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Abstract

Genome-wide association studies (GWAS) have begun to identify the common genetic component to ischaemic stroke (IS).
However, IS has considerable phenotypic heterogeneity. Where clinical covariates explain a large fraction of disease risk,
covariate informed designs can increase power to detect associations. As prevalence rates in IS are markedly affected by
age, and younger onset cases may have higher genetic predisposition, we investigated whether an age-at-onset informed
approach could detect novel associations with IS and its subtypes; cardioembolic (CE), large artery atherosclerosis (LAA) and
small vessel disease (SVD) in 6,778 cases of European ancestry and 12,095 ancestry-matched controls. Regression analysis to
identify SNP associations was performed on posterior liabilities after conditioning on age-at-onset and affection status. We
sought further evidence of an association with LAA in 1,881 cases and 50,817 controls, and examined mRNA expression
levels of the nearby genes in atherosclerotic carotid artery plaques. Secondly, we performed permutation analyses to
evaluate the extent to which age-at-onset informed analysis improves significance for novel loci. We identified a novel
association with an MMP12 locus in LAA (rs660599; p = 2.561027), with independent replication in a second population
(p = 0.0048, OR(95% CI) = 1.18(1.05–1.32); meta-analysis p = 2.661028). The nearby gene, MMP12, was significantly
overexpressed in carotid plaques compared to atherosclerosis-free control arteries (p = 1.2610215; fold change = 335.6).
Permutation analyses demonstrated improved significance for associations when accounting for age-at-onset in all four
stroke phenotypes (p,0.001). Our results show that a covariate-informed design, by adjusting for age-at-onset of stroke,
can detect variants not identified by conventional GWAS.
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Introduction

Genome-wide association studies (GWAS) in ischaemic stroke

have begun to identify the common genetic variants that confer

risk of the disease. However, there is considerable heterogeneity

present in stroke phenotypes: GWAS analyses have primarily

looked at the three main subtypes; cardioembolic (CE), large

artery atherosclerosis (LAA) and small vessel disease stroke (SVD).

Within these subtype analyses, numbers of cases are smaller, but

the expectation is that the effects of SNPs identified within the

subtypes will be considerably larger. Indeed, all validated GWAS

SNPs for ischaemic stroke to date have been stroke subtype-

specific [1,2,3,4,5], indicating the importance of subtyping of

cases.

Clinical risk factors are important in stroke; as many as 77% of

first-ever stroke patients are hypertensive [6], and other factors

such as diabetes mellitus and elevated serum cholesterol confer a

considerable proportion of disease risk [7]. These risk factors

increase in prevalence in older age groups, suggesting older stroke

patients may have a reduced stroke-specific genetic contribution.

MMP12 and Large Artery Atherosclerotic Stroke
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Indeed, IS is uncommon in individuals below middle age, but

increases greatly in prevalence beyond the age of 65 [8], with a

lifetime risk of 1 in 5 for women and 1 in 6 for men [9].

Under the assumptions of the liability threshold model, the low

prevalence of IS in younger age ranges suggests that individuals

who do suffer strokes in this age group are likely to have an

increased genetic predisposition. This is supported by family

history data; with stronger family history seen in younger onset

cases [10,11,12], and twin studies [13], which suggest that early

onset cases may have higher heritability. We recently showed

stronger effects for all stroke-associated SNPs in younger age

groups, found evidence genome-wide that a significant number of

SNPs show stronger association p-values when the oldest cases are

removed, and showed increased pseudoheritability estimates for

younger onset cases in certain stroke subtypes, thereby supporting

this hypothesis [14]. However, the question of how best to

integrate this information into GWAS analyses of ischaemic stroke

remains unanswered. Previous GWAS have analysed younger

subsets of ischaemic stroke cases [1,15], but this approach may not

be optimal for existing GWAS datasets if the increase in odds

ratios for SNPs in younger cases are not sufficient to justify

discarding a large proportion of the ascertained cases. All previous

young onset analyses have been restricted to all ischaemic stroke

cases versus controls; this may be particularly relevant given that

all known loci for ischaemic stroke to date are for stroke subtypes

[16].

A recent publication [17], outlined a novel method of

informing genetic association analyses on important clinical

covariates. Using the liability threshold model in conjunction

with estimates of disease prevalence for individuals with specific

clinical covariates, the method estimates posterior disease

liabilities for each individual in a GWAS, and uses these

liabilities in regression analyses to test for association with

genome-wide SNPs. This approach avoids issues due to multiple

testing across age-at-onset thresholds, and provides a simple

solution that is rooted is previous epidemiological research. In

the present study, we extend the clinical covariate informed

analysis approach to imputed genotypes, informing our analyses

on the age-at-onset to identify novel variants associated with IS.

We perform a genome-wide analysis with four stroke pheno-

types (IS, CE, LAA, SVD), and then determine the utility of the

approach in ischaemic stroke GWAS, testing whether SNPs

increase in significance.

Results

Association analysis
We performed age-at-onset informed association analysis for a

total of 6,778 ischaemic stroke cases and 12,095 controls across

four ischaemic stroke phenotypes; all IS and the three major

subtypes: CE, LAA, and SVD (Table 1); with 1,637, 1,316, and

1,108 cases in the CE, LAA and SVD analyses respectively. With

the exception of the young Milanese cohort, the age-at-onset

distributions were similar in all cohorts (Table S3).

We identified a group of twenty SNPs proximal to MMP3 and

MMP12 on chromosome 11 in the LAA subtype that met our

criteria for replication. The strongest associated of these was

rs662558 (p = 1.461027), a SNP that is in 1000 Genomes, but not

HapMap II. Therefore, to enable replication in existing METAS-

TROKE datasets, which were imputed to HapMap II, we selected

the most strongly associated SNP from the HapMap II panel,

which was in perfect LD with the lead SNP in our discovery meta-

analysis (rs660599: uninformed, p = 1.661026; informed,

p = 2.561027; Figure 1) [16]. We found no evidence of

between-study heterogeneity at either SNP (Cochran’s Q

p = 0.22 and p = 0.19 for rs662558 and rs660599, respectively).

