

survived 5 

years 

No. (%) 

who died 

within 5 

years 

No. (%) 

who 

survived 10 

years 

No. (%) 

who died 

within 10 

years 

20 [0,0.7]  4 (57%)   3 (43%)   13 (48%)   14 (52%)   8 (20%)   32 (80%)   

 (0.7,0.9]  43 (90%)   5 (10%)   51 (78%)   14 (22%)   13 (50%)   13 (50%)   

 (0.9,0.95]  43 (93%)   3 (7%)   50 (94%)   3 (6%)   8 (73%)   3 (27%)   

 (0.95,1]  341 (99%)   3 (1%)   166 (98%)   3 (2%)   15 (83%)   3 (17%)  

        

30 [0,0.7]  2 (50%)   2 (50%)   5 (25%)   15 (75%)   3 (10%)   26 (90%)   

 (0.7,0.9]  22 (73%)   8 (27%)   27 (73%)   10 (27%)   5 (28%)   13 (72%)   

 (0.9,0.95]  37 (95%)   2 (5%)   21 (84%)   4 (16%)   4 (57%)   3 (43%)   

 (0.95,1]  160 (99%)   2 (1%)   63 (97%)   2 (3%)   3 (75%)   1 (25%)   

        

40 [0,0.7]  0 (0%)   1 (100%)   0 (0%)   5 (100%)   2 (14%)   12 (86%)   

 (0.7,0.9]  5 (71%)   2 (29%)   17 (74%)   6 (26%)   1 (50%)   1 (50%)   

 (0.9,0.95]  11 (100%)   0 (0%)   10 (100%)   0 (0%)   1 (100%)   0 (0%)   

 (0.95,1]  81 (99%)   1 (1%)   31 (100%)   0 (0%)   0  0  

        

50 [0,0.7]  3 (100%)   0 (0%)   1 (25%)   3 (75%)   0 (0%)   5 (100%)   

 (0.7,0.9]  5 (71%)   2 (29%)   4 (67%)   2 (33%)   0 (0%)   2 (100%)   

 (0.9,0.95]  8 (89%)   1 (11%)   5 (100%)   0 (0%)   1 (100%)   0 (0%)   

 (0.95,1]  20 (100%)   0 (0%)   4 (100%)   0 (0%)   1 (100%)   0 (0%)   

 [0,0.7]       

 

Supplementary Table 4. Overall C-Indexes and Brier scores for prediction of 2-year, 5-year and 10-year survival from a 

model including FEV1% as the only predictor and from a model including two treatment variables in addition to the 16 

predictors included in the final model  (Model 2 in Table 4 of the main text).  

 Results from the final 
model (Model 2: Table 4 
of the main text) 

Model using FEV1% 
predicted as the only 
predictora 

Additionally including 
two treatment 
variables in Model 2b 

 C-Index Brier score C-Index Brier score C-Index Brier score 

2-year survival 0.873 0.036 0.842 0.038 0.876 0.035 
5-year survival 0.843 0.076 0.813 0.081 0.844 0.075 
10-year survival 0.804 0.133 0.775 0.141 0.805 0.133 

a We repeated the final model with FEV1% predicted as the only predictor. Other features of the model were as in Model 2. 

b We assessed the impact on predictive performance of including two treatments that were included in the model of Nkam et 

al for the French Registry: use of oxygen therapy and use of non-invasive ventilation.16 Nkam et al also investigated use of 

oral corticosteroids, but there was insufficient data on use of this treatment in the UK data. We created binary variables at 

each landmark age, which indicate whether an individual had ever used each treatment in the past. The adjusted hazard ratio 

associated with oxygen use was 1.75 (95% CI 1.50-2.05) and the adjusted hazard ratio associated with non-invasive 

ventilation is 1.15 (95% CI 0.92-1.43). Therefore both oxygen therapy and non-invasive ventilation are associated with an 

increased mortality hazard (though the association for non-invasive ventilation is not statistically significant), because these 

treatments are used by sicker patients. The estimates do not have a causal interpretation. 
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Supplementary Figure 2. Comparison of landmark-age-specific C-indexes for 2-year, 5-year and 10-year survival from 

