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Abstract6

Thermal runaways in batch processes can lead to significant issues for safety and performance7

during normal operation in industry. This is usually circumvented by running such processes8

at lower temperatures than necessary, hence losing the opportunity to intensify production9

and therefore reduce reaction time. The detection of the thermal stability of batch systems10

can potentially be embedded in an advanced control scheme, therefore improving the perfor-11

mance by being able to intensify the process, achieving higher yields while keeping a stable12

operation.13

The derivation of stability criterion K for high-order reactions is presented in this work,14

resulting in better control when embedded in Model Predictive Control (MPC) schemes than15

standard nonlinear MPC schemes, based on the work in Kähm and Vassiliadis (2018). The16

non-trivial extension of stability criterion K for multi-component reactions with application17

to MPC systems is discussed in detail. The logic and verification of the form of the resul-18

tant Damköhler number in particular is discussed and demonstrated with case studies. A19

comparison of various MPC schemes is presented, showcasing that the implementation using20

criterion K results in intensified processes kept stable at all times, whilst reducing computa-21

tional cost with regards to standard nonlinear MPC schemes. Furthermore, reaction times22

are reduced by at least two-fold with respect to processes run at constant temperatures.23
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Nomenclature26

Roman Symbols27

Symbol Description28

A heat transfer coefficient area [m2]29

[A] , [B] , [C] concentration of component A, B and C, respectively
[
kmol m−3

]
30

B Barkelew number [−]31

Cp, CpC heat capacity of reaction mixture and coolant, respectively
[
kJkg−1 K−1

]
32

Da Damköhler number [−]33

∆Hr enthalpy of reaction
[
kJmol−1

]
34

Ea activation energy of the reaction
[
Jmol−1

]
35

f nonlinear function for differential equation [−]36

h equations for physical properties [−]37

J Jacobian matrix [−]38

Jzl Jacobian matrix entry in row z, column l [s−1]39

k0 pre-exponential Arrhenius constant for the reaction
[(

m3 kmol−1
)n−1

s−1
]

40

mB, mDares , mγ, mSt stability criterion coefficients [−]41

N number of differential equations [−]42

nA, nB reaction orders of components A and B, respectively [−]43

qC volumetric folw rate of coolant [m3 s−1]44

Qgen heat generation by exothermic reaction
[
J s−1

]
45

R universal molar gas constant
[
Jmol−1 K−1

]
46

r reaction rate
[
kmol m−3s−1

]
47

Re Reynolds number in reactor [−]48

St Stanton number [−]49
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t time of simulation [s]50

tc, tp control and prediction horizon for MPC (s)51

TR, TC, Tsp temperature of reactor contents, coolant and set point reaction set52

point, respectively [K]53

tref reference time for divergence of Jacobian [s]54

U heat transfer coefficient [Wm−2, K−1]55

VR, VC volume of the reactor and the cooling jacket, respectively [m3]56

x differential variable [−]57

yj, ȳj, ŷj mass fraction, mole fraction and volume fraction of component j, re-58

spectively [−]59

Greek Symbols60

Symbol Description61

εtol ODE solver tolerance [−]62

γ Arrhenius number [−]63

λj thermal conductivity of component j
[
W m−1 K−1

]
64

µj viscosity of component j [Pa s]65

νA, νB stoichiometric coefficients of components A and B [−]66

Φ objective function for MPC algorithm [−]67

ρ, ρC density of reactor contents and coolant, respectively
[
kgm−3

]
68

εdiv error of the divergence [s−1]69

Superscripts70

Symbol Description71

i time step of simulation [−]72

Other Symbols73
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Symbol Description74

E divergence estimate at boundary of stability [s−1]75

K stability criterion [s−1]76

1. Introduction77

The loss of thermal stability in chemical reactions leads to an uncontrolled increase in78

reaction temperature which can cause significant safety issues, an increased downtime of79

reactors and hence high financial loss. In batch processes thermal runaways can occur which80

then require the reactions to be stopped by inhibitors, making the product unsellable. If no81

such action is taken an explosion or uncontrolled discharge of chemicals can result, bearing82

high risks for the health of workers and the environment.83

Model Predictive Control (MPC) is an advanced control scheme within which the control84

variables of the system are optimised whilst considering system constraints. It is common in85

literature to use a linearisation of the system present. This enables the application of linear86

MPC schemes (Rawlings and Mayne, 2015; Ellis et al., 2014; Haber et al., 2011; Mayne and87

Michalska, 1990). For linear MPC schemes the closed-loop stability can be proven theoreti-88

cally by using Lyapunov functions (Huang et al., 2012; DeHaan and Guay, 2010). End-point89

constraints are often employed for a very large prediction horizon if such a Lyapunov function90

cannot be found. Larger time frames are necessary for complex and highly nonlinear systems91

which leads to higher computational cost in order to guarantee stability. If the stability of92

the system can be quantified by a criterion, this can reduce the time frame of simulation used93

and hence reduce computational time.94

Previous work on MPC for batch reactors considered applying linearised MPC schemes in95

which the linear models are constantly updated during the process with continuous parameter96

estimation (Nagy and Braatz, 2003; Kalmuk et al., 2017), or offline step response model97

identification to model the system correctly at each operating point (Kufoalor et al., 2015).98

Shrinking horizon MPC schemes were introduced in literature which optimise the batch99

process over the whole process duration, hence proving to give stable operation but resulting100

in very large optimisation problems with large computational cost (Simon et al., 2008).101

Furthermore, MPC schemes were introduced in literature which make use of neural network102

models of the system dynamics, which are then used for the optimisation stage within MPC103

(Hosen et al., 2011). These approaches do not consider the thermal runaway behaviour of104

batch processes specifically but assume that it can be dealt with by approximation of the105

system dynamics around a nominal operating point. In this work an alternative approach is106
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presented which makes use of the full nonlinear dynamic model, obtained from first principles,107

to find the best inputs to the batch reactor system.108

The application of MPC with an integrated stability criterion enables a safer process109

control and the advantageous possibility of increasing the efficiency of exothermic chemical110

batch processes. For the application of MPC to chemical reactors, accurate process models111

are required. Hence stability criteria with as little computational cost as possible are of112

profound importance, as detailed process models require high computational time.113

The theory on thermal explosions (Semenov, 1940) characterises the change in stability114

of stationary processes with simple reaction kinetics and is not adequate for the analysis of115

dynamic systems.116

The Routh-Hurwitz Criterion (Anagnost and Desoer, 1991; Stephanopoulos, 1984; Hur-117

witz, 1895; Routh, 1877) is commonly used to quantify the stability of operating points for118

continuous steady-state systems. This criterion requires that the dynamics can be linearised119

close to such operating points. This cannot be done for strongly nonlinear batch processes,120

as wrong predictions of system dynamics are obtained with such models. Hence it is not121

applicable to the systems considered in this paper.122

The Lyapunov exponent method enables to quantify the chaotic nature of processes123

(Melcher, 2003; Strozzi and Zald́ıvar, 1994). The convergent or divergent nature of highly124

nonlinear processes can be reliably predicted with this method. This characterisation re-125

quires to simulate the nonlinear system for each differential variable for a given time frame,126

which ideally should be infinitely large. Therefore, the evaluation of Lyapunov exponents127

for nonlinear systems with many variables can be very expensive, which limits the applica-128

bility to MPC schemes which require low computational cost. Nevertheless, its reliability at129

predicting system stability is a key advantage for a potential MPC implementation.130

The divergence method (Strozzi and Zald́ıvar, 1999; Arnold, 1973) also derives from chaos131

theory; compared to Lyapunov exponents it does not describe the transition to instability in132

a reliable manner. In Kähm and Vassiliadis (2018) it was shown that using the divergence133

criterion to detect thermal runaways in the exothermic batch reactions is not feasible. In134

this work it is shown that for more complex reaction kinetics the divergence criterion is135

not feasible for the detection of thermal stability either. Hence, the implementation of the136

divergence criterion to MPC schemes leads to much less efficient processes.137

In Rossi et al. (2015) a stability criterion was used to give a different advanced control138

scheme. A Boolean variable which gives rise to the system stability is determined by an139

algorithm. Similar to logarithmic barrier functions, this Boolean variable comes into effect140

within the objective function if the process enters an unstable operating regime. The function141

defining this Boolean variable is system-specific, which leads to large implementation costs142
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for new systems. As for other penalty function methods, this approach can also lead to badly143

scaled problems. It was tested if including the stability criterion within the objective function144

would result in better control. The resulting problem, as expected, turned out to be badly145

scaled and hence was deemed as not feasible.146

The criterion for thermal stability introduced in Kähm and Vassiliadis (2018) enables147

the efficient control of exothermic batch processes with small computational cost for the148

implementation with MPC. The criterion of thermal stability K was developed for exothermic149

batch reactions with overall reaction orders of 1 to 3, in which the reaction rate depends solely150

on the concentration of one component.151

The aims of this paper are twofold. The first aim is the extension of stability criterion K152

for exothermic batch processes with a single reaction composed of two reactants.153

The kinetics of the analysed chemical reaction scheme have the following properties:154

• the kinetics depend on the concentration of both reaction components155

• the reactants each have varying stoichiometric coefficients156

• the reaction order for each reaction component varies between 1 and 4157

The second aim of this paper is to improve the efficiency of batch processes with the use of158

stability criterion K implemented with MPC for all the above reaction schemes. Of major159

importance for the implementation is computational cost and reliability.160

The paper is organised as follows: in Section 2 the process models for each reaction scheme161

considered, together with mass and energy balances are presented. In Section 3 stability162

criteria found in literature are presented and assessed in terms of their feasibility of being163

implemented with MPC. In Section 4 stability criterion K, based on the divergence criterion,164

is derived and the logic behind it is explained. The coefficients giving rise to criterion K are165

presented and the resulting stability criterion profiles are shown for each process. In Section166

5 process intensification based on criterion K embedded in a standard MPC scheme for167

exothermic batch processes is presented. This novel control scheme is compared to standard168

control schemes in terms of stability and computational cost. A detailed comparison of169

each implementation is carried out to give recommendations for potential use in industry.170

In Section 6 the results of this paper are summarised and possibilities for future work are171

discussed.172

2. Process model173

2.1. Mass and energy balances for batch reactors174

The batch reactor system considered in the following simulations is shown in Figure 1.175
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Figure 1: Batch reactor diagram for simulated systems.

The overall mass balance of the reactor contents with respect to time t is given by:176

d (ρVR)

dt
= 0 (2.1)

where VR is the reactor volume and ρ is the reacting mixture density.177

The following reaction is considered to occur within the batch reactor:178

νAA + νBB→ C (2.2)

where νA and νB are the stoichiometric coefficients of reactants A and B.179

Therefore the mass of the three components A, B and C have to be known. The mass180

balance for each reagent and product is given by:181

d [A]

dt
= −r (2.3)

d [B]

dt
= −r (2.4)

d [C]

dt
= r (2.5)

where r is the reaction rate, presented in the following section.182
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The energy balance of the reaction mixture is given by:183

d

dt
(ρVRCpTR) = r (−∆Hr)VR − UA (TR − TC) (2.6)

where Cp is the reaction mixture heat capacity, ∆Hr is the reaction enthalpy, U is the heat184

transfer coefficient from reactor contents to the cooling jacket, A is the heat transfer area of185

the cooling jacket, and TC is the coolant temperature.186

The energy balance for the cooling jacket is given by:187

d

dt
(VC ρC CpC TC) = qC ρC CpC (TC,in − TC) + U A (TR − TC) (2.7)

where VC is the cooling jacket volume, ρC is the coolant density, CpC is the coolant heat188

capacity and TC,in is the coolant inlet temperature.189

2.2. Reaction kinetics190

The reactions analysed in this work occur in a homogeneous liquid phase. Furthermore,191

the reactions are assumed to be irreversible and exothermic. The reaction scheme is given192

by a single reaction, given in Equation 2.2.193

The rate of reaction can be described with an Arrhenius expression (Davis and Davis,194

2003), including the order of reaction nA and nB with respect to reactants A and B, respec-195

tively. This expression is given by:196

r = k0 exp

(
− Ea
RTR

)
× [A]nA [B]nB (2.8)

where [A] and [B] are the concentrations of components A and B, Ea is the activation energy197

of the reaction, TR is the reactor temperature, R is the universal molar gas constant and k0198

is the pre-exponential Arrhenius constant.199

2.3. Process parameters200

The parameters specific to the reaction kinetics and energy produced are varied to get201

a range of process scenarios, for which the stability is analysed. The different processes are202

denoted e.g. by P12 or P5, corresponding to process 12 and 5 for the reaction scheme above,203

respectively. Below the various process parameters are shown.204

The reaction scheme considered in this work corresponds to a more complex kinetic scheme205

than that presented in Kähm and Vassiliadis (2018). Therefore, 20 different process are206

considered for this reaction scheme. The process parameters are summarised in Table 1.207
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Table 1: Process parameters for the reaction scheme.

Process k0 × 10−3 ∆Hr nA nB [A]0 νA νB Ea/R[
m3(n−1)

kmol(n−1)s

]∗ [
kJ

mol

]
[−] [−]

[
kmol
m3

]
[−] [−] [K]

P1 10 -150 1.0 1.0 10.0 1.0 1.0 9525
P2 3.0 -110 2.0 2.0 10.0 1.0 1.0 9525
P3 60 -110 1.5 1.0 10.0 1.0 1.0 9525
P4 80 -110 1.0 1.5 10.0 1.0 1.5 9525
P5 120 -150 1.0 1.0 8.0 1.0 1.0 9400
P6 50 -150 1.5 1.0 8.0 1.0 1.0 9400
P7 23 -130 1.5 1.5 8.0 1.0 1.0 9450
P8 20 -140 2.0 1.0 8.0 1.0 1.0 9450
P9 5.0 -110 2.0 2.0 8.0 1.0 1.0 9525
P10 90 -130 1.5 1.0 8.0 2.0 1.0 9525
P11 100 -130 1.5 1.0 8.0 2.0 1.5 9525
P12 125 -150 1.5 1.0 6.0 1.5 1.5 9525
P13 30 -150 2.5 1.0 6.0 1.0 2.0 9700
P14 5.0 -180 3.5 1.0 6.0 1.5 2.5 9650
P15 1.5 -280 4.0 1.0 6.0 2.5 2.5 9670
P16 110 -150 1.0 1.5 5.0 1.0 1.0 9525
P17 80 -150 1.0 1.5 5.0 1.0 1.0 9350
P18 120 -150 1.0 1.5 5.0 1.0 1.0 9550
P19 120 -140 1.0 1.5 5.0 1.0 1.0 9480
P20 120 -140 1.0 1.5 5.0 1.0 1.0 9500

∗ n = nA + nB

The initial concentration of component B, and the initial temperature of the reactor208

are held constant for all the above processes. These are set to [B]0 = 8.0 kmolm−3 and209

TR0 = 405 K.210

The stirrer used in this model is assumed to result in a turbulent mixing of the reactor211

contents with a Reynolds number of Re = 105. Hence, the concentration and temperature of212

the reacting mixture only varies across an insignificant boundary layer at the reactor walls.213

Therefore, using uniform reactor properties (ideal mixing) is a fair assumption.214

The changes in viscosity and specific heat capacity of the reaction mixture are evaluated215

according to the composition, together with physical data given in Table 2.216
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Table 2: Physical properties of components A, B and C.

Physical property ρ µ Cp λ
[kg m−3]

[
Pas−1

] [
Jkg−1 K−1

] [
Wm−1 K−1

]
Component

A 911 1.00× 10−4 1100 0.300
B 790 3.00× 10−4 950 0.250
C 1200 9.00× 10−4 850 0.150

The changes in density, viscosity and heat capacity of the reaction mixture with changing217

temperature and composition are approximated in the simulation. Depending on the com-218

position the following equations are used to estimate the physical properties of the reaction219

mixture:220

1

ρ
=

∑
j

yj/ρj (2.9)

lnµ =
∑
j

ȳj lnµj (2.10)

Cp =
∑
j

yj Cpj (2.11)

λ =
∑
j

ŷj λj (2.12)

where yj is the mass fraction, ȳj is the molar fraction, and ŷj is the volume fraction of221

component j. These equations are obtained from Hirschfelder et al. (1955), Teja (1983) and222

Green and Perry (2008).223

The accurate description of the temperature and composition relationships for liquid mix-224

tures is very difficult. Hence, for the change in temperature linear interpolation of tabulated225

physical properties for water, ethylene oxide and ethylene glycol, components A, B and C226

respectively, are used. The temperature dependence of the above parameters is obtained227

from Dever et al. (2004), Crittenden et al. (2012) and Bohne et al. (2010).228

The heat transfer coefficient U of the reaction mixture to the cooling jacket is evaluated229

from the properties of the reaction mixture and the coolant, as well as the flow rate of coolant230

(Sinnot, 2005).231

2.4. Reactor parameters232

The chemical reactor models simulated have a cooling/heating jacket, as can be seen in233

Figure 1, which controls the reactor temperature by varying the coolant flow rate. A stirrer234

in each reactor is assumed to be ideal in that all reactor properties are uniform within the235

reaction mixture. The coolant flow rate is controlled by either a PI controller or by MPC.236

10



The reactor properties for each size of reactor are shown in Table 3.237

Table 3: Reactor properties used for simulations.

Parameter VR VC A qC,max TC,in

[m3] [m3] [m2] [m3 s−1] [K]
P1 − P5 32 2.0 49 0.060 300
P6 − P10 20 1.4 36 0.043 300
P11 − P15 8 0.5 20 0.023 300
P16 − P20 0.8 0.17 4.2 0.005 300

The verification of stability criterion K requires a transition from stable to unstable238

operation. Hence a PI controller with fast control is used, the parameters of which are239

obtained by trial and error. The standard form of PI controllers is given in Stephanopoulos240

(1984). The parameters of the PI controller used are given in Table 4.241

Table 4: Parameters for PI controller used in case studies.

Parameter Value

Proportional (P), Kp 10 m3 s−1 K−1

Integral (I), τI 1000 Ks2 m−3

All simulations presented for this work were done with an HP EliteDesk 800 G2 Desktop242

Mini PC with an Intelr CoreTM 3.20 GHz i5-65000 processor with 16 GB RAM. The operating243

system was Windows 7 Enterprise. The computational language used is MATLABTM, with244

the readily available algorithm ode15s(Shampine et al., 1999) for dynamic simulations. Due to245

its simplicity of developing code, MATLABTM was used instead of more efficient programming246

languages as C, C++ and FORTRAN.247

3. Analysis of stability criteria248

In the Introduction the Lyapunov exponent method and the divergence method were iden-249

tified as the most promising techniques to analyse the thermal stability of exothermic batch250

processes when embedded with MPC. The advantages and disadvantages of both methods251

are examined in this section.252

3.1. Lyapunov exponent method253

The theory on Lyapunov exponents was derived from chaos theory (Strozzi and Zald́ıvar,254

1994; Melcher, 2003; van der Kloet and Neerhoff, 2003). For chaotic systems it can be255

determined if the trajectory of system variables diverge or converge when experiencing a256
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small initial perturbation. Hence, each system variable gives rise to a Lyapunov exponent,257

denoted by Λ.258

As was discussed in Kähm and Vassiliadis (2018), the time frame required to evaluate259

Lyapunov exponents, as well as the initial perturbation ε, need careful tuning. In order to260

not overlook a thermal runaway it is necessary to check the stability for many values of final261

time tf , leading to to a large number of simulations. Hence this results in high computational262

time. Further work is necessary to reduce the computational time of this method to make it263

viable for online MPC schemes.264

3.2. Divergence method265

A general set of nonlinear differential equations is given by:266

ẋ1 = f1 (x, t) (3.1a)
...

...
...

ẋN = fN (x, t) (3.1b)

where N is the number of differential variables ẋ, and f (x, t) is a general nonlinear function.267

Using a Taylor series for a first order approximation yields:268

ẋ = Jx (3.2)

where J is the Jacobian matrix including all first order derivatives. The entry at row z and269

column l, Jzl, is evaluated by:270

Jzl =
∂fz
∂xl

(3.3)

To detect a thermal runaway, only the diagonal entries of the Jacobian with respect to the271

variables contributing towards the heat of reaction are required (Copelli et al., 2014; Bosch272

et al., 2004; Kähm and Vassiliadis, 2018).273

The heat generation Qgen in the reactor is given by:274

Qgen =
∑
z

rz (−∆Hrz) VR (3.4)

Hence the state variables of interest are the concentrations in each reaction rate rz, as275

well as the reactor temperature TR.276

A more detailed derivation of the divergence of the Jacobian matrix and the divergence277

criterion is shown in Kähm and Vassiliadis (2018).278
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3.2.1. Jacobian matrix derivation for batch reaction model279

The relevant Jacobian matrix entries of the relevant variables and system Equations (2.1)−280

(2.7) lead to the following expression:281

div [J]× tref = −νAnA k0 exp

(
− Ea
RTR

)
× [A]nA−1 [B]nB

−νBnB k0 exp

(
− Ea
RTR

)
× [A]nA [B]nB−1

+
1

ρCpVR

[
Ea
RT 2

R

k0 exp

(
− Ea
RTR

)

× [A]nA [B]nB (−∆Hr)VR − UA

]
(3.5)

div [J]× tref = − (νAnADaA + νBnBDaB)× exp (−γ)

+B γ DaA exp (−γ)− St (3.6)

where282

B =
[A] (−∆Hr)

ρCpTR

(3.7a)

γ =
Ea
RTR

(3.7b)

DaA = k0 [A]nA−1 [B]nB tref (3.7c)

DaB = k0 [A]nA [B]nB−1 tref (3.7d)

St =
UA

ρCpVR

tref (3.7e)

where B is the Barkelew number, γ is the Arrhenius number, DaA andDaB are the Damkóhler283

numbers for components A and B, and St is the Stanton number.284

From Equation (3.6) it can be seen that the divergence only depends on the stoichiometric285

coefficients, the reaction orders, and the dimensionless numbers given in Equations (3.7a)−286

(3.7e). The following analysis shows that the value of tref has no influence on the value of287

the divergence of the Jacobian matrix as it cancels out.288

3.2.2. Case studies with divergence criterion289

The temperature profiles together with the respective divergence profiles for processes290

P1−P10 are shown in Figures 3 and 5. The temperature set point is increased in two stages:291

initially a stable process is present. As the temperature of the system increases, the processes292

becomes uncontrollable, as the cooling water capacity is not sufficient to keep the process293

under control. After the second increase in temperature a thermal runaway occurs. Similar294
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temperature and divergence profiles are obtained for processes P11 − P20. Hence, for clarity,295

these graphs are not explicitly shown here. The temperature and divergence profiles for296

processes P1 − P5 are shown in Figure 2 and Figure 3.297

Figure 2: Temperature profiles for processes P1 − P5.

Figure 3: Divergence profiles for processes P1 − P5.

For processes P1 −P5 the divergence profiles follow a similar trajectory as the respective298

temperature profiles. After loss of stability the divergence of the Jacobian matrix, div [J],299
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increases once the temperature of the system starts increasing. The temperature and diver-300

gence profiles for processes P6 − P10 are shown in Figures 4 and 5.301

Figure 4: Temperature profiles for processes P6 − P10.

Figure 5: Divergence profiles for processes P6 − P10.

In processes P6−P10 the divergence div [J] increases significantly once a thermal runaway302

can be observed from the respective temperature profiles. The temperature and divergence303

profiles for processes P11 − P15 are shown in Figure 6 and Figure 7.304
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Figure 6: Temperature profiles for processes P11 − P15.

Figure 7: Divergence profiles for processes P11 − P15.

For processes P11, P13 and P14 the same behaviour for div [J] as for all other processes305

above is observed. During processes P12 and P15 the divergence decreases towards the end306

of the reaction are due to the fast kinetics which cause the concentration of each reactant to307

decrease very quickly, hence resulting in a stabilising effect for the overall system.308

Similar trajectories for reactor temperature and divergence of the Jacobian are obtained309

for processes P11−P20. The key information obtained from these graphs is that the behaviour310
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of div [J] is in accordance with the temperature of the system at the boundary of stability.311

The temperature and divergence profiles for processes P16 − P20 are shown in Figure 8 and312

Figure 9.313

Figure 8: Temperature profiles for processes P16 − P20.

Figure 9: Divergence profiles for processes P16 − P20.

From Figures 2 and 9 one common feature for div [J] can be observed: even for stable314

operation of the batch processes the divergence is positive due to the constantly changing315
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properties as no steady-state is present. The condition that div [J] ≤ 0 during stable opera-316

tion is therefore only valid if the temperature of the system is very low, rendering it infeasible317

for intensifying batch processes. To prove this condition, processes P16 − P20 are simulated,318

but with much lower initial temperatures. The temperature and divergence profiles for these319

processes are shown in Figures 10 and 11.320

Figure 10: Temperature profiles for processes P16 − P20.

Figure 11: Divergence profiles for processes P16 − P20.
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As can be seen in Figures 10 and 11, only for extremely low temperatures does the321

divergence criterion become negative. This significant deviation of the stability criterion322

div [J] ≤ 0 to the actual boundary of stability hence requires a function to evaluate stability323

criterion K, which was introduced in Kähm and Vassiliadis (2018).324

3.2.3. Sensitivity analysis of divergence criterion325

The values of the divergence criterion, as shown in Figures 3 − 10, are of the order of326

10−3. This is not due to numerical effects of the ODE solver employed, since the divergence327

is evaluated exactly using algebraic expressions (Equation (3.6)).328

To prove this point, a sensitivity analysis of process P5 is carried out with varying toler-329

ances for the ODE solver employed. The tolerances εtol used, from lowest to highest accuracy,330

are εtol = 10−6, 10−7, 10−8, 5 × 10−9, 4 × 10−9. The simulation using the highest accuracy,331

namely εtol = 4 × 10−9, is used as the reference. The error with respect to the reference332

trajectory is plotted on a logarithmic scale in Figure 12.333

Figure 12: Logarithmic plot of error profiles for each sensitivity setting with respect to εtol = 4 × 10−9 for
process P5.

As can be seen in Figure 12 the errors are below 10−6 at all times.334

The tolerance setting used throughout all simulations is εtol = 10−8. As can be seen335

from Figure 12 the error for the divergence obtained is below 10−8 at all times. Hence, the336

numerical effects due to the ODE solver used do not cause the divergence to be positive337

during stable operation.338
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3.3. Results of the analysis339

The necessity of long prediction horizons to obtain reliable results for the Lyapunov340

exponent method limits its use when embedded in MPC. This is due to the increased com-341

putational time required to evaluate the thermal stability with Lyapunov exponents.342

The divergence method, as was shown above for processes P1 − P20, requires less com-343

putational time, but does not describe the transition to instability reliably. Only in batch344

processes with very low reactor temperatures does the divergence criterion indicate stable345

operation.346

The divergence method results in a systematic offset of the loss of stability into the347

positive region for div [J].348

A stability criterion, for which the divergence of the Jacobian matrix is reduced by a349

correction function, can describe the point at which the loss of thermal stability for exothermic350

batch reactors occurs with little computational time.351

4. Stability criterion K352

Stability criterion K describes the transition of thermal stability for exothermic batch353

processes. During stable operation the criterion K has to be smaller than or equal to zero:354

K ≤ 0→ stableprocess (4.1)

When the process analysed becomes unstable due to a thermal runaway, the criterion355

becomes positive.356

The stability criterion K is derived in the form of a difference equation, based on the357

divergence criterion of the Jacobian matrix div [J] (Strozzi and Zald́ıvar, 1999; Arnold, 1973)358

and a correction function E (Kähm and Vassiliadis, 2018). In the evaluation step i at time359

t(i) the criterion K is evaluated by taking the difference between the divergence at step i,360

div [J](i), and the correction function at step i, E (i):361

K(i) = div [J](i) −
∣∣E (i)

∣∣ (4.2)

The correction function E (i) is an approximation of div [J](i) at the point of transition362

from stable to unstable operation. It is evaluated using div [J](i−1) in the previous step i− 1363

and the dimensionless numbers which influence the divergence:364

E (i) = f
(

div [J](i−1) , Da(i), Da(i−1), B(i), B(i−1), St(i), St(i−1), γ(i), γ(i−1)
)

(4.3)

where he dimensionless variables in Equation (4.3) are called the Barkelew number B, the365

Arrhenius number γ, the Damköhler number Da, and the Stanton number St.366
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To further investigate stability criterionK a detailed analysis on the divergence is required,367

which is presented in the following section.368

4.1. Derivation369

From the expression found for the divergence, stability criterion K is derived. This is370

done by varying each individual variable at a time, while keeping the others fixed, until the371

resulting process is unstable. The gradient of the divergence with respect to that variable at372

the boundary of stability then becomes the particular gradient coefficient.373

In order to derive the gradient coefficients, the effect of varying the reaction rate constant374

k0, the enthalpy of reaction ∆Hr, the heat transfer coefficient U and the activation energy375

Ea are considered. The correction function E is obtained after a first order Taylor expansion376

of the logarithm of the divergence, ln (div [J]). The resulting expression is given by:377

d ln (div [J]) =
(
∂ ln(div[J])
∂ ln(B)

)
Dares
tref

, γ, St
tref

d ln (B) +

(
∂ ln(div[J])

∂ ln
(

Dares
tref

)
)
B, γ, St

tref

d ln
(
Dares
tref

)
+

(
∂ ln(div[J])
∂ ln(γ)

)
B, Dares

tref
, St
tref

d ln (γ) +

(
∂ ln(div[J])

∂ ln
(

St
tref

)
)
B, Dares

tref
, γ

d ln
(
St
tref

)
(4.4)

d ln (div [J]) = mB d ln (B) +mDares d ln

(
Dares

tref

)
+mγ d ln (γ) +mSt d ln

(
St

tref

)
(4.5)

where m are the gradient coefficients obtained from the Taylor expansion. A detailed deriva-378

tion of this expression is given in Kähm and Vassiliadis (2018). The variable Dares is the379

resultant Damköhler number of the system which is discussed below. In Kähm and Vassil-380

iadis (2018) gradient coefficients for a single reaction depending solely on component A were381

found, which are given in Table 5.382

Table 5: Gradient coefficients found for a single reaction depending on one component (Kähm and Vassiliadis,
2018).

Gradient coefficient mB mDares mγ mSt

Value 1.28 1.21 -26.9 -0.187

Using the derivation of the divergence, stability criterion K will now be derived for these383

reaction schemes. The dimensionless variables found in Equations (3.7a) − (3.7e) are used to384

find an expression for E (i). As can be seen in Equation (3.6), two Damköhler numbers appear385

within the divergence of the batch system due to the presence of two reagents influencing386

the reaction rate. Therefore a weighted average of both Damköhler numbers is required for387

the derivation of the gradient coefficients for the function E (i). From Equation (3.6) it can388
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be seen that a natural form of the resultant Damköhler number Dares should be given by the389

following expression:390

Da(i)
res = nAνADa

(i)
A + nBνBDa

(i)
B (4.6)

To check the validity of this expression, the form of criterion K from Kähm and Vassiliadis391

(2018), where the reaction does not depend on the concentration of reactant B, is obtained392

by setting nB = 0 in Equations (3.7c)− (3.7d). This reduces Dares to give Dares = nAνADaA,393

which is the expression found in Kähm and Vassiliadis (2018). Hence the form of Dares394

presented above is logical and will be used throughout this work. Furthermore, the influence395

of stoichiometric coeffifients and reaction orders with respect to each reagent present for each396

reaction is hence included in this manner.397

E (i) = div [J](i−1)

[
1 +mSt ln

(
St(i)

St(i−1)

)
+mB ln

(
B(i)

B(i−1)

)
+mDares ln

(
nAνADa

(i)
A + nBνBDa

(i)
B

nAνADa
(i−1)
A + nBνBDa

(i−1)
B

)
+mγ ln

(
γ(i)

γ(i−1)

)]
(4.7)

Using the following definition of the derivative of a logarithm:398

d ln (y) =
dy

y
= lim

∆yi→0

∆y(i)

y(i−1)
≈ y(i) − y(i−1)

y(i−1)
(4.8)

an expression for the stability criterion K at step i, using the definition in Equation (4.2),399

can be found:400

K(i) = div [J](i) −
∣∣E (i)

∣∣ (4.9)

K(i) = div [J](i) −

∣∣∣∣∣div [J](i−1)

[
1 +mSt

St(i) − St(i−1)

St(i−1)
+mB

B(i) −B(i−1)

B(i−1)

+mDares

(
nAνADa

(i)
A + nBνBDa

(i)
B

)
−
(
nAνADa

(i−1)
A + nBνBDa

(i−1)
B

)
nAνADa

(i−1)
A + nBνBDa

(i−1)
B

+mγ
γ(i) − γ(i−1)

γ(i−1)

]∣∣∣∣∣ (4.10)

This is a similar expression as given in Kähm and Vassiliadis (2018), with the following401

difference: the reaction rate depends on both reagents A and B. Hence, both components ap-402

pear in the heat generation term in Equation (3.4). This means that both A and B contribute403
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towards the expression of the divergence obtained. Therefore two Damköhler numbers are404

obtained, given by Equations (3.7c) and (3.7d). Both Damköhler numbers depend on the405

pre-exponential Arrhenius factor k0 and the concentrations [A] and [B]. This dependence on406

each other leads to the problem that it is not possible to vary each dimensionless number407

without varying the other. Therefore, a weighted sum of both as shown in Equation (4.6) is408

tested for the derivation of criterion K leading to the following expression:409

K(i) = div [J](i) −

∣∣∣∣∣div [J](i−1)

[
1 +mSt

St(i) − St(i−1)

St(i−1)

+mB
B(i) −B(i−1)

B(i−1)
+mDares

Da
(i)
res −Da(i−1)

res

Da
(i−1)
res

+mγ
γ(i) − γ(i−1)

γ(i−1)

]∣∣∣∣∣ (4.11)

This is the final expression for K used for the PI-control and MPC scheme implementa-410

tions.411

As the value of gradients mDares , mB, mγ and mSt decreases, the value of E , which412

estimates the divergence at the boundary of stability, decreases. According to Equation (4.9),413

as the value of E is smaller, the condition of K becoming positive and hence predicting414

instability occurs earlier, making it a conservative stability measure. Therefore, from all415

the values for the gradients coefficients found, the most conservative ones are used for the416

function of E .417

In the following sections the derivation of gradient coefficients mDares , mB, mγ and mSt418

are carried out.419

4.2. Determination of gradient coefficients420

Variation with respect to Damköhler number421

The gradient at the boundary of stability with respect to the Damköhler number, Dares,422

is analysed first. To combine the influence of both reactants A and B, Dares is given by423

Equation (4.6). In contrast to the base processes P1−P20 in this section the pre-exponential424

Arrhenius coefficient k0 is increased until loss of stability, hence giving processes denoted425

by P1,(Da) − P20,(Da). A thermal runaway is caused by increasing the rate of reaction until426

the heat generated by the reaction exceeds the cooling capacity. All remaining parameters of427

each process are kept constant. The processes obtained when varying the other dimensionless428

variables is denoted in a similar fashion.429

The plots for processes P1,(Da) − P5,(Da) are given in Figure 13.430
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Figure 13: Variation of the divergence with respect to Dares/tref for processes P1,(Da)−P5,(Da). The crosses
indicate the points at the boundary of instability, and the dashed lines indicate the gradient at these points.

At the point where systems P1,(Da)−P20,(Da) become unstable the value ofDares is recorded431

and the gradient of ln (div [J]) at that point is found. This is indicated in Figure 13 as dashed432

lines. As can be seen, the lines are close to parallel. Therefore, the most conservative gradient433

obtained will give a good description of the divergence at the boundary of stability. Similar434

profiles and gradients are obtained for processes P6,(Da) − P20,(Da), as will be shown below.435

The extension of the Damköhler number for multi-component reactions is not trivial, as it436

is important to consider how much the reaction order and stoichiometric coefficient influence437

the resultant Damköhler number which can then be implemented for criterion K. Since438

from the divergence the form given in Equation (4.6) is present, additional verification of439

the resulting gradient coefficients obtained at the boundary of instability are required. This440

thorough verification is required as the extension for multi-component reaction for criterion441

K has not been carried out before.442

Therefore 5 more processes for which only the reaction orders and initial reaction tem-443

peratures are varied will be tested. The process parameters for processes P21–P25 are shown444

in Table 6.445
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Table 6: Process parameters varied for processes P21–P25.

Process nA nB TR0

[−] [−] [K]

P21 2.5 1.0 420
P22 3.5 1.0 390
P23 3.5 1.5 370
P24 3.5 2.5 335
P25 3.5 3.0 310

The same reactor parameters as for processes P16–P20 in Table 3 are used for processes446

P21–P25.447

The following parameters are held constant throughout processes P21–P25:

k0 = 5.00× 103 m3(n−1)

kmol(n−1)s
(4.12)

∆Hr =− 180
kJ

mol
(4.13)

νA = 1.5 (4.14)

νB = 2.5 (4.15)

Ea/R = 9525 K (4.16)

where n = nA + nB.448

If for these processes approximately parallel gradients are obtained as well, then this form449

of the resultant Damköhler number can be used for multi-component reactions. The gradient450

plots obtained for processes P21–P25 are shown in Figure 14.451
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Figure 14: Variation of the divergence with respect to Dares/tref for processes P21,(Da)−P25,(Da). The crosses
indicate the points at the boundary of instability, and the dashed lines indicate the gradient at these points.

It is seen from Figure 14 that the resulting gradient lines for strongly varying reaction452

orders are still parallel. Therefore it is demonstrated that the form of the resultant Damköhler453

number shown in Equation (4.6) is valid for multi-component reactions. Hence gradient454

coefficients for this resultant Damköhler number can be used to quantify the divergence at455

the boundary of stability.456

The evaluated gradient coefficients mDares for ln (div [J]) with respect to ln (Dares/tref) at457

the boundary of stability for processes P1,(Da) − P20,(Da) are shown in Table 7.458

Table 7: Gradient coefficient mDa values for processes P1,(Da) − P25,(Da).

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

mDares 1.09 1.13 1.05 1.04 1.04 1.11 1.11 1.08 1.13 1.13

Process P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

mDares 1.13 1.16 1.08 1.03 1.04 1.15 1.09 1.16 1.11 1.09

Process P21 P22 P23 P24 P25

mDares 1.25 1.17 1.06 1.05 1.04

Variation with respect to Barkelew number459

For the dependence on the divergence of the Jacobian matrix with respect to the Barkelew460

number B the same logic is applied as for the Damköhler number. In processes P1,(B)−P20,(B)461
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the enthalpy of reaction ∆Hr is varied until instability occurs and a thermal runaway occurs.462

All remaining parameters are kept constant during this analysis. The value of ln (div [J])463

with respect to ln (B) for processes P1,(B) − P5,(B) are given in Figure 15.464

Figure 15: Variation of the divergence with respect to B for processes P1,(B) − P5,(B). The crosses indicate
the points at the boundary of instability, and the dashed lines indicate the gradient at these points.

As for the Damköhler number, the lines obtained for processes P1,(B) − P5,(B) at the465

boundary of stability are nearly parallel. The same behaviour is observed for processes466

P6,(B) − P20,(B). The results obtained for mB are consistent with the values given in Kähm467

and Vassiliadis (2018). The values of mB for this reaction scheme are given in Table 8.468

Table 8: Gradient coefficient mB values for processes P1,(B) − P20,(B).

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

mB 2.05 1.54 1.62 1.66 1.71 1.55 1.55 1.67 1.60 1.72

Process P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

mB 1.57 1.47 1.53 1.58 1.80 1.34 1.30 1.35 1.28 1.34

In order to get a conservative estimate of the divergence value at the boundary of stability,469

the most conservative gradient value from the ones found in Table 8 is used, i.e. specifically470

mB = 1.28.471
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Variation with respect to Arrhenius number472

The processes P1,(γ)−P20,(γ) are based on the parameters for processes P1−P20 given in473

Table 1. The reduction in activation energy Ea increases the reaction rate, hence resulting in474

more heat generation. Once the heat generated exceeds the cooling capacity of the system and475

a thermal runaway occurs, the respective value of Ea is recorded. All remaining parameters476

are kept constant during this analysis. The variation of div [J] with respect to the Arrhenius477

number γ for processes P1,(γ) − P5,(γ) is given in Figure 16.478

Figure 16: Variation of the divergence with respect to γ for processes P1
1,(γ) − P1

5,(γ). The crosses indicate
the points at the boundary of instability, and the dashed lines indicate the gradient at these points.

As was observed above, the gradients obtained at the boundary of stability are very479

similar for all processes P1,(γ) − P20,(γ). The values of mγ for this reaction scheme are given480

in Table 9.481

Table 9: Gradient coefficient mγ values for processes P1,(γ) − P1
20,(γ).

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
10

mγ -21.8 -22.6 -23.9 -24.1 -22.2 -23.7 -23.8 -24.7 -24.7 -23.1

Process P11 P12 P13 P14 P15 P16 P17 P1
18 P19 P20

mγ -22.4 -23.3 -22.5 -23.8 -22.2 -22.3 -23.05 -24.5 -24.3 -23.3

The most conservative value obtained from these processes is used in order to predict the482

value of the divergence close to the boundary of instability, i.e. specifically mγ = −21.8.483
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Variation with respect to Stanton number484

The variation of div [J] with respect to the Stanton number St for processes P1,(St)−P20,(St)485

is analysed by varying the heat transfer coefficient U with respect to the parameters of486

processes P1 − P20. The lines obtained for div [J] with respect to processes P1,(St) − P5,(St)487

are given in Figure 17.488

Figure 17: Variation of the divergence with respect to St/tref for processes P1,(St) − P5,(St). The crosses
indicate the points at the boundary of instability, and the dashed lines indicate the gradient at these points.

The gradients obtained for ln (div [J]) at the boundary of stability were very close to each489

other. This is also the case for processes P1,(St)−P20,(St). The values obtained for the gradient490

coefficients are shown in Table 10.491

Table 10: Gradient coefficient mγ values for processes P1,(St) − P20,(St).

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

mSt -0.183 -0.176 -0.190 -0.199 -0.199 -0.182 -0.186 -0.185 -0.189 -0.174

Process P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

mSt -0.189 -0.183 -0.186 -0.194 -0.189 -0.181 -0.175 -0.197 -0.191 -0.174

From Table 10 the most conservative gradient obtained can therefore be used to predict492

the value of the divergence as the system comes closer to the boundary of stability, i.e.493

specifically mSt = −0.174.494
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The most conservative gradient coefficients are guaranteed to ensure stability. Hence the495

smallest values in magnitude from Tables 7− 10 are chosen to be used for function K. The496

gradient coefficients used for all following simulations are given in Table 11.497

Table 11: Most conservative gradient coefficients used for simulations.

Gradient coefficient mB mDares mγ mSt

Value 1.28 1.16 -21.8 -0.174

The results obtained for all gradient coefficients are in accord with the results obtained498

in Kähm and Vassiliadis (2018). Small deviations in the values for mDares and mSt are499

present. Both deviations result in a more conservative prediction of instability by criterion500

K. A significant deviation of the value for mγ is observed, which also results in a more501

conservative stability detection. The same value for mB is obtained in this work as was502

done in Kähm and Vassiliadis (2018). The differences in analysis with respect to the work503

in Kähm and Vassiliadis (2018) are obtained because in this work the most conservative504

gradient coefficients are used, and not the average values. Furthermore, slight differences505

arise due to the complication that it is very difficult to find the exact point where stability506

is lost.507

The accordance of stability criterion K for the description of thermal stability in batch508

processes with the actual loss of thermal stability is analysed in detail in following section.509

4.3. Case studies for criterion K510

As was done for the divergence criterion in Section 3.2.2, the stability criterion profiles511

are shown for systems which go from stable to unstable operation. It is important to note512

that a potential stability measure has to be conservative in the sense that instability is over-513

predicted. On the other hand it must not be too conservative, otherwise such a criterion514

cannot be used for process optimisation. Hence, the cross-over from the negative to positive515

value of K is of interest in the following graphs. The temperature profiles for processes516

P1 − P20 are given in Figures 3 − 9. The respective stability criterion profiles are given in517

Figures 18− 21.518
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Figure 18: Stability criterion profiles for processes P1 − P5.

For processes P1 − P5 the profiles for stability criterion K follow a similar trajectory to519

the temperature profile in Figure 2. Unlike the divergence criterion, there is a sign change520

before loss of stability: as the system becomes more unstable the value of K increases until521

it becomes positive. Once the value of K > 0 , the system is predicted to be unstable. It can522

be seen from Figures 18 and 3 that instability is predicted before a thermal runaway occurs.523

The stability criterion profiles for processes P6 − P10 with respect to the temperature524

profiles in Figure 4 are shown in Figure 19.525
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Figure 19: Stability criterion profiles for processes P6 − P10.

The points at which instability is predicted by criterion K, i.e. the points where K526

becomes positive, correspond well with the actual loss of stability given by the temperature527

profiles given in Figure 4: as the temperature increases rapidly, the profiles for K increase in528

the same manner.529

The stability criterion profiles for processes P11 − P15 with respect to the temperature530

profiles in Figure 6 are shown in Figure 20.531

Figure 20: Stability criterion profiles for processes P11 − P15.
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As was the case for processes P1 − P10, instability predicted well by criterion K when532

compared to the temperature profiles in Figure 6. As was observed for the divergence in533

Figure 7, the fast reaction leading to a reduction in reactants A and B leads to a reduction534

in the value for K.535

Figure 21: Stability criterion profiles for processes P16 − P20.

For every process the sign change of criterion K occurs before loss of stability, as can536

be seen in Figures 18, 19, 20 and 21. The instability is predicted approximately 5 K before537

the system actually leads to a thermal runaway. Hence a more conservative prediction of538

the system stability is obtained. This is a positive feature, as a more conservative stability539

measure ensures the system stays within a stable operating region. Stability criterion K540

constitutes a much less conservative stability measure than the divergence criterion, hence541

allowing process intensification to be carried out. The slight conservative nature of criterion542

K gives a margin of error in case of parameter uncertainty or process disturbances, which543

could result in mistakenly classifying the nature of the system. A measure which were not544

to be conservative, if it were to exist, could result in an unstable system when implemented545

within MPC if slight process disturbances occur.546

Hence the application of stability criterion K will give a control system which is able547

to predict system stability at the current point, without the need of further simulation and548

hence computational cost. Therefore the use of K with nonlinear MPC schemes will lead to549

significant reductions in reaction time without loss of stability.550

In tank reactors with high turbulence due to the stirrer there is a near uniform distri-551

bution of temperature and concentration. The only change in properties occurs within a552
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thin boundary layer which is negligible in comparison to the volume of the reacting mixture.553

The function for stability criterion K, which is based on ideally mixed batch reactors, can554

be extended to non-ideally mixed reactors: if the stirrer does not result in ideal mixing,555

the properties and dimensionless variables used for stability criterion K have to be found as556

averages throughout the reactor volume.557

5. Intensification of batch processes with Model Predictive Control558

5.1. Model Predictive Control applied to batch reactors559

Model Predictive Control (MPC) is an advanced control scheme, in which an Optimal560

Control Problem (OCP) is solved iteratively (Chuong La et al., 2017; Mayne, 2014). The561

analysis of stability of batch processes is incorporated into the classical MPC flow sheet,562

which is shown in Figure 22.563

Model Predictive

Process Output

Process
inputs

Controls

Control algorithmStability
analysis

Set-point

Optimal Control

algorithm

Figure 22: Model Predictive Control scheme with integrated stability analysis.

At every iteration process data is used to find the optimal control strategy, together564

with an estimate of the system stability for the evaluated control strategy. The stability565

is implemented as a constraint which, if not satisfied, leads to the optimisation algorithm566

re-evaluating the optimal control strategy. As is given in Figure 22, the inputs to the ad-567

vanced control algorithm are process inputs which can include disturbances and a set-point.568

Depending on what the system is required to do, the set-point can be redefined.569

In order to intensify batch processes, the set-point temperature can be set to the maximum570

allowable temperature of the system, as the stability constraint will restrict the system to571

increase in temperature too fast and enter an unstable regime. Furthermore there is the572

option to maximise yield of a certain chemical, which lets the control system decide on573

its own by how much the temperature can be increased. For certain reactions the highest574

possible reaction temperature, without causing thermal runaways, is the target (Rupp et al.,575

2013).576
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The mathematical formulation for MPC at the ith step used in this work is given by577

(Charitopoulos and Dua, 2016; Rawlings and Mayne, 2015):578

min
qC

Φ(i) (x (t) , qC (t)) (5.1a)

where Φ(i) is the objective function of the optimisation, and x (t) are the state variables of579

the system described in Equations (2.1)− (2.7). This optimisation problem is subject to:580

Φ(i) = −
t
(i)
f∫
t
(i)
0

XA (t) dt (5.1b)

0 = h (x (t) , qC (t) , t) (5.1c)

TR ≤ Tchem (5.1d)

0 ≤ q
(i)
C ≤ qC,max (5.1e)∣∣∣q(i)

C − q
(i−1)
C

∣∣∣ ≤ δqC (5.1f)

t0 ≤ t ≤ tf (5.1g)

where XA (t) is the conversion of reagent A and h (x (t) , qC (t) , t) are the equations with581

respect to physical properties. The initial time and final time of the simulation at step i are582

t
(i)
0 and t

(i)
f , respectively, and the chemical stability temperature is set to Tchem = 450 K. This583

constraint is included in all following MPC schemes, as this represents a process constraint584

irrespective of the control system employed. The change in coolant flow rate between steps i585

and i−1, q
(i)
C −q

(i−1)
C , is limited to at most equal to δqmathrmC , which is set to δqC = 0.05qC,max.586

The following constraint is added to the set of equations for the optimisation:587

K
(
t
(i)
f

)
≤ 0 (5.1h)

This constraint is included in order to keep the process in a stable region by satisfying588

criterion K at the final time of the respective optimisation, here t
(i)
f .589

The batch system described by Equations (5.1a) - (5.1h) is solved using the SQP optimi-590

sation (Nocedal and Wright, 2006) algorithm within fmincon in MATLABTM. A sequential591

approach for the optimal control problem was implemented for the MPC framework.592

A moving horizon approach is implemented, for which the optimal control action is found593

given data from the past and a process model. Depending on the control and prediction594

horizons tc and tp, respectively, the performance of the MPC scheme can be tuned. The595

larger the prediction and control horizons, the higher the computational time per iteration.596

A more detailed discussion of this approach is given in Christofides et al. (2011), Haber et al.597
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(2011) and Kähm and Vassiliadis (2018).598

Only the first control step found by the optimisation algorithm is implemented according599

to the moving horizon approach. After this step is completed, the next iteration of the MPC600

scheme commences.601

5.2. Analysis of MPC schemes and process intensification602

Using stability criterion K the process under consideration can be intensified. This is603

done by increasing the temperature of the process, whilst ensuring that criterion K is below604

zero, as was outlined above. Six processes with three different MPC algorithms are going to605

be considered in detail. The advantages of using stability criterion K are demonstrated in606

terms of computational time and process efficiency.607

5.2.1. MPC algorithms implemented608

MPC is used to keep each process under control. For each process, three MPC schemes609

are considered:610

1. MPC with stability criterion K611

2. MPC scheme with constant set point temperature612

3. MPC scheme with extended prediction horizon613

The first scheme is the novel scheme which was outlined in the section above. This MPC614

scheme uses a control horizon of tc = 50 s with five control increments, each with length of615

10 s, and no extended prediction horizon.616

The second scheme is often found in industry: rather than increasing the temperature617

set-point during a process, it is easier to keep the reaction temperature constant in order to618

ensure stability of operation. This MPC scheme uses a control horizon of tc = 50 s with five619

control increments, each with length of 10 s, and no extended prediction horizon.620

The third scheme is an alternative to using stability criteria altogether: as the prediction621

horizon of the MPC formulation is extended, the optimisation algorithm should be able to622

find control inputs which keep the system close to the desired temperature set point and623

within the defined constraints.624

These three schemes are compared with respect to reliability of control and computational625

cost. The control horizon for this scheme is set to tc = 50 s with five control increments, each626

with length of 10 s, and a prediction horizon of tp = 1000 s. During the prediction horizon627

a constant control input is used. The value of this control input is given by the last control628

value within the control horizon of the MPC algorithm.629
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5.2.2. Temperature profiles of analysed MPC systems630

As sample case studies processes P3, P5, P7, P9, P11 and P13 are considered, the process631

parameters of which can be found in Table 1. The initial temperature for processes P3, P5632

and P7 is set to 400 K, whereas for processes P9, P11 and P13 the initial temperature is set633

to 405 K. The temperature profiles for each MPC scheme applied to all processes are shown634

in Figures 23− 25.635

Figure 23: Temperature profiles of processes P3 and P13 for each MPC scheme.

In Figure 23 it can be seen that for processes P3 and P13 different system responses636

are obtained with each MPC scheme: The first MPC scheme using stability criterion K637

as an additional nonlinear constraint results in a stable control process, staying below the638

maximum temperature of Tchem = 450 K. A constant temperature set-point yields a stable639

process staying at that particular temperature. The third MPC scheme using an extended640

prediction horizon yields thermal runaway reactions, as can be seen by the peaks reaching641

TR ≈ 550 K for process P13 and TR ≈ 720 K for process P3. The thermal runaway behaviour642

will be further illustrated by plots of the conversion for these reactions.643
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Figure 24: Temperature profiles of processes P5 and P11 for each MPC scheme.

For processes P5 and P11, shown in Figure 24 the same behaviour as for processes P3 and644

P13 is observed. The MPC scheme with criterion K embedded gives stable operation while645

steadily increasing the reactor temperature. A constant temperature set-point with standard646

MPC gives stable operation at that particular temperature. For MPC with an extended pre-647

diction horizon, attempting to increase the reactor temperature results in unstable operation648

with the temperature increasing in an uncontrollable manner. The temperature peaks reach649

a maximum of TR = 590 K for process P11 and TR = 910 K for process P5.650
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Figure 25: Temperature profiles of processes P7 and P9 for each MPC scheme.

For the last two processes considered in this work, processes P7 and P9, the same result651

is obtained as for the 4 previous case studies. As can be seen in Figure 25 stable operation is652

obtained for the first two MPC schemes using criterion K and a constant set point temper-653

ature. For the scheme using criterion K a controlled increase in the reactor temperature is654

observed until the maximum allowable temperature of Tchem = 450 K is reached. The tem-655

perature is kept below Tchem at all times. The MPC scheme using a constant temperature656

set-point, as expected, gives a controlled process at that temperature. The MPC scheme657

trying to keep the system under control by having an extended prediction horizon gives a658

clear thermal runaway, reaching maximum temperatures of TR = 760 K for process P7 and659

TR = 820 K for process P9.660

To show further the improved control obtained when embedding criterion K within an661

MPC scheme, additional simulations of processes P3, P5, P7, P9, P11 and P13 are shown.662

For these processes a standard MPC scheme, as in scheme 3 above, is employed with an663

extended prediction and control horizon. The time length for each control step is increased664

from 10 s to 100 s with only 3 control steps used instead of 5, therefore increasing the control665

horizon from 50 s to 300 s, and the prediction horizon is increased from 1000 s to 3000 s.666

The resulting temperature profiles for these processes are shown in Figure 26.667
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Figure 26: Temperature profiles for processes P3, P5, P7, P9, P11 and P13 when controlled by the modified
MPC scheme with a control horizon of 300 s and a prediction horizon of 3000 s.

In Figure 26 stable control is achieved for these processes, but the temperature profiles668

fluctuate more than the ones obtained with MPC scheme 1 embedding criterion K as an669

additional constraint. In order to achieve this stabilising control, the constraint on the rate670

of change of cooling given in Equation (5.1f) had to be relaxed from δqC = 0.05 qC,max to671

δqC = 0.8 qC,max. This means that the cooling valve will be subject to larger sudden changes672

in position which can lead to a destabilised system. As discussed in Stephanopoulos (1984),673

such sudden variations in the control valve are not beneficial for the stability of systems.674

5.2.3. Analysis of computational time675

The first point of concern for this analysis is the computational cost required for each676

control scheme. This is of importance since these control schemes have to be implemented in677

an industrial setting. The lower the computational time for each iteration, the more likely is678

a successful implementation for online control schemes. In Table 12 the computational time679

for each control scheme and process are given.680
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Table 12: Computational cost for each control scheme applied to processes P3, P5, P7, P9, P11 and P13 . For
the standard MPC scheme with an extended prediction horizon only the iterations before loss of stability are
taken into account.

Computational time / CPU s
MPC scheme P3 P5 P7 P9 P11 P13

With stability constraint K 1.8 1.4 1.8 1.2 1.2 1.4

Constant set point temperature 0.70 0.50 0.60 0.50 0.50 1.0

Standard MPC with extended horizon 2.7 3.5 4.7 3.6 2.2 1.6

Standard MPC with control horizon of 1.3 1.1 1.4 1.3 1.4 2.0

300 s and prediction horizon of 3000 s

As can be seen the constant set-point temperature MPC scheme results in the lowest681

computational cost. This is expected, since no additional constraints are added, therefore682

making the optimisation problem easier to solve. The MPC scheme using criterion K yields683

a lower computational cost than the MPC scheme with an extended prediction horizon. This684

is encouraging, as the system obtained by using criterion K also yields a more stable system.685

Hence the use of stability criterion K results in a faster and more reliable control scheme686

than conventional nonlinear MPC schemes.687

The difference in computational time between the MPC scheme with constant set point688

temperature and MPC with stability criterion K is due to the interaction between the con-689

straints and the optimisation algorithm. The actual time required to evaluate stability cri-690

terion K is less than 0.1 s.691

In order to yield a stable process with standard MPC schemes, that do not include any692

stability criteria, with increasing system temperature, an even longer prediction horizon will693

be required. This in turn can result in higher computational time which becomes a limiting694

factor for industrial applications.695

To circumvent this issue, the number of control steps can be reduced, whilst increasing696

the time frame of each one. In this manner an MPC scheme as scheme 3 is considered as697

was shown in Figure 26. The computational cost for these case studies are shown in Table698

12. It can be seen that the computational time can be decreased drastically whilst obtaining699

stable control as seen in Figure 26. This, on the other hand, comes at a compromise: The700

temperature profile of the system is not as smooth as for MPC scheme 1 including criterion701

K, as the control increment allowable had to be increased to 80% to result in stable control.702

Therefore, using MPC scheme 1 results in more favourable operation.703

Significant speed-up can be achieved by using C++ or FORTRAN and faster computers.704

This does not change the fact that the MPC scheme using criterion K achieves the same goal705
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in less computational time in a reliable manner.706

5.2.4. Process intensification707

The second concern of this analysis is the intensification of batch processes. For processes708

P3, P5, P7, P9, P11 and P13 given in Figures 23 − 25 this is best illustrated by how long it709

takes each of them to reach the same conversion. The conversion profiles for processes P3710

and P13 are shown in Figure 27, considering how long it takes to reach a target conversion711

of 75%.712

Figure 27: Conversion profiles of processes P3 and P13 for each MPC scheme.

From Figure 27 it can be seen clearly that the processes controlled by MPC with an713

extended prediction horizon yield thermal runaways, as the conversion reaches 100% after714

only 0.5 h.715

For process P3 the conversion for the MPC scheme with constant set-point temperature716

does not reach the target conversion of 75% even after 5.5 h, whereas for process P13 the717

target conversion for this MPC scheme is just reached after 5.5 h.718

The MPC scheme with stability criterion K embedded achieves the conversion of 75% in719

2.2 h for process P3 and 1.4 h for process P13, much faster than the constant temperature720

set-point system, as well as stable operation throughout the process.721

The conversion profiles for processes P5 and P11 are shown in Figure 28.722
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Figure 28: Conversion profiles of processes P5 and P11 for each MPC scheme.

The MPC scheme using a constant temperature set-point does not achieve the target723

conversion of 75% after 10 h for processes P5 and P11. Criterion K embedded within MPC724

results in processes that achieve the target conversion just after 1 h for process P11 and 2.2 h725

for process P5. With respect to the MPC scheme using constant temperature set-points this726

is a more than five-fold reduction in reaction time.727

The MPC schemes using an extended prediction horizon, as can be seen in Figure 24,728

results in a thermal runaway. This can be seen by the sharp increase in conversion, reaching729

100% after less than 0.5 h for both processes.730

The conversion profiles for processes P7 and P9 are shown in Figure 29.731
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Figure 29: Conversion profiles of processes P7 and P9 for each MPC scheme.

The MPC schemes using criterion K result in stable processes reaching the target conver-732

sion after 2.5 h for process P7 and 7.5 h for process P9. This is longer than for the processes733

considered before: since the same concentrations of reactant A and B are initially present,734

as can be seen in Table 1, as the reaction proceeds the rate of reaction decreases rapidly as735

both reactants are consumed.736

Keeping a constant reactor temperature with the second MPC scheme hence gives an even737

longer reaction time, not reaching the target conversion after even 15 h. Hence a reduction738

in reaction time of at least two-fold is achieved for processes P7 and P9.739

Again, the third MPC scheme results in a thermal runaway, hence giving 100% conversion740

in a very short time span. The point where 100% conversion is reached coincides with the741

maximum temperature peaks seen in Figure 25.742

The same behaviour as for processes P3, P5, P7, P9, P11 and P13 is found for all other743

process scenarios given in this work. Only these six processes are presented as a sample, as744

including results for all processes would add no further value to the analysis.745

As can be seen from the case studies above, intensification of exothermic batch processes746

is achieved by integrating stability criterion K into standard MPC schemes as a nonlinear747

constraint. Not only is the reaction time reduced while keeping the process in a stable748

region, but the computational effort is also reduced in comparison to standard nonlinear MPC749

schemes with extended prediction horizons. To achieve the same stable operation, without750

any stability criterion, as was achieved by embedding criterion K, even longer prediction and751

control horizons would be necessary − resulting in even higher computational overheads.752
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6. Conclusions and further work753

A more complex reaction scheme to the one found in Kähm and Vassiliadis (2018) is754

introduced for exothermic batch processes. Stability criterion K is derived and used to755

quantify the stability of these systems. It is found that modifications are required to make756

this criterion work for more complex reaction schemes. Furthermore, it is found that these757

modifications lead to the reliable prediction of instability for all reaction process scenarios758

considered in this work to illustrate the proposed methodology. For none of the simulated759

systems does stability criterion K not give a conservative estimate of the system behaviour.760

Similar gradient coefficients as for the simple reaction scheme found in Kähm and Vassiliadis761

(2018) are used. The results show that this scheme can be extended to other batch systems762

with complex reaction schemes.763

Nonlinear Model Predictive Control (MPC) is introduced and the underlying methods764

used are elaborated. The stability criterion K is embedded in the MPC scheme as a non-765

linear constraint, rather than a penalty term within the objective. It is found that the766

implementation of criterion K leads to an intensification of the process, while keeping the767

process in a stable regime. This in turn leads to decreased reaction times with improved768

safety, hence making it very useful for industry.769

This improved efficiency is obtained due to the ability to increase the temperature of the770

reactor, while keeping the process under control. Furthermore it is found that the imple-771

mentation of criterion K gives lower computational cost per MPC iteration with regards to772

standard nonlinear MPC schemes with extended prediction horizons. This means that the773

control scheme presented outperforms current MPC schemes in terms of stability, process774

efficiency and computational cost.775

The contribution of this work is the extension and validation of a new stability criterion776

which is suitable for nonlinear non-steady state systems that can be incorporated into online777

control algorithms. Loss of stability has detrimental effects, resulting in industrial accidents778

and leading to economic loss. It is demonstrated that the novel methodology enhances safety779

and performance of processes that can become unstable.780

The original divergence criterion uses first order derivatives, whereas the new stability781

criterion uses second order derivatives, hence making criterion K computationally more ex-782

pensive. For batch processes it is very important to note that the original divergence criterion783

was proven to be too conservative to be useful for process intensification. The additional com-784

putational cost to calculate criterion K is therefore justified in order to improve the efficiency785

of the underlying processes.786

Future work will focus on implementing more advanced MPC schemes to speed up the787

time required for each iteration. The computational cost, as well as accuracy, of using the788
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divergence criterion and stability criterion K will hence be further analysed in future work789

when considering larger reaction systems. Reaction networks with several reactions in series790

and parallel will be considered also for the extension of this work. In order to predict the791

stability of such systems a suitable form of criterion K and the correction function E have to792

be found.793

To improve further the MPC algorithm, sensitivity or adjoint equations could be in-794

corporated in the optimisation step within the MPC algorithm, hence reducing the risk of795

numerical instabilities caused by numerical differentiation, which can occur from a finite796

differences approach as currently employed in this work.797

The reliability of stability criterion K due to model-plant-mismatch have to be considered798

for future case studies. Ensuring a robust stability criterion for online applications is of major799

importance for a potential industrial application, hence requiring a detailed analysis in future800

work.801
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