The evidence of an age-at-onset effect at rs660599 was p = 0.011

(from permutations). We calculated age-at-onset quartiles for all

large artery stroke cases from the discovery cohorts, and used these

to evaluate this region at different age-at-onset thresholds. The

median age-at-onset was 71 years, and the interquartile range was

between 61 and 78 years. Post-hoc analyses of rs660599 in the

discovery cohorts using logistic regression (full details in Text S2)

showed considerably stronger associations in younger age-at-onset

quantiles (Q1; OR(95% CI) = 1.83 (1.46–2.30), Q1–Q2; 1.56

(1.33–1.83), Q1–Q3; 1.30 (1.14–1.49), Q1–Q4; 1.30 (1.15–1.46)).

No other regions met our criteria for replication.

Replication analysis
The associated locus was evaluated in a further 1,881 large artery

stroke cases and ancestry matched controls in 9 cohorts from

METASTROKE (Table 2). We found evidence for replication of

the SNP (rs660599) in all large artery stroke cases of European

Ancestry (p = 0.0048, OR(95% CI) = 1.18(1.05–1.32)). Combining

this result with the discovery p-value gave a genome-wide significant

p-value of 2.661028 (Table 3). Secondly, we used the Han and

Eskin random effects meta-analysis approach to evaluate the

association [18] after including a further 355 cases and 1,390

controls of Pakistani ancestry. The evidence for replication in this

sample was p = 0.0063, giving an overall p-value of 3.461028. Age-

at-onset information was available across all age-at-onset quantiles

for a subset of the replication studies (1,240 cases, 9,238 controls;

ASGC, HVH, ISGS/SWISS, MGH-GASROS, Utrecht). We

evaluated the SNP (rs660599) in these studies at different age-at-

onset quantiles using logistic regression, meta-analysing as previ-

ously. We again found the strongest effects in the youngest age

quantile, consistent with a stronger effect in younger onset cases

(Q1; OR(95% CI) = 1.27(1.02–1.57), Q1–Q2; 1.18(1.00–1.39),

Q1–Q3; 1.22(1.05–1.40), Q1–Q4; 1.22(1.07–1.41)).

mRNA expression in carotid plaques
mRNA expression of the two proximal genes, MMP3 and

MMP12 was analysed from 29 carotid, 15 abdominal aorta, 24

femoral plaques, and 28 atherosclerosis free left internal thoracic

artery controls. MMP12 expression was upregulated in carotid

plaques compared with left internal thoracic artery controls

(P = 1.2610215; fold change [FC] = 335.6). It was also upregulated

in femoral plaques (P = 3.2610214; FC = 306.0) and abdominal

Author Summary

Ischaemic stroke places an enormous burden on global
healthcare. However, the disease processes that lead to
stroke are not fully understood. Genome-wide association
studies have recently established that common genetic
variants can increase risk of ischaemic stroke and its
subtypes. In this study, we aimed to identify novel genetic
associations with ischaemic stroke and its subtypes by
addressing the fact that younger onset cases may have a
stronger genetic component, and using this information in
our analyses. We identify a novel genetic variant on
chromosome 11 (rs660599), which is associated with
increased risk of large artery stroke. We also show that
mRNA expression of the nearest gene (MMP12) is higher in
arteries with the disease process underlying large artery
stroke (atherosclerosis). Finally, we evaluate our novel
analysis approach, and show that our method is likely to
identify further associations with ischaemic stroke.

MMP12 and Large Artery Atherosclerotic Stroke
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plaques (P = 5.0610211; FC = 399.3) compared with controls.

Conversely, MMP3 was not significantly overexpressed in carotid,

femoral or abdominal plaques versus controls (p.0.05).

Regulatory information from ENCODE
Eight SNPs were identified that were perfect proxies (r2 = 1)

with the associated SNP (rs660599) in the region. Seven of the

SNPs were in an intergenic region between MMP3 and MMP12,

while one fell within an intron of MMP12. We investigated the

evidence that any of these SNPs are functional variants using

RegulomeDB [19]. Of the eight SNPs, we found strong evidence

that one of these SNPs (rs586701) affects binding. The SNP

overlaps both CHIP-seq and DNA-seq peaks from ENCODE

analyses, indicating that there is open chromatin in the region, and

therefore that the SNP is likely to be functional. There is also

evidence from a separate CHIP-seq analysis that the SNP affects

protein binding [20], and evidence from multiple sources that the

SNP overlaps a predicted motif [21,22,23]. Histone modifications

were observed in CHIP-seq experiments from ENCODE in a

number of cells types, including Human umbilical vein endothelial

(Huvec) cells. Two other SNPs (rs17368582, rs2276109) in

moderate LD with the associated SNP (r2 = 0.64) have been

previously shown to directly influence MMP12 expression by

affecting the affinity of an AP-1 binding site in the MMP12
promoter region [24,25]. Using RegulomeDB, we found further

evidence from ENCODE that one of these SNPs (rs2276109) is

indeed functional, giving evidence that the associated locus in this

analysis is likely to affect MMP12 expression through altered

Table 1. Sample size of discovery populations.

Study Population IS CE LAA SVD Controls

Belgium – Immunochip 396 147 57 49 319

Germany-Immunochip 421 127 101 - 2,355

Krakow – Immunochip 384 119 33 28 255

Sweden – Immunochip 796 246 56 183 997

UK – Immunochip 867 130 152 257 1,790

Germany – WTCCC2 1,174 330 346 106 797

UK – WTCCC2 2,374 474 498 460 5,175

Milano 366 64 73 25 407

Total (Discovery) 6,778 1,637 1,316 1,108 12,095

IS, all ischaemic stroke; CE, cardioembolic stroke; LAA, large artery stroke; SVD, small vessel disease.
doi:10.1371/journal.pgen.1004469.t001

Figure 1. LocusZoom plot of MMP12 association using age-at-onset informed approach. SNPs are colored based on their correlation (r2)
with the labeled top SNP, which has the smallest P value in the region. The fine-scale recombination rates estimated from 1000 Genomes (EUR) data
are marked in light blue, with genes marked below by horizontal blue lines. Arrows on the horizontal blue lines show the direction of transcription,
and rectangles are exons. SNP p-values are from the discovery meta-analysis only with the exception of rs660599, for which the given p-value
indicates the overall evidence for association from the discovery and replication cohorts.
doi:10.1371/journal.pgen.1004469.g001
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transcription. Detailed results for all analysed SNPs are given in

Table S1. Additionally, we investigated if these SNPs (rs17368582,

rs2276109, rs586701) were associated with MMP12 expression in

tissues from the GTEx project [26]. However, we could not

confirm an association with MMP12 expression in any relevant

tissues (p.0.4 in whole blood, tibial artery, aortic artery).