Model 1 (separate models from each landmark age) and Model 2 (supermodel).  
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Supplementary Figure 3. Comparison of landmark-age-specific Brier scores for 2-year, 5-year and 10-year survival from 

Model 1 (separate models from each landmark age) and Model 2 (supermodel).  
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Supplementary Figure 4. Predicted survival curves from landmark age 20 for example 

individuals in groups defined by 5-year survival probabilities. For individuals in the Registry 

at age 20 between 2013 and 2015 we obtained their predicted 5-year survival probabilities 

and categorized into groups with 5-year survival probabilities <0.5, (0.5,0.7,], (0.7,0.8], 

(0.8,0.9], (0.9,0.95], (0.95,0.99], (0.99, 1]. An example individual was created for each group.  

(i) Characteristics of example individualsa in groups defined by 5-year survival probability.  

5-year survival probability group <0.5 (0.5,0.7] (0.7,0.8] (0.8,0.9] (0.9,0.95] (0.95,0.99] (0.99,1] 

Example person 1 2 3 4 5 6 7 

Males, Femalesb        

Genotype (no. copies of F508del) 1, 2 2 2 2 2 2 1 

Age of diagnosis (years) 0  0   0   0   0   0   1, 3   

FEV1%  22, 26  28, 35   43, 39   44, 51   59, 61   78, 70   97, 98   

FVC%  32, 39   48. 53   58, 54   64, 72   75, 77   90, 90   103, 106   

Weight (kg)  48, 46   53, 47   51, 49   56, 48   57, 53   65, 56   73, 64   

Height (cm)  167, 159   169, 156   167, 160   174, 158   170, 158   173, 161   177, 164   

P. aeruginosa Yes Yes Yes Yes Yes Yes No 

B. cepacia No No No No No No No 

S. aureus No Yes, No Yes, No No Yes, No No No 

MRSA No No No No No No No 

Pancreatic insufficiency Yes Yes Yes Yes Yes Yes Yes 

CF related diabetes Yes Yes Yes No, Yes No No No 

Hospitalisation (not for IVs) No No No No No No No 

Number of hospital IV days 29+  15-28, 29+ 29+, 1-14 1-14, 15-28 0  0  0  

Number of hospital IV days 0 1-14, 29+ 0 0, 1-14 0 0 0 
aWe created an example individual for each group using the median values of the continuous predictors and the most 

common value of each categorical variable within that group. For hospital and home IV days we obtained the median 

number of days and then assigned the relevant category. This was done separately for males and females. 
b Values are shown as ‘male, female’, except were the value for males and females was the same. 

(ii) Predicted survivor curves based on the final model for example individuals with characteristics shown in the table above. 
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Supplementary Figure 5. Predicted survival curves from landmark age 40 for example 

individuals in groups defined by 5-year survival probabilities. For individuals in the Registry 

at age 40 between 2013 and 2015 we obtained their predicted 5-year survival probabilities 

and categorized into groups with 5-year survival probabilities <0.5, (0.5,0.7,], (0.7,0.8], 

(0.8,0.9], (0.9,0.95], (0.95,0.99], (0.99, 1]. An example individual was created for each group.  

(i) Characteristics of example individualsa in groups defined by 5-year survival probability. Results are not shown for groups 

of less than 5 individuals.  

5-year survival probability group <0.5 (0.5,0.7] (0.7,0.8] (0.8,0.9] (0.9,0.95] (0.95,0.99] (0.99,1] 

Example person 1 2 3 4 5 6 7 

Males, Femalesb        

Genotype (no. copies of F508del) - 2 2 2,1 2,1 1 1 

Age of diagnosis (years) -  2, 0  1, 0   1, 4   3, 3   2, 14   29, 13   

FEV1% -  27, 25   31, 28   38, 41   51, 47   68, 65   92, 92   

FVC% -  42, 43   60, 45   64, 59   70, 66   93, 81   97, 96   

Weight (kg) -  67   64   63   68   75   85   

Height (cm) -  173   170   173   176   176   175   

P. aeruginosa - Yes Yes Yes Yes Yes No 

B. cepacia - No No No No No No 

S. aureus - No No No No No No, Yes 

MRSA - No No No No No No 

Pancreatic insufficiency - Yes Yes Yes Yes Yes No 

CF related diabetes - Yes Yes Yes No, Yes No No 

Hospitalisation (not for IVs) - No No No No No No 

Number of hospital IV days - 29+ 15-28, 1-14 1-14 0, 1-14  0  0  

Number of hospital IV days - 29+, 1-14 0, 1-14 0 0 0 0 
aWe created an example individual for each group using the median values of the continuous predictors and the most 

common value of each categorical variable within that group. For hospital and home IV days we obtained the median 

number of days and then assigned the relevant category. This was done separately for males and females. 
b Values are shown as ‘male, female’, except were the value for males and females was the same. 

 (ii) Predicted survivor curves based on the final model for example individuals with characteristics shown in the table 

above. 
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Supplementary Figure 6. Predicted survival curves from landmark age 50 for example 

individuals in groups defined by 5-year survival probabilities. For individuals in the Registry 

at age 50 between 2013 and 2015 we obtained their predicted 5-year survival probabilities 

and categorized into groups with 5-year survival probabilities <0.5, (0.5,0.7,], (0.7,0.8], 

(0.8,0.9], (0.9,0.95], (0.95,0.99], (0.99, 1]. An example individual was created for each group.  

(i) Characteristics of example individualsa in groups defined by 5-year survival probability. Results are not shown for groups 

of less than 5 individuals. 

5-year survival probability group <0.5 (0.5,0.7] (0.7,0.8] (0.8,0.9] (0.9,0.95] (0.95,0.99] (0.99,1] 

Example person 1 2 3 4 5 6 7 

Males/Femalesb        

Genotype (no. copies of F508del) - 1, 2 2, - 2, 1 2, 1 1 1, - 

Age of diagnosis (years) -  4, 1   4, -   1   6, 28   28, 34   39, -   

FEV1% -  31, 30   27, -   48, 49   55, 64   82, 76   113, -  

FVC% -  51, 64   63, -   72, 69   76, 81   91, 90   108, -   

Weight (kg) -  65, 55   76, -   76, 61   80, 66   79, 65   86, -   

Height (cm) -  172, 158   174, -   17, 165   176, 162   176, 163   177, -   

P. aeruginosa - Yes Yes, - Yes No, Yes No No, - 

B. cepacia - No No, - No No No No, - 

S. aureus - No No, - No No No No, - 

MRSA - No No, - No No No No, - 

Pancreatic insufficiency - Yes Yes, - Yes Yes Yes, No No, - 

CF related diabetes - Yes Yes, - Yes, No No No No, - 

Hospitalisation (not for IVs) - No No, - No No No No, - 

Number of hospital IV days - 1-14 1-14, - 0 0  0  0, -  

Number of hospital IV days - 0 1-14, - 0 1-14 0 0, - 
aWe created an example individual for each group using the median values of the continuous predictors and the most 

common value of each categorical variable within that group. For hospital and home IV days we obtained the median 

number of days and then assigned the relevant category. This was done separately for males and females. 
b Values are shown as ‘male, female’, except were the value for males and females was the same. 

 (ii) Predicted survivor curves based on the final model for example individuals with characteristics shown in the table 

above. 
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Supplementary Figure 7. [This is a colour version of Figure 2 in the main text.] Calibration 

plots using the final model (Model 2) for prediction of 2-year, 5-year and 10-year survival 

from landmark ages 20, 30, 40 and 50. The vertical axis shows the mean model-based x-year 

survival probability (x=2,5,10) in quintiles of the model-based probabilities. The horizontal 

axis shows the mean x-year survival probability obtained using Kaplan-Meier estimates in 

quintiles of the model-based probabilities. The five points have been joined by a line. 

  

  
 

Supplementary Figure 8. [This is a colour version of Figure 4 in the main text.] Plots 

showing the distribution of 2-, 5- and 10-year survival probabilities from landmark ages 20, 

30, 40 and 50 for individuals in the Registry at those ages between 2013 and 2015.  
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