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Abstract  

Fibre optic cables can be used as sensors to monitor temperature changes through the analysis of back scattered 

light.  This can be linked to changes in the ambient conditions surrounding the fibre optic cable. Active distributed 

temperature sensing relies on an external heat source relative to the fibre optic cable to measure the properties of, 

and changes in, the surrounding medium.  An experiment was conducted using distributed temperature sensing 

technology to monitor changes in sediment overburden for the purpose of determining whether scour could be 

measured above buried power cables containing fibre optic cables. Fibre optic cables were buried in a channel 

containing saturated sand and water with an external heat source. The depth of overburden sediment above the 

fibre optic cables was reduced, whilst the associated temperature response along the fibre optic cable was 

monitored.  The data was matched to a finite element model so that the heat transfer taking place could be 

simulated and then the thermal conductivity of the soil modified to observe the potential changes in heat detected 

by the fibre optic cables.  This paper explains the characteristics of heat transfer from an active heat source to the 

surrounding soil medium providing a means to translate the temperature measurement to the associated 

overburden thickness and to model the same response in different materials.  

 

Abbreviations and symbols 

BOTDA  Brillouin Optical Time Domain Analysis 

DTS  Distributed Temperature Sensing 

FE  Finite Element 

OFS  Optical Fibre Sensor 

c  heat capacity 

n  porosity 

T  temperature 
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ΔT  change in relation to a reference temperature 

k  thermal conductivity 

ρ  material mass density 

Introduction 

Sediment scour is an important concern in river and marine environments especially in relation to buried assets.  

Sediment mobility leading to changes in bathymetry can be detected by conventional geophysical techniques but 

is costly and effectiveness is largely limited to prevailing water conditions such as currents, waves and swell.  

Fibre optics as sensors offer an alternative remote method to measure scour though studies have largely focused 

on single point measurement (see Lin et al, 2005).   

Fibre optic cables, as an Optical Fibre Sensor (OFS), can be used to monitor changes in temperature through 

analysis of backscattered light. Backscattered light is composed of three main spectral components:  Rayleigh, 

Raman and Brillouin, of which Raman and Brillouin are currently used to report spatial variation of temperature 

and/or strain along the optical fibre. Raman spectra differ from Brillouin spectra by having a fixed frequency but 

variable intensity.  In comparison, Brillouin interaction exhibits a frequency shift through the scattering process; 

that is, the correlation of the frequency shift is linearly dependant on the refractive properties of the optical fibre 

and thus the strain and temperature changes within.   

Distributed Temperature Sensing (DTS) systems can be used to measure spatial (±0.5m, 0.3°C) and temporal (<5  

minute) variability in the subsurface at a high resolution along an OFS over tens of kilometres in length.  Two 

forms of measurement are currently recognised: active and passive sensing.  Passive sensing can be used to 

monitor the ambient temperature of the subsurface when an OFS is buried or placed on  top of the seabed. Active 

sensing relies on an external heat source which may vary depending on changes to internal and external properties 

of the surrounding medium. An example would be power cables where electrical resistance within the conductor 

gives rise to internal heat. DTS systems have been successfully demonstrated in a variety of applications, such as 

monitoring terrestrial pipelines (Inaudi and Glisic, 2010), to determine ground source heat pump efficiency 

(Bourne-Webb et al. 2009), understand ecological impacts of rhododendron canopy in woodland environments 

(Krause et al. 2012),  to differentiate between present and fresh bentonite suspensions in diaphragm wall 

construction (Spruit et al. 2017) and in hydrological temperature-depth profiling (Arnon et al. 2014). Indirect 

monitoring has also been attempted to measure soil moisture content (Steele-Dunne et al. 2010), to control acid 

injection into rock reservoirs (Grayson et al. 2015), to assess the structural integrity of concrete (Grosso et al. 

2001; Lau, 2003), and to measure salinity variability (Arnon et al. 2014).   

The use of DTS to detect changes in soil and/or sediment thickness appears to be a new area of research where 

documented evidence is rare, especially for active DTS.  Passive DTS monitoring has been used to detect erosion 

of a canal dyke using fibre optic cable woven into geotextile (Artieres et al, 2012),  monitor sedimentation and 

scour in river beds (Sebok et al, 2015; Sebok et al. 2017) and detect bedload transport and disentrainment of coarse 

grained soils in rivers during flooding (Bray and Dunne, 2017). Zhao et al, (2012) studied the effect of scour 

around pipelines using active DTS. This paper introduces another active DTS method using change in soil 

temperature to monitor overburden thickness for use in remote seabed scour measurement. 
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To determine whether seabed scour can be detected in real-time above a buried power cable containing fibre optic 

sensors  a controlled  experiment using Brillouin Optical Time Domain Analysis (BOTDA) is presented in this 

paper.   It follows on from the experimental work by Ouyang et al, (2017) by introducing a numerical code specific 

to heat transfer applications. The computed results are then compared to the experimental data for the same 

boundary conditions.  An intrinsic soil property is then changed and the heat transfer is assessed with the numerical 

model thus potentially expanding the use of the fibre optic active DTS for wider geophysical applications. 

This paper is set out in three main parts each containing separate results and discussions: 

Part 1. Experiment details and evaluation:  describes the setup of the experimental model and the fibre optic 

sensors, verification of baseline temperature under steady state conditions, method to remove sediment 

overburden and corresponding OFS measurement and analysis; 

Part 2. Numerical model and validation:  introduces the numerical model and how it is applied to simulate the 

physical model; 

Part 3. Parametric study: discusses the effect on temperature by changing soil thermal conductivity. 

Part 1. Experimental details and evaluation 

Experiment setup 

A concrete channel containing sand with a covering of water formed the basis of the physical model used in this 

study. A heat tape was embedded in the sand together with an OFS, where the heat tape mimicked the power cable 

in generating heat. Sediment cover was manually reduced and the temperature change was monitored, 

demonstrating the sensitivity of the monitoring system to measure real time changes in overburden thickness.  A 

numerical model was then created and validated with the experimental data prior to simulating a change in soil 

properties using parametric analysis, which is discussed in the latter part of this paper. The test set-up consisted 

of ten 1m long sections of a concrete U-channel (referred here as just ‘channel’) that had been locked together 

with a silicone sealant placed between each joint. The dimensions of the channel cross section are presented in 

Fig 1(a).   
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Fig 1: Sketch of the experimental setup. (a) dimensions of the channel; (b) placement of heat tape and fibre optical 

cables within the sand; (c) plan view showing position of PT-100 thermometers. 

A vertical wall comprising 12mm thick waterproofed plywood was glued and then clamped at each end of the 

channel using corner clamps at the top and a gravity block at the base. At 50mm above the base of the channel, a 

18mm hole was drilled to accommodate the heating tape. The self-regulating heating tape was supplied by Heat 

Trace, UK as 75FSS2-A rated at 75W per meter. This value is in the reasonable range of energy loss of submarine 

power cable according to the numerical modelling by Pilgrim et al, (2013). Self-regulating heat tapes are cables 

whose local resistance increases when the temperature in that location rises beyond target, thereby reducing the 

local heat output while the remainder of the cable generates heat as before. The aim was to supply heat only where 

it was needed to maintain the source temperature.   



5 

 

 

Fig 2: View from the start of the channel (0m) towards the opposite end (at 10m). (a) During initial setup, (b) 

during placement of sand around OFSs, (c) final setup with retaining partitions where sediment removal later 

takes place (from Ouyang et al, 2017). 

The OFS were encased in a 220mm thick layer of uniformly graded sand that had been placed in layers whilst 

submerged in water to remove air and achieve a uniform density. A 100m long OFS (Mayflex Excel OS2 4C 

9/125), was placed in the 10m long channel with 4m loops exposed outside the channel at each end. The OFS was 

of a loose tube construction with single mode fibres protected with hydrophobic gel to prevent strain transfer and 

was specifically chosen to monitor temperature only.  Similar methods were  adopted by Rui et al, (2017). The 

OFS was doubled back along the channel at the same elevation or placed at a different elevation. The significant 

length of the exposed loops was necessary to contrast against the buried OFS so that each fibre optic cable section 

could be identified during analysis. The first lengths of OFS were fixed to the base of the channel using duct tape.  

Subsequent lengths of OFS at higher elevations were temporarily held in place with weights to prevent buoyancy 

whilst sand was laid on top. The OFS positions were identified as 1, 2 and 3 representing a reduction in elevation 

towards the seabed with ‘-1’ and ‘-2’ denotation referring to the position of the OFS in relation to the heat tape; 

‘-1’ referring to vertical alignment with the heating tape and ‘-2’ as 100mm offset from it.  Thus OFS reference 

1-1 represents the OFS at the base of the channel directly below the heat tape and ‘3-2’ the OFS located above the 

heat tape offset by 100mm separation.  The OFS along the heat tape is referenced as ‘2-1’. The single length OFS 

along the top of the sand or the ‘seabed’ is referenced as ‘4’.   

As a separate and independent point of temperature reference, sheathed, 4 wire, ceramic platinum resistance 

thermometers (PT-100) were placed at two locations located at 2.4m and 7.0m along the channel (see plan view 

of the channel arrangement in Fig 1 (c)) and attached to the OFS closest to the heat tape (2-1) using a cable tie.  

The PT-100 (supplied by Labfacility, UK) were monitored using a Pico Technology PT-104 data logger connected 

to a computer.  Two loggers were used with eight PT-100 sensors.   
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During activation of the heat tape the surrounding soil temperature would increase and begin to affect the 

temperature of the water above. It was therefore necessary to recirculate the water using small submersible pumps 

located along the channel.  The water at the surface was also cooled by adding blocks of ice to simulate typical 

water temperatures around the UK at seabed depth. Fig 2 shows the setup of the experiment prior to introduction 

of sand (a), at a midpoint during laying of the OFS (b), and the final setup with vertical partitions marking intended 

sediment removal (c). 

Fibre optic sensing system 

Following the OFS laying and subsequent burial, the OFS was connected to a Brillouin-based fibre optic 

distributed temperature and strain analyser known as a DITEST STA-R (manufactured by Omnisens™ Ltd, 

Switzerland). The measurements reported by the DITEST STA-R analyser can achieve a minimum spatial 

resolution of 0.5 m with temperature accuracy of 0.2 °C, a readout resolution of 5cm, and the system set-up 

requires access to both ends of the OFS cable. The analyser sends two counter-propagating waves which can be 

coupled through a non-parametric non-linear process where the energy transfer from one wave (referred to as 

‘pump’) feeds into the other (called probe). The sensing process identifies the position-dependent frequency 

information by pulsing one of the optical waves and observing the local coupling on the counter-propagated wave. 

It allows each measurement to be completed within seven minutes with the finest setting mode. The measurements 

collected by the DITEST STA-R analyser report data are in terms of Brillouin frequency shift which has a linear 

relationship with temperature, such that 1MHz equates to a 1ºC increase.  

 

Fig 3: Change in temperature over a full heating cycle as recorded by BOTDA (from Ouyang et al, 2017).  

DTS evaluation during steady conditions 

The initial reference temperature conditions was first established so that later removal of sediment above the OFS 

at specific locations could be correctly interpreted based on the changes in temperature. To do this the heat tape 

was activated and the change in temperature (ΔT) was obtained by taking the difference between two 

measurements collected by the BOTDA as shown in Fig 3.  
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The temperature development throughout the testing period was based on the initial temperature around 18°C 

reported by the PT-100 sensors, measured within the experimental setup. The temperature changes rapidly when 

the heating tape is switched on where 50% of temperature is generated within the first 30 minutes and the 

temperature then slowly increases towards eventual stabilisation.  After 320 minutes the heat tape was switched 

off and rapid initial loss of temperature followed by a gradual temperature reduction led to an eventual ambient 

temperature condition.   

Two heating phases were conducted over the course of two separate days and are shown in Fig 4 for three arbitrary 

points along the channel. This comparison serves to demonstrate the reliability of the heating tape system to 

generate a consistent self-regulating heat source, and potentially highlight any major temperature changes in the 

experiment between the two days. The results in Fig 4 show that the change in temperature in day 2 was slightly 

smaller than day 1 which would be consistent with less temperature variability due to an improved soil packing 

around the OFS (Woodside and Messmer, 1961). Some sediment consolidation would be expected over a 24 hour 

period. Similarly shaped plots indicate that the heat tape generates the same temperature output over the same 

time step. 

 

Fig 4: Temperature comparison between two heating phases measured by OFS 2-1 on day 1 and day 2 at selected 

points along the channel adjacent to the heating tape.  

The OFS 4 section was laid on the simulated seabed at the interface between the sand and the water to measure 

water temperature.  However water temperature recorded by OFS 4 varied due to partial embedment of the fibre 

optic cable in some areas which detected conduction heat flux from the sand as well as water temperature 

(Meininger and Selker, 2015).  As a result, the readings from OFS 4 were not used and instead point reference 
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readings were monitored using the PT-100 sensors.  Variations in temperature between days 1 and day 2 were 

also compared to understand the correlation in temperature from heat source and adjacent OFS, though changes 

were found to be insignificant (see Ouyang et al, 2017 for the full appraisal). 

Simulation of sediment removal 

The excavation of sediment was undertaken at two zones along the channel once an optimum temperature along 

the heat tape was established (approximately 24°C). The water temperature was cooled using ice to an average 

temperature of 12°C, as recorded by the PT-100 sensors. One excavation zone was located between 3m and 4.5m 

(Zone 1) and the other between 6.5m and 8.5m (Zone 2). Each zone comprised three stages of reduction in 

overburden sediment thickness above the OFS. Sediment was retained using vertical partitions and sediment was 

removed by hand to avoid damaging the fibre optic cables.  A cross-section along the channel in Fig 5 shows 

sediment depth at each stage together with the position of OFSs. The excavation at the base was undulating due 

to slumping of the sand beneath the vertical retaining partitions. No fibre optic cables were exposed in excavation 

stages 1 and 2. In the final excavation, stage 3, fibre optic cables 3-1 and 3-2 were exposed in both zones.   

 

Fig 5: Position and excavation stage of sediment along channel. 

DTS evaluation during simulated scour 

The change in soil temperature at three separate positions on the OFS within the channel is presented in Fig 6 

after the start of the test with three stages of sediment removal. The temperature changes are shown by OFS 

positions 2-1, 2-2, 3-1 and 3-2 but not by OFS positions 1-1 and 1-2 which remain covered. Figs 6 (a) and (b) 

refer to the positions where sediment removal took place.  Fig 6 (c) shows the temperature change where no 

sediment was removed though arrows show the time when sediment is removed at the two excavation zones for 

comparison.  
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Fig 6: Change in temperature at specific points along the channel in response to sediment overburden excavation 

at 3.5m (a) and 7.0m (b) with reference to undisturbed sediment at 1.5m (c).  Arrows and numbers refer to 

commencement and stage of excavation respectively.   

 

Fig 7. Temperature contour map showing horizontal slices at fibre optic cable positions. (a) OFS 2-1, (b) OFS 2-

2, (c) OFS 3-1 and (d) OFS 3-2. 
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The change in temperature along the fibre optic sensor at and above the heat tape is presented as a heat map in 

Fig 7. The contour map generated using MATLAB® represents horizontal slices at four OFS locations along OFSs 

2-1, 2-2, 3-1 and 3-2, and shows the temperature development in the channel throughout the entire testing period. 

The temperature scale has been adjusted between plots because of the magnitude of temperature proximal to the 

heat tape. The time when each excavation commences is shown on the left side of each map as arrows.  There are 

several elongate hot spots shown in the contour plots, notably in OFS 2-1 at 6.5 m and around OFS 3-1 at 8.7m. 

This was considered to be associated with higher density soil around the OFS or the relative installation position 

of optical fibre sensor to the heating tape. The OFS at position 2-1 was only directly attached to the heating tape 

at the cable tie positions leading to thermal discrepancies along the channel.  The OFS system has detected very 

subtle changes in temperature variation to the order of 0.3°C.  The positions of sediment removal are clearly 

shown as reductions in temperature or cold spots.   

Part 2. Numerical model and validation  

There are different modelling approaches to interpret DTS data to determine overburden thickness. In general, 

these strategies rely either on empirical correlations, or on solving the boundary problem. In active DTS, where 

there is usually only one heat source and its length greater than its diameter, the Line Source Model (Kelvin, 1882) 

can be used. Ingersoll et al. (1954) proposed the use of the line source model for one dimensional analytical 

simulation of a vertical ground heat exchanger where the heat transfer from a single borehole was treated as a line 

heat source with constant heat flux in an infinite medium.  This was later applied by Mogensen (1983) to estimate 

ground thermal conductivity.  Two or three dimensional numerical models have been developed to analyse 

spatially distributed subsurface heterogeneities and geothermal gradients (Raymond et al. 2010) and variable 

boundary conditions (de Lieto Vollaro et al. 2011), the latter being based on the transient heat balance. These 

techniques can be applied to measure changes in sediment overburden over buried submarine power cables where 

changes in temperature and ground thermal conductivity are known. The numerical analysis in this paper is based 

on the line source model and two dimensional finite element method. 

Finite element model 

Finite element (FE) modelling is an efficient method in modelling of heat propagation with different kinds of 

boundary conditions. It simplifies the heat propagation process by allowing a more straightforward interpretation 

of physical processes. In this experiment, heat transfer happens in the saturated sand based on the laws governing 

the heat conduction. As the groundwater flow is very slow heat convection can be neglected. The thermal 

properties of the saturated sand are assumed as a saturated porous medium, and calculated as weighted arithmetic 

values of single components, including water and sand grains. The weights are the volume fractions. Under this 

assumption, the homogeneous material mass density  ρ , heat capacity c  and thermal conductivity k  can be 

calculated by: 

ρ = (1 − n)ρ𝑠 + nρ𝑤                                                          (1) 

c = (1 − n)c𝑠 + nc𝑤                                                          (2) 

k = (1 − n)ks + nkw                                                        (3) 
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where subscripts 𝑠 and 𝑤 donate the solid and water phases and n is the porosity.  

 

The governing equation of the heat transport process in porous medium can be written as, 

- ∑ k
∂2T

∂xi
2

3
i=1  + c

dT

dt
= Q                                                           (4) 

where T is the temperature and Q is the heat source.  

The finite element method is then introduced  to solve the partial differential equations above. The first step is 

discretising these equations in their space dimensions. The discretisation is carried out locally over small regions 

of simple but arbitrary shapes (the finite elements). This results in matrix equations relating the input at specified 

points in the elements to the output at these same points. In order to solve equations over large regions, matrix 

equations for the smaller sub-regions can be added together node by node, resulting in global matrix equations. 

 

In the finite element technique, the continuous variable T is approximated by T̃ in terms of its nodal values 

T1, T2 and T3, through simple functions of the space variable called shape functions. That is: 

T̃ = NiTi                                                                         (5) 

where Ni = [N1   N2   N3] is the shape function of each nodes, Ti = [T1   T2   T3]T. When (5) is substituted into 

(4), we have: 

-∇Tk∇(NiTi)  +  csw  
d

dt
(NiTi) = Niqi                                                      (6) 

According to the Galerkin method, we could get a matrix equation as: 

[MTT]
dTi

dt
+ [KTT]Ti = Qi                                                             (7) 

[KTT] = k ∬ [
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z
] dxdy                                         (8) 

[MTT] = csw ∬[NiNj] dxdy                                                          (9) 

In this equation, [KTT] is the element stiffness matrix, and [MTT] is the element mass matrix. 

 

In order to solve this time dependent problem, the linear interpolations method is used with a time step ∆t. So Ti 

can be written as θTi
1 + (1 −θ)Ti

0, where θ is a constant between 0 and 1, Ti
1 is the temperature tensor at 

time step 1 and Ti
0 is the temperature tensor at time step 0.  

dTi

dt
 can be written as 

Ti
1−Ti

0

∆t
. Hence, equation (7) can 

be written as: 

[MTT]
Ti

1−Ti
0

∆t
+θ[KTT]Ti

1 + (1 −θ)[KTT]Ti
0 =θQi

1 + (1 −θ)Qi
0               (10) 

In this study, θ = 1. An implicit solution is written as: 

1

∆t
[MTT]Ti

1 + [KTT]Ti
1=Qi

1 +
1

∆t
[MTT]Ti

0                                            (11) 
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A finite element model was built to simulate the physical experiment. The channel was assumed to be long enough 

so that the test could be simplified as a problem of transient heat conduction within a plane. A two dimensional 

FE mesh was first generated to represent the cross section of the channel as shown in Fig 8. The model comprised 

4 components: sand, water, concrete channel and ground. To ensure that the heat distribution within the channel 

was not affected by the boundary conditions, the ground was modelled as 6m wide and 3m high. The temperature 

at the side and base of the ground were fixed as initial temperature. Heat insulation conditions were then satisfied 

for the upper boundary and sides of channel.  In the FE model, the heat source refers to a set of nodes where a 

total heat production rate (75W) was applied. The porosity of sand was chosen as 0.3 with other parameters chosen 

for the model obtained from DECC (2011), as shown in Table 1. 

 

Fig 8. Construction of an FE model showing the main elements and nodes within the channel and the boundary 

conditions. 

Table 1 Parameters used in the numerical model of the channel (DECC 2011, Rui and Soga 2018). 

Parameter Sand Channel 

(concrete) 

Water Ground 

Thermal conductivity (W/(m.K)) 2.0 1.5 0.6 1.6 

Thermal capacity (kJ/ m3K) 3200 2400 4200 2800 

 

Because a small error in the installation of fibre optic cables can cause a large variation in the temperature detected 

by OFS, the model calibration was performed by varying the distance of optical fibre sensor to heating tape so 



13 

 

that the simulated results were similar to the experiment data. Fig 9 shows the curve matching between the 

experimental data and the modelling results for the heating and cooling of the OFS along the heat tape. During 

the heating process, both numerical and experimental data increased steadily to a peak value about 17°C, followed 

by a sharp decrease toward the initial temperature. The distance between the heat source and OFS cable played 

an important role due to the sharp change in the temperature distribution with distance around the heat source. 

Assuming the cable 2-1 moved 3mm, an obvious change in temperature propagation has been observed. When 

the cable is 3mm closer, the peak temperature increased about 2°C.  

 

Fig 9. Experimental data and numerical result of OFS 2-1 for complete heating and cooling cycle of the heat tape. 

 

To simulate the experimental procedure of sediment removal described in Section 2.3, the finite element analysis 

involved the following calculation steps: 

(1) Initial condition. The temperature of all components, including sand, water, channel and ground, were set as 

initial temperature. 

(2) Activation of the heat tape. A heat production rate (75W) applied to the six nodes representing the OFS, as 

shown in Fig 8. 

(3) Cooling of water. The temperature of water relative to the initial temperature, was set as ΔT = -4°C during the 

cooling stage,  which assumes the sea water temperature is 4°C lower than initial soil temperature. 
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(4) Excavation. Following the excavation procedure in the experiment, as shown in Fig 5, the excavated part of 

sand where the OFS cable was exposed was changed to that of the water component, set as fixed temperature ΔT  

= -4°C. 

 FE validation and discussion 

The data shown in Fig 9 is the average temperature profile along the channel length, but the elongate hot spots in 

Fig 7 indicate that the temperature is not uniform along the channel length, due to variations in the installation 

positions of the optical fibre cable and the heating tape. Hence, the positions of each measuring point on OFS was 

adjusted in the range of ±2cm in the FE model for each cross section to match the experimental data. Fig 10 shows 

the heat map simulated by the numerical model (M) alongside that obtained by experimental measurement (E) for 

each OFS location. Although less fluctuation can be observed in the FE results, the overall trend in temperature 

changes are quite similar between experiment data and FE results. For OFS 1-1 and OFS 1-2, which are beneath 

the heat tape and distant from the cooled surface water, the influence of excavation on temperature change is 

limited to about ΔT = 5°C maximum. As OFS 2-1 is closest to the heat tape, the temperature increases sharply to 

about ΔT = 20°C during the heating stage, and then decreases to about ΔT = 10°C during excavation. Some parts 

of OFS 3-1 and 3-2 were exposed to the cooled water in the final excavation, and therefore a sharp decrease to 

ΔT = -2~ -4°C is shown in the heat map contour. 
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Fig 10: Heat map along the channel during removal of the overburden at each OFS cable elevation for the 

experimental data (E) and simulated using the numerical model (M). 

 

Fig 11. Change in temperature at specific points along the channel in response to sediment overburden excava-

tion: At 3.5m (a) and (b); at 7.0m (c) and (d).   

 

Similarly, the change in temperature caused by the excavation at specific locations can also be modelled by FE 

analysis as shown in Fig 11 where the peak temperature is set as the baseline so the effects of excavation can be 

highlighted. Very small changes in temperature of OFS 1-1 and 1-2 were observed, because the large distance 

between fibre optical cables and seabed reduce the effect of changes in sediment overburden. OFS cables 2-1 and 

2-2 were installed at the same elevation, but the excavation induced temperature decreases were different. The 

temperature of OFS 2-1 decreases to about ΔT = -6°C at 3.5m and ΔT = -9°C at 7.0m. For OFS 2-2, the  

temperature at 360 minutes is about ΔT = -4.5°C at 3.5m and ΔT = -4°C at 7.0m. This difference is caused by the 

large difference of peak temperature between these two OFS cable locations, shown in Fig 11. Similar results can 

be found in OFS cables 3-1 and 3-2. For OFS 3-1, the FE results show that the temperature does not change much 

in the first and second excavation, but decreases sharply to ΔT = -9.5°C in the last excavation. For OFS 3-2, the 

decrease in OFS temperature is gentle, and the final change in temperature is about ΔT = -4.5°C. However, once 

exposed to water, the OFS cables (3-1 and 3-2) could not detect the change in overburden anymore. Hence, it can 

be concluded that the fiber optic cable installed close to the heat tape is not sensitive to the small change in 

sediment overburden (first and second excavation), but has a large measurement range compared to the OFS 

cables close to seabed. 
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Figure 12. Detection of thickness of sediment overburden.   

The aim of this study is to estimate the thickness of the sediment layer on top of the OFS without any sediment 

removal. The steady state value of cable temperature by adjusting the sediment thickness in the FE analysis can 

be used to solve this problem. Fig 12 shows the relationship between thickness of sediment overburden and OFS 

temperature. It is shown that the temperature of Cable 2-1 changes sharply when the thickness decreases, which 

indicates that Cable 2-1 is most sensitive to detect the initial thickness of sediment overburden among all cables. 

In addition, when the thickness of sediment overburden reduces from 200mm to 0mm, the temperature of Cable 

3-1 and Cable 2-2 reduces about 15°C and 10°C respectively. This indicates that two factors determine the 

sensitivity of OFS on initial thickness of sediment overburden. The first is the distance between heat source and 

OFS. The second is the distance between water level and the OFS. 

 

Part 3: Parametric study   

The finite element analysis in this paper involves a parametric study to understand the thermal changes that may 

take place during overburden reduction in different soil types. The thermal conductivity coefficient is the most 

important thermal property of the soil as it controls the main heat transfer mechanism for transient state analysis, 

although the heat flow at the interface between sediments and water should be the same in steady state for different 

k values. The effect of changing the soil type, and the response to changes in overburden depth, can be 

demonstrated by conducting simulations with different thermal conductivity values.  The parameters used for the 

model are shown in Table 2. 

Table 2 Parameters used for parametric study 
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Thermal conductivity k (W/(m.K)) Sand Channel 

(concrete) 

Water Ground 

Case 1 (k * 0.5) 1.0 1.5 0.6 1.6 

Case 2 (k * 1.0) 2.0 1.5 0.6 1.6 

Case 3 (k * 2.0) 4.0 1.5 0.6 1.6 

 

 

 

Fig 13. Effects of changing thermal conductivity of sand on the temperature of OFS 2-1 for complete heating and 

cooling cycle of the heat tape. 

 

Results and discussion 

Fig 13 shows the change in temperature of OFS 2-1 with different thermal conductivities for the heating and 

cooling cycle by the heat tape. When the thermal conductivity is 0.5 times the original value , the largest change 

in temperature is about ΔT = 23 ºC, and with 2.0 times thermal conductivity, the largest change in temperature is 

only about ΔT = 13 ºC. With lower thermal conductivity, the temperature of OFS 2-1 change is higher due to less 

heat transferred to the cold water. The results show that the temperature change is greatly affected by the thermal 

conductivity of soil.  
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Fig 14. Change of temperature at 3.5m due to removal of overburden. 

Figs 14 and 15 show the change in temperature at selected OFS locations caused by the excavation at location 

3.5m and 7.0m along the channel. As expected from the effect of the thermal conductivities, the temperature with 

0.5 times thermal conductivity proceeds at a slightly higher value (by about 1-2°C) than other two cases at the 

first and second excavation step. With twice the thermal conductivity, the increase in temperature during the first 

excavation is very limited, at about 0-0.5°C. During the second excavation, all the OFS cable temperature curves 

show more obvious decrease than other two cases with lower thermal conductivity. This seems reasonable, 

because lower thermal conductivity would slow down the heat transfer in the soil and hence make the OFS less 

sensitive to the sediment removal. At the final excavation, a sharper decrease in temperature is observed for the 

0.5 times thermal conductivity case. This is because lower thermal conductivity would lead to a higher peak 

temperature before excavation as discussed above, hence the OFS measured temperature can decrease more when 

the excavation level is close to the OFS. Therefore, soil with higher thermal conductivity can enhance the ability 

of OFS cable to detect the small changes in sediment overburden, but poor thermal conductivity can make the 
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variation in temperature readings of OFS more significant due to the large changes in sediment overburden. Hence, 

thermal conductivity of soil is an important factor to consider in the design of an OFS monitoring system. 

 

  Fig 15. Change of temperature at 7.0m due to removal of overburden. 

On the other hand, changing the thermal conductivity of soil has a large effect on the sensitivity of OFS on 

detecting the sediment overburden thickness, as shown in Fig 16. It is shown that when the thermal conductivity 

decreased to 0.5 times the original value, the OFS temperature increased sharply when the sediment overburden 

thickness increases. When sediment overburden thickness is 270mm, this value is about 41.9ºC, 8.7ºC, 18.9ºC 

and 7.5ºC for cable 2-1, 2-2, 3-1 and 3-2 respectively. But when using 2 times the original value, the OFS 

temperature decreased to about 13ºC, 3.6ºC, 6.2ºC and 2.8ºC respectively. Therefore, with lower thermal conducty 

of soil, the OFS is more sensitive to the change in sediment overburden thickness. 
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Fig 16. Effects of soil thermal conductivity on detection of thickness of sediment overburden 

 

Conclusions 

With the heat generated from the heat tape increasing linearly during the experiment, the change in sediment 

thickness can be observed as both a stabilisation and/or reduction in temperature detected by OFS cables. Despite 

a difference in temperature between heat tape and surface water a minimum of 10mm sediment removal could be 

detected from the temperature in the soil medium. The effective detection of sediment disturbance between 

excavation zones also demonstrates the sensitivity of the DTS system to capture temperature change throughout 

the test. 

The numerical code using the line source model, incorporating a transient heat balance, showed that the 

experimental data could match both the thermal dissipation of the heat source and the change in boundary 

conditions.  

The thermal conductivity of the soil depends on the grain size and density as well as grain type of the material. 

Sand was used in this experiment for ease of setup and elimination of air during placement above the optical fibre 

and the heat tape. By altering the thermal conductivity of the material changes in sediment overburden could be 
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simulated.  In a field scenario changes in sediment overburden could be easily measured using bathymetry and 

compared to fluctuation in the thermal response recorded by the OFS.  The thermal conductivity of the sediment 

covering the OFS cables could be measured in-situ using a probe and thus measurement of differential sediment 

thickness caused by scour could be monitored.  The numerical code demonstrated in this experiment using DTS 

could potentially be a powerful tool for assessing seabed erosion along heat generating assets such as power 

cables.  However the geometry of the experiment is much smaller than in the real field situation and the results 

may be influenced by boundary effects created by other variability. A large-scale field test using the principles 

described in this paper to investigate the thermal effect of changes in changing sediment overburden is currently 

the subject of a future study. 

Should a field test be successful, Brillouin back-scattered distributed sensing has the potential to monitor sediment 

overburden above power cables up to at least 60km from one commercially available analyser channel, which is 

more than sufficient for most wind farm inter-arrays.  Such techniques could reduce the reliance on, or enhance 

the interpretation of data from, routine seabed surveys to locate scour pits.  This would be especially beneficial 

during months when treacherous sea-state conditions limit the deployment of geophysical arrays and when storm 

surges may amplify seabed erosion due to strong currents or even bed liquefaction.  Active fibre optic monitoring 

could also aid in monitoring scour mitigation during rock dumping activities to ensure successful remediation. 
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