Evaluation of age-at-onset informed approach
Finally, we evaluated the overall utility of the age-at-onset

informed approach in permutation analyses for SNPs that met p-

value thresholds in the case control discovery data set. We

generated 1000 permutations of age-at-onset within each centre,

and performed age-at-onset informed analysis and subsequent

meta-analysis for these SNPs, in the relevant stroke subtype.

We compared the sum of the meta-analysis Z scores from all

SNPs with p,0.05 in the observed age at onset informed meta-

analysis with those from permutations. At this p-value selection

threshold, we found strong evidence (p,0.001) for genome-wide

age-at-onset effects in each of the stroke phenotypes, with

consistently increased summed Z scores in the observed age-at-

onset informed meta-analysis compared to the permutations

(Figure 2, red points, right hand axis). These results suggest that

many of the risk variants for each stroke subphenotype have a

higher frequency in younger onset cases. As the p-value selection

threshold decreased, the summed Z score statistic became less

significant in each stroke type, possibly reflecting lower overall

power when fewer SNPs are included, even as these SNPs may

have larger average effects. Further details are seen from the

median proportion of SNPs more significant in the age-at-onset

informed analysis than in the permutations (Figure 2, blue points,

left hand axis). For CE and LAA stroke, the proportions increased

with more stringent p-value thresholds (from 52.1% to 56.3% for

p,0.05 and p,0.00005 thresholds in CE, and from 51.4% to

56.0% for p,0.05 and p,0.00005 thresholds in LAA). Interest-

ingly, in the all ischaemic stroke analysis the median proportion of

SNPs more significant in the observed results than permutations

dropped from 55.1% for SNPs with p,0.05 to 49.2% for only

SNPs with p,0.00005. This result may indicate a reduced

proportion of true associations at stricter p-value thresholds for all

ischaemic stroke compared to the subtypes, which is consistent

with the observation that all common variants associated with

stroke are for stroke subtypes, rather than for the phenotype of all

ischaemic stroke [16].

The previously reported GWAS associations from a recent

ischaemic stroke meta-analysis (9p21, HDAC9, PITX2, ZFHX3)

were all found to be more significant using the age-at-onset

informed approach than the uninformed analysis (Figure 3). The

increase in significance ranged from over half an order of

Table 2. Sample size of replication populations.

Study Population LAA (age,61) LAA (age,71) LAA (age,78) LAA (all ages) IS Controls

ARIC - - - 31 385 8,803

ASGC 81 179 277 421 1,162 1,244

deCODE - - - 255 2,391 26,970

GEOS - - - 37 448 498

HVH 18 39 63 71 566 2,072

ISGS/SWISS 84 130 179 217 1,070 1,370

MGH-GASROS (Affymetrix) 31 60 79 102 485 3,030

MGH-GASROS (Illumina) 22 47 59 68 296 377

PROMISe 134 230 301 324 556 1,145

RACE - - - 355 1,390 5,308

Total (Replication) 370 685 958 1,881 8,749 50,817

LAA, large artery stroke; IS, all ischaemic stroke; ARIC, the Atherosclerosis Risk in communities study; ASGC, the Australian Stroke Genetics collaboration; deCODE,
deCODE genetics; GEOS, the Genetics of early onset stroke study; HVH, the heart and vascular health study; ISGS/SWISS, the Ischaemic stroke genetics study/Siblings
with Ischaemic stroke study; MGH-GASROS, Massachusetts General Hospital – Genetics affecting stroke risk and outcome; PROMISe, Prognostic modeling in ischaemic
stroke study [55]; RACE, Risk Assessment of Cerebrovascular Events study. For further details of these populations please see the original METASTROKE publication [16].
doi:10.1371/journal.pgen.1004469.t002

Table 3. Evidence for association of A allele of rs660599 (chromosome 11; Base position 102,234,967) with large artery
atherosclerotic stroke and all ischaemic stroke.

Subtype SNP RAF p-value (discovery)
OR (95% CI) (EUR
replication)

p-value (EUR
replication, overall)

p-value (ALL
replication, overall)

LAA rs660599 0.19 2.5.61027 1.18 (1.05–1.32) 0.0048, 2.661028 0.0063, 3.461028

IS ‘‘ ‘‘ 3.261024 1.05 (1.00–1.11) 0.050, 1.961024 0.098, 3.661024

CE ‘‘ ‘‘ 0.13 - - -

SVD ‘‘ ‘‘ 0.30 - - -

LAA, large artery stroke; IS, all ischaemic stroke; SNP, single nucleotide polymorphism; RAF, risk allele frequency; OR, odds ratio; 95% CI, 95% confidence interval; EUR,
meta-analysis in individuals of European ancestry alone; ALL, trans-ethnic meta-analysis of all individuals. Forest plots of effect sizes and standard errors for each
replication centre are given in Figures S3, S4.
doi:10.1371/journal.pgen.1004469.t003
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magnitude (7.961029 to 1.561029 for rs879324 in ZFHX3,

CE), to under half an order of magnitude (5.761029 to

2.561029 for rs2107595 in HDAC9, LVD). To ensure these

analysis methods were comparable, we calculated genomic

inflation factors and plotted QQ-plots. These were similar in

the standard and the age-at-onset informed approach (Table

S4, Figure S1, S2). For these four associated SNPs, we further

used the permuted data sets to assess the observation of

increased significance in the age-at-onset informed analysis.

We compared the observed meta-analysis p-value to those

from the permutations, generating an empirical p-value by

dividing the number of permutations more significant than the

observed results by the number of permutations. In LAA

stroke, we observed a significant age-at-onset effect (p = 0.018,

0.011 and 0.002 for the HDAC9, MMP12 and 9p21-

associated SNPs in Figure 3, respectively). Similarly, for CE,

we observed a significant age-at-onset effect for rs879324

(ZFHX3, p = 0.026), and a near-significant effect in rs6843082

(PITX2, p = 0.081). This result provides further evidence that

risk variants associated with ischaemic stroke subtypes have a

stronger role in younger onset cases, and suggests that the age-

at-onset informed approach will produce improved signifi-

cance when the magnitude of genetic effects are stronger in

younger onset cases.

Discussion

We used a large GWAS dataset to evaluate the utility of an age-

at-onset informed analysis approach to ischaemic stroke, and to

identify novel variants associated with ischaemic stroke pheno-

types. We identified a novel MMP12 locus that is associated with

large artery atherosclerotic stroke, and verified that the age-at-

onset informed approach produces improved significance for loci

associated with each of the stroke phenotypes studied, as well as

demonstrating that it increased the significance of four previous

GWAS associations with ischemic stroke, all without systematic

inflation of the test statistic. Importantly, the novel associated SNP

would not have been identified using a standard logistic regression

framework.

We identified a group of SNPs proximal to Matrix Metallo-

proteinase 12 (MMP12) that showed increased significance when

using the age-at-onset informed approach. The increase in

significance from the equivalent uninformed analysis was of

almost an order of magnitude (from p = 1.661026 to

p = 2.561027 for rs660599). We took a single SNP from this

region forward for replication in an independent dataset, finding

further evidence that the region is associated with large artery

stroke. Two SNPs (rs17368582, rs2276109) in this LD-block have

previously been shown to directly influence MMP12 expression by

Figure 2. Evaluation of evidence genome-wide for SNPs exhibiting greater significance using the age-at-onset informed approach
compared to permutations. -log10(p value) from permutations for evidence of age-at-onset effect at given SNP p-value selection threshold
shown in red; median proportion of SNPs (with IQR) more significant in observed age-at-onset informed meta-analysis compared to permutations
shown in blue; horizontal line at p = 0.05 in red; horizontal line at median proportion of SNP = 0.5 in blue; IS, all ischaemic stroke; CE, cardioembolic
stroke; LAA, large artery atherosclerotic stroke; SVD, small vessel disease. See Table S5 for number of SNPs included at each p-value selection
threshold.
doi:10.1371/journal.pgen.1004469.g002
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affecting the affinity of an AP-1 binding site in the MMP12
promoter region [24,25], and another variant in this block

(rs17361668) is associated with increased fibrinogen levels, leading

to an increased risk of developing advanced carotid atherosclerotic

lesions, and an increased risk of myocardial infarction. We

identified a second functional candidate (rs586701), which falls

within both CHIP-seq and DNA-seq peaks from ENCODE, and is

in complete LD with the associated SNP in our analysis.

We investigated mRNA expression of MMP12 and MMP3 in

carotid atherosclerotic plaques in individuals from the Tampere

Vascular Study. MMP12 was overexpressed in diseased tissue

compared to healthy controls, while no significant difference was

found for the other nearby gene, MMP3. MMP12 is a member of

the Matrix Metalloproteinase (MMP) family of proteases, which

are capable of degrading extracellular matrix proteins, and have a

prominent role in atherosclerosis. They are thought to promote

macrophage invasion [27,28,29], promote angiogenesis [30], and

show increased activity in atheromatous plaques [31]. MMP12
deletions are associated with smaller, more stable lesions in the

brachiocephalic artery of rabbits [32], and reduced elastin

degradation in the aortic arch [33], indicating that MMP12
may have a role in destabilising plaques. Studies in humans have

found MMP12 is localized to the core of advanced plaques, in

macrophages with decreased arginase-I expression [34], that

MMP12 localizes selectively to macrophages at the borders of the

lipid core [35], and that MMP12 is significantly overexpressed in

ruptured plaques when compared with thick or thin cap plaques,

or with plaques with pathological intimal thickening [36]. This

indicates that MMP12 is likely be involved in late-stage plaque

instability: our study suggests that genetic variation impacts on this

process.

Secondly, we performed extensive permutation analyses to

assess the utility of the age-at-onset informed approach genome-

wide. In each phenotype studied we found evidence that SNPs

were more strongly associated using the approach than would be

expected by chance, indicating that multiple risk variants are likely

to be more common in younger onset cases. The significance was

strongest when more SNPs were included in the analysis, which

likely reflects the cumulative impact of age-at-onset effects on

many SNPs. An alternative explanation might be that the

increased significance for lower p-value thresholds is the result of

the cumulative effects of subtle confounding. However, this is

unlikely because any subtle biases will also be present in the

permutations, and should therefore not affect the significance of

the results. This result supports observations from family history

and prospective cohort studies, which have observed stronger

effects in younger onset cases [6,11]. Furthermore, all known

associations with stroke were more significant using the age-at-

onset informed approach. The increase in significance was around

half an order of magnitude (e.g from p = 7.961029 to 1.561029

for ZFHX3, Figure 2), and was significant in all but one locus, as

assessed by permutation. Taken together, these results indicate

that age-at-onset is an important measure to stratify stroke cases,

and show that, as expected by theory [17], integrating this

information into association studies is likely to increase power to

identify novel loci when the relative contribution of genetic is

dependent on age-at-onset.

Our study has limitations. We used imputed data from the

Immunochip platform, meaning we only had access to ,40% of

the genome across all centres. Secondly, cases were drawn from a

number of international centres, meaning that despite efforts to

standardize phenotyping, we cannot rule out differences in

screening and clinical ascertainment.

Of complex diseases, IS has a particularly large degree of

heterogeneity, exemplified by the fact that all validated associa-

tions identified to date have been within subtypes defined by

clinical and radiological information. Further heterogeneity by risk

factor and clinical covariate profiles is likely to exist, but the

optimal method of incorporating this information into analyses

remains an unanswered question. Our results indicate that a

Figure 3. Meta-analysis p-values of known loci for ischaemic stroke subtypes using age-at-onset informed approach compared to
uninformed approach. -log10 of p-values derived from meta-analysis of all discovery cohorts using age-at-onset informed approach (red) and
uninformed approach (blue). 9p21 (rs1004638), MMP12 (rs660599) and HDAC9 (rs2107595) p-values calculated within large artery atherosclerosis
subtype of stroke, PITX2 (rs6843082) and ZFHX3 (rs879324) p-values calculated with cardioembolic stroke subtype.
doi:10.1371/journal.pgen.1004469.g003
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covariate-informed design, conditioning on age-at-onset of stroke,

can unearth further associated variants. We provide evidence for

this by identifying an association with a novel MMP12 locus in

large artery stroke, supported by increased mRNA expression of

the implicated gene in carotid plaques. GWAS in ischaemic stroke

have begun to identify the genetic component of the disease, but

these results are not yet clinically useful. Our study suggests that a

more refined approach to analysis of genetic data, incorporating

covariate information, is an important step in this process, and will

help to ensure success in future GWAS.

Materials and Methods

Ethics statement
All studies were approved by their local ethics committees; all

patients gave informed consent.

Description of datasets
The initial dataset consisted of 6,778 ischaemic stroke cases of

European ancestry and 12,095 ancestry-matched controls from

the Wellcome Trust Case-Control Consortium II project in

ischaemic stroke [1], as well as a cohort from Milan, Italy [16].

These included 2,858 cases and 5,716 matched controls genotyped

using the Immunochip platform; and 3,940 cases genotyped using

either the Illumina 610 k or 660 k platforms matched with 6,379

controls genotyped on the Illumina Human 1.2M Duo (UK),

Illumina Human 550 k (German) and Illumina 610 k platforms

(Italian) (Table 1). The Immunochip cases were described in the

previous WTCCC2 ischaemic study, where they formed the

replication effort [1], as well as in a recent paper [37]. Genotyping

of the five Immunochip case cohorts on the commercially available

Immunochip array (Illumina, San Diego, CA, USA) was

performed at the Sanger Centre, Hinxton, Cambridge UK.

Swedish controls were provided and genotyped by the Swedish

SLE network, Uppsala, Sweden. Belgian control samples were

provided through the efforts of the International Multiple Sclerosis

Genetics Consortium (IMSGC). German controls were derived

from the PopGen biobank, [38]. UK controls were derived from

the 1958 Birth cohort. Any of the 1958 Birth controls overlapping

with those from the WTCCC2 datasets, as assessed by IBD

estimates, were removed prior to analysis. Standard quality control

procedures were undertaken on all centres, before centre-wise

imputation to the 1000 Genomes phase 1 integrated variant set

(March 2012), using IMPUTE v2.2.0 [39,40]. SNPs with poor

imputation quality (info,0.3) or low minor allele frequency

(MAF,0.01) were discarded.

Ischemic stroke was defined as a typical clinical syndrome with

radiological confirmation; ascertained cases were classified into

individual stroke subtypes using the Trial of Org 10172 in acute

stroke (TOAST) criteria in all centres [41]. Age-at-onset was

defined as age at first hospital admission for stroke; where this

information was unavailable, age at blood draw was used (7.3% of

cases). The age-at-onset and gender distributions of the popula-

tions are given in Table S3. Age-at-onset quantiles were calculated

from all the cases from the discovery datasets in the four stroke

phenotypes (all IS and the three stroke subtypes: CE, LAA, SVD)

and these were used to evaluate associated loci at different age-at-

onset thresholds.

Association analysis
The prevalence of ischaemic stroke by age was obtained from a

recent publication [9]; gender-specific estimates were averaged,

and prevalences within each of the stroke subtypes were assumed

to be approximately 20% of the overall total, similar to

proportions seen in population-based studies [42]. We modeled

phenotype data using a continuous unobserved quantitative trait

called the disease liability, which we used to approximate the

effect of age-at-onset on the liability scale, based on estimates of

ischaemic stroke prevalence by age from epidemiological data

(full details in Text S2). We developed two models for our

analysis; one based on the prevalence rates for all ischaemic

stroke cases, and secondly for the three stroke subtypes. We used

these models to calculate posterior mean liabilities after condi-

tioning on age-at-onset for the four stroke phenotypes separately.

Controls were modeled in the same way, but were assumed to

take the posterior mean from the lower (unaffected) portion of the

distribution in the liability threshold model. Where age data was

missing, individuals were assigned the median age value. Full

descriptions of the models used and the formulae used to

calculate posterior mean liabilities are given in Text S2.

Regression was then performed on posterior liabilities by

multiplying the number of samples by the squared correlation

between the expected genotype dosage and posterior mean

liabilities for each of the discovery cohorts in the four ischaemic

stroke phenotypes (CE, LAA, SVD, IS), following a previous

approach [17]. Ancestry-informative principal components were

included where appropriate (6 of 8 centres), using the EIGEN-

STRAT procedure [43]. All analysis was performed using the R

statistical software.

The results from each centre were meta-analysed for each of the

four phenotypes using Stouffer’s Z-score weighted approach, as

implemented in METAL [44]. Genomic control was used to

correct for any residual inflation due to population stratification

[45]. Between-study heterogeneity was assessed using Cochran’s Q

statistic. We considered only SNPs present in at least 75% of the

cases, and with no evidence of heterogeneity (Cochran’s Q p-

value.0.001). All SNPs analysed were either genotyped or

imputed in both the Immunochip and the genome-wide datasets.

After meta-analysis, the resulting p-values were compared with the

equivalent values from an unconditioned analysis. For SNPs more

significant in the age-at-onset informed analysis and with p,

561026, we determined the evidence of a true age-at-onset effect

by generating 1000 permutations of age-at-onset and rerunning

the age-at-onset informed analysis, meta-analysing as previously.

We calculated an empirical p-value by dividing the number of

permuted observations showing greater significance in the meta-

analysis than the observed results by the number of permutations.

Any novel SNP with a meta-analysis p,561026 and evidence of

an age-at-onset effect at p,0.05 were taken forward for

replication. We set the experiment-wide significance threshold at

p,561028.

Replication analysis
Replication of an associated variant was performed in a further

10 cohorts from METASTROKE. Nine of the centres used a

cross-sectional design, while one was a large prospective,

population based cohort (ARIC). Nine of the centres were of

European ancestry, while one consisted of individuals of Pakistani

ancestry (RACE) (Table 2). All centres used a case-control

methodology; centres with a cross sectional design used logistic

regression to model the association of genotype dosages from

imputation with the dichotomous outcome of ischaemic stroke and

prospective cohorts used Cox proportional-hazards models to

evaluate time to first stroke, fitting an additive model relating

genotype dose to the stroke outcome. European ancestry

replication centres were meta-analysed using a fixed effects

inverse-variance weighted method. To assess the evidence for

association of the SNP for replication samples of all ancestries, we
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performed a trans-ethnic meta-analysis using a random-effects

model to control for any resulting heterogeneity [18]. To evaluate

the overall evidence for association, the results of the discovery and

replication analyses were combined using Fisher’s Method.

mRNA expression in carotid atherosclerotic plaques
Expression of the two genes proximal to the associated variant

was tested in atherosclerotic plaques from the Tampere Vascular

study [27,46,47,48,49]. Carotid, femoral, and aortic atheroscle-

rotic plaques constituting the intima and inner media were

prospectively obtained between 2005 and 2009 from patients

fulfilling the following inclusion criteria: (1) carotid endarterecto-

my attributable to asymptomatic or symptomatic .70% carotid

stenosis, or (2) femoral or (3) aortic endarterectomy with aortoiliac

or aortobifemoral bypass attributable to symptomatic peripheral

arterial disease. Whole thickness left internal thoracic artery

samples obtained during coronary artery bypass surgery and

identified as being microscopically atherosclerosis free were

used as controls. The patients were consecutively recruited

and stratified according to indication for surgery. All open

vascular surgical procedures were performed at the Division

of Vascular Surgery and Heart Center, Tampere University

Hospital.

Fresh tissue samples were immediately soaked in RNALater

solution (Ambion Inc) and homogenized using an Ultra-Turrax

T80 homogenizer (IKA). RNA was extracted with the Trizol

reagent (Invitrogen) and miRNEasy Mini-Kit (Qiagen) with the

RNase-Free DNase Set (Qiagen) according to manufacturer

instructions. The RNA isolation protocol was validated by

analyzing the integrity of the RNA with the RNA 6000 Nano

Chip Kit (Agilent). The expression levels were analyzed with an

Illumina HumanHT-12 v3 Expression BeadChip (Illumina). In

brief, 300–500 ng of RNA was reverse transcribed in cRNA and

biotin-UTP labeled using the IlluminaTotalPrep RNA Amplifica-

tion Kit (Ambion), and 1500 ng of cRNA was then hybridized to

the Illumina HumanHT-12 v3 Expression BeadChip.

The BeadChips were scanned with the Illumina iScan system.

After background subtraction, raw intensity data were exported

using the Illumina Genome Studio software. Further data

processing was conducted by means of R language and appropriate

Bioconductor modules. Data were log2-transformed, and robust

multichip average and robust spline normalization (rma_rsn) were

used. Accuracy of the expression array was validated with qRT-

PCR [50]. mRNA Expression levels in the tissues were determined;

a fold change statistic was estimated between the two tissues, and

significance was calculated using a t test.

Regulatory information using RegulomeDB
Recent evidence indicates that a significant proportion of

GWAS SNPs fall within regions that are likely to affect binding of

nearby proteins, such as transcription factor binding sites [51,52].

We used the RegulomeDB database to access regulatory

information from ENCODE and other existing publications

[19], investigating the evidence that the SNPs in the associated

locus have a regulatory function. First, the linkage-disequilibrium

(LD) patterns amongst the most strongly associated SNPs were

determined. We then used PLINK to determine the LD structure

of the associated region, using LD-patterns from the 85 Utah

residents from the 1000 Genomes project [53,54]. All SNPs with

r2.0.6 were identified within a 2,000 kb window from the index

SNP. All of the SNPs identified were then investigated using

RegulomeDB to determine the evidence that any of the SNPs have

a regulatory function.

Evaluation of age-at-onset informed approach
Permutation analysis was performed to evaluate the age-at-

onset informed approach, to show that including age at onset

information directly led to the increased significance, due solely

to inclusion of age-at-onset information at tested SNPs. First, we

identified a set of SNPs enriched for true association in the case

control analysis of ischaemic stroke and subtypes. An expanded

set of discovery and METASTROKE studies were analysed

using standard case control methods and subsequent meta-

analysis (see Table S2). SNPs with p,0.05 and no evidence of

heterogeneity (p.0.0001) were extracted and pruned for LD

(300 kb window, r2,0.25), leaving a set of almost independent

SNPs for further analysis. Each retained SNP represented the

most significant association in each LD block, as determined by

the ‘‘clump’’ procedure in PLINK, based on LD patterns from

the CEU individuals from 1000 Genomes. The number of SNPs

used in each analysis is given in Table S5. These SNP subsets

were derived for ischaemic stroke, and for each stroke subset

and then used in the age-at-onset informed analysis. Analysis

was performed as previously for each stroke subtype using the

age-at-onset informed method within studies and meta-analysis

across studies (giving observed results, as obtained above). We

then performed a permutation study to obtain the expected

distribution of p-values at these SNPs. Age at onset for cases was

permuted within stroke subtypes within each study, and then the

data were re-analysed, for 1000 permutations. Two summary

statistics were constructed: (1) within permutations, we com-

pared p-values from analysis of permuted age at onset with p-

values from the observed data, and tabulated the proportion of

SNPs with increased significance in the observed data set than

in the permuted data set; across permutations, we calculated the

median proportion of SNPs with increased significance in the

observed data; (2) Within permutations, we converted each SNP

p-value to a Z score and summed the absolute value of the Z

score across SNPs (sumZ). An empirical p-value for the age-

informed analysis was calculated from the proportion of

simulated data sets where sumZ exceeded the value in the

observed analysis. This analysis was performed at SNP subsets

defined from four SNP p-value thresholds in the discovery and

METASTROKE studies: p,0.05, p,0.005, p,0.0005, and

p,0.00005.

Finally, we assessed the evidence of an age-at-onset effect at the

four stroke loci identified in the METASTROKE ischaemic stroke

collaboration (9p21, HDAC9, PITX2, ZFHX3) [16]. For each

SNP, we generated an empirical p-value from the proportion of

permutations showing stronger association than in the observed

age-at-onset informed analysis.

Supporting Information

Figure S1 QQ-plots for cardioembolic stroke and all ischaemic

stroke analyses. QQ-plots of expected p-values (x-axis) against

observed p-values (y-axis) for analyses of (clockwise from top left)

cardioembolic stroke (age-at-onset informed), cardioembolic stroke

(uninformed), all ischaemic stroke (uninformed), all ischaemic

stroke (age-at-onset informed). Lambda values for each plot are

given in Table S4.

(DOCX)

Figure S2 QQ-plots for large artery atherosclerotic stroke and

small vessel disease stroke analyses. QQ-plots of expected p-values

(x-axis) against observed p-values (y-axis) for analyses of (clockwise

from top left) large artery stroke (age-at-onset informed), large

artery stroke (uninformed), small vessel stroke (uninformed), small
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vessel stroke (age-at-onset informed). Lambda values for each plot

are given in Table S4.

(DOCX)

Figure S3 Forest plot of SNP effects for rs660599 in the large

artery atherosclerotic stroke replication populations. ASGC,

the Australian Stroke Genetics collaboration; deCODE,

deCODE genetics; GEOS, the Genetics of early onset stroke

study; HVH, the heart and vascular health study; ISGS/

SWISS, the Ischaemic stroke genetics study/Siblings with

Ischaemic stroke study; MGH-GASROS, Massachusetts Gen-

eral Hospital – Genetics affecting stroke risk and outcome.

PROMISe, Prognostic modeling in ischaemic stroke study;

RACE, Risk Assessment of Cerebrovascular Events study.

(DOCX)

Figure S4 Forest plot of SNP effects for rs660599 in the large

artery atherosclerotic stroke replication populations for cases

with age ,61 years. ASGC, the Australian Stroke Genetics

collaboration; HVH, the heart and vascular health study;

ISGS/SWISS, the Ischaemic stroke genetics study/Siblings

with Ischaemic stroke study; MGH-GASROS, Massachusetts

General Hospital – Genetics affecting stroke risk and

outcome. PROMISe, Prognostic modeling in ischaemic stroke

study.

(DOCX)

Table S1 Results from RegulomeDB, showing the evidence

that SNPs in the associated MMP12 region have a regulatory

function. Scores indicate the following degrees of evidence:

Score 2b, TF binding + any motif + DNase Footprint + DNase

peak; Score 4, TF binding + DNase peak; Score 5, TF binding

or DNase peak; Score 6, other; ‘‘No data’’ indicates that

RegulomeDB holds no information about the given SNP,

meaning there currently exists no evidence to suggest that the

SNP has a regulatory function. In some cases this may indicate

that the SNP falls within a protein-coding region. SNP, single

nucleotide polymorphism.

(DOCX)

Table S2 Expanded set of populations used to generate SNPs

with p,0.05 to evaluate the age-at-onset informed approach.

ARIC, The Atherosclerosis Risk in Communities study; ASGC,

Australian Stroke Genetics Collaborative; CHS, Cardiovascular

Health Study; FHS, Framingham Heart Study; HPS, Heart

Protection Study; HVH, The Heart and Vascular Health Study;

ISGS/SWISS, The Ischemic Stroke Genetics Study/Sibling

with Ischaemic Stroke Study; MGH-GASROS, The MGH

Genes Affecting Stroke Risk and Outcome Study; WTCCC2-

Germany, The Wellcome Trust Case-Consortium II Munich;

WTCCC2-UK, The Wellcome Trust Case-Consortium II UK;

RACE, Risk Assessment of Cerebrovascular Events Study,

Pakistan.

(DOCX)

Table S3 Age and gender distributions of populations. ARIC,

The Atherosclerosis Risk in Communities study; ASGC, Austra-

lian Stroke Genetics Collaborative; CHS, Cardiovascular Health

Study; FHS, Framingham Heart Study; HPS, Heart Protection

Study; HVH, The Heart and Vascular Health Study; ISGS/

SWISS, The Ischemic Stroke Genetics Study/Sibling with

Ischaemic Stroke Study; MGH-GASROS, The MGH Genes

Affecting Stroke Risk and Outcome Study; WTCCC2-Germany,

The Wellcome Trust Case-Consortium II Munich; WTCCC2-

UK, The Wellcome Trust Case-Consortium II UK; RACE, Risk

Assessment of Cerebrovascular Events Study, Pakistan. IS, all

ischaemic stroke; CE, cardioembolic stroke; LAA, large artery

stroke; SVD, small vessel disease.

(DOCX)

Table S4 Genomic inflation (l) rates for discovery populations

for age-at-onset informed and uninformed approaches. IS, all

ischaemic stroke; CE, cardioembolic stroke; LAA, large artery

stroke; SVD, small vessel disease.

(DOCX)

Table S5 Number of SNPs used in evaluation of age-at-onset

informed approach. IS, all ischaemic stroke; CE, cardioembolic

stroke; LAA, large artery stroke; SVD, small vessel disease.

(DOCX)

Text S1 Membership of Wellcome Trust Case Control Consor-

tium 2 (WTCCC2).

(DOCX)

Text S2 Liability threshold models.

(DOCX)

Acknowledgments

The authors thank all study staff and participants for their important

contributions, and METASTROKE for granting access to study data.

Author Contributions

Conceived and designed the experiments: MT CML HSM. Performed the

experiments: MT KMM ER NO EGH WJD MAN KLW WZ YCC SA.

Analyzed the data: MT KMM. Contributed reagents/materials/analysis

tools: LLK RM CS SB VT RL AL AS JMM MW AA PS JRA GBB PMR

PIWdB JCB DS SJK BDM JR JFM CL MD TL. Wrote the paper: MT

CML HSM.

References

1. Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, et al. (2012)

Genome-wide association study identifies a variant in HDAC9 associated with

large vessel ischemic stroke. Nat Genet 44: 328–333.

2. Holliday EG, Maguire JM, Evans TJ, Koblar SA, Jannes J, et al. (2012)

Common variants at 6p21.1 are associated with large artery atherosclerotic

stroke. Nat Genet 44: 1147–1151.

3. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, et al. (2009)

Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke.

Ann Neurol 65: 531–539.

4. Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, et al.

(2009) A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation

and ischemic stroke. Nat Genet 41: 876–878.

5. Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A,

et al. (2008) Risk variants for atrial fibrillation on chromosome 4q25 associate

with ischemic stroke. Ann Neurol 64: 402–409.

6. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, et al. (2006) The

lifetime risk of stroke: estimates from the Framingham Study. Stroke 37: 345–

350.

7. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, et al. (2010) Risk factors for

ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTER-

STROKE study): a case-control study. Lancet 376: 112–123.

8. Rothwell PM, Coull AJ, Silver LE, Fairhead JF, Giles MF, et al. (2005)

Population-based study of event-rate, incidence, case fatality, and mortality for

all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet

366: 1773–1783.

9. Seshadri S, Wolf PA (2007) Lifetime risk of stroke and dementia: current

concepts, and estimates from the Framingham Study. Lancet Neurol 6: 1106–

1114.

10. Seshadri S, Beiser A, Pikula A, Himali JJ, Kelly-Hayes M, et al. (2010) Parental

occurrence of stroke and risk of stroke in their children: the Framingham study.

Circulation 121: 1304–1312.

11. Jerrard-Dunne P, Cloud G, Hassan A, Markus HS (2003) Evaluating the genetic

component of ischemic stroke subtypes: a family history study. Stroke 34: 1364–1369.

12. MacClellan LR, Mitchell BD, Cole JW, Wozniak MA, Stern BJ, et al. (2006)

Familial aggregation of ischemic stroke in young women: the Stroke Prevention

in Young Women Study. Genet Epidemiol 30: 602–608.

MMP12 and Large Artery Atherosclerotic Stroke

PLOS Genetics | www.plosgenetics.org 10 July 2014 | Volume 10 | Issue 7 | e1004469



13. Brass LM, Isaacsohn JL, Merikangas KR, Robinette CD (1992) A study of twins

and stroke. Stroke 23: 221–223.
14. Traylor M, Bevan S, Rothwell PM, Sudlow C, Dichgans M, et al. (2013) Using

phenotypic heterogeneity to increase the power of genome-wide association

studies: application to age at onset of ischaemic stroke subphenotypes. Genetic
Epidemiology 37: 495–503.

15. Cheng YC, O’Connell JR, Cole JW, Stine OC, Dueker N, et al. (2011) Genome-
wide association analysis of ischemic stroke in young adults. G3 (Bethesda) 1:

505–514.

16. Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, et al. (2012)
Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE

collaboration): a meta-analysis of genome-wide association studies. Lancet
Neurol 11: 951–962.

17. Zaitlen N, Lindstrom S, Pasaniuc B, Cornelis M, Genovese G, et al. (2012)
Informed conditioning on clinical covariates increases power in case-control

association studies. PLoS Genet 8: e1003032.

18. Han B, Eskin E (2011) Random-effects model aimed at discovering associations
in meta-analysis of genome-wide association studies. Am J Hum Genet 88: 586–

598.
19. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, et al. (2012)

Annotation of functional variation in personal genomes using RegulomeDB.

Genome Res 22: 1790–1797.
20. Verzi MP, Shin H, He HH, Sulahian R, Meyer CA, et al. (2010) Differentiation-

specific histone modifications reveal dynamic chromatin interactions and
partners for the intestinal transcription factor CDX2. Dev Cell 19: 713–726.

21. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, et al. (2009)
Diversity and complexity in DNA recognition by transcription factors. Science

324: 1720–1723.

22. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, et al. (2008) JASPAR,
the open access database of transcription factor-binding profiles: new content

and tools in the 2008 update. Nucleic Acids Res 36: D102–106.
23. Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, et al. (2011) Accurate

inference of transcription factor binding from DNA sequence and chromatin

accessibility data. Genome Res 21: 447–455.
24. Jormsjo S, Ye S, Moritz J, Walter DH, Dimmeler S, et al. (2000) Allele-specific

regulation of matrix metalloproteinase-12 gene activity is associated with
coronary artery luminal dimensions in diabetic patients with manifest coronary

artery disease. Circ Res 86: 998–1003.
25. Motterle A, Xiao Q, Kiechl S, Pender SL, Morris GE, et al. (2012) Influence of

matrix metalloproteinase-12 on fibrinogen level. Atherosclerosis 220: 351–354.

26. (2013) The Genotype-Tissue Expression (GTEx) project. Nature Genetics 45:
580–585.

27. Oksala N, Levula M, Airla N, Pelto-Huikko M, Ortiz RM, et al. (2009) ADAM-
9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced

human atherosclerotic plaques in aorta and carotid and femoral arteries–

Tampere vascular study. Ann Med 41: 279–290.
28. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996)

Metalloelastase is required for macrophage-mediated proteolysis and matrix
invasion in mice. Proc Natl Acad Sci U S A 93: 3942–3946.

29. Johnson JL, Baker AH, Oka K, Chan L, Newby AC, et al. (2006) Suppression of
atherosclerotic plaque progression and instability by tissue inhibitor of

metalloproteinase-2: involvement of macrophage migration and apoptosis.

Circulation 113: 2435–2444.
30. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen

activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:
1104–1117.

31. Choudhary S, Higgins CL, Chen IY, Reardon M, Lawrie G, et al. (2006)

Quantitation and localization of matrix metalloproteinases and their inhibitors
in human carotid endarterectomy tissues. Arterioscler Thromb Vasc Biol 26:

2351–2358.
32. Johnson JL, George SJ, Newby AC, Jackson CL (2005) Divergent effects of

matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in

mouse brachiocephalic arteries. Proc Natl Acad Sci U S A 102: 15575–15580.
33. Luttun A, Lutgens E, Manderveld A, Maris K, Collen D, et al. (2004) Loss of

matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipopro-
tein E-deficient mice against atherosclerotic media destruction but differentially

affects plaque growth. Circulation 109: 1408–1414.
34. Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, et al. (2007)

Genomics of foam cells and nonfoamy macrophages from rabbits identifies

arginase-I as a differential regulator of nitric oxide production. Arterioscler
Thromb Vasc Biol 27: 571–577.

35. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, et al. (1996) Matrilysin

is expressed by lipid-laden macrophages at sites of potential rupture in

atherosclerotic lesions and localizes to areas of versican deposition, a

proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A 93: 9748–

9753.

36. Morgan AR, Rerkasem K, Gallagher PJ, Zhang B, Morris GE, et al. (2004)

Differences in matrix metalloproteinase-1 and matrix metalloproteinase-12

transcript levels among carotid atherosclerotic plaques with different histopath-

ological characteristics. Stroke 35: 1310–1315.

37. Kilarski L, Achterberg S, Devan WJ, Traylor M, Malik R, et al. (2014) Meta-

analysis in over 17,900 cases of ischaemic stroke reveals a novel association at

12q24.12. Neurology (in press).

38. Krawczak M, Nikolaus S, von Eberstein H, Croucher PJ, El Mokhtari NE, et al.

(2006) PopGen: population-based recruitment of patients and controls for the

analysis of complex genotype-phenotype relationships. Community Genet 9: 55–

61.

39. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and

accurate genotype imputation in genome-wide association studies through pre-

phasing. Nat Genet 44: 955–959.

40. Marchini J, Howie B (2010) Genotype imputation for genome-wide association

studies. Nat Rev Genet 11: 499–511.

41. Adams HP, Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, et al. (1993)

Classification of subtype of acute ischemic stroke. Definitions for use in a

multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke

Treatment. Stroke 24: 35–41.

42. Lovett JK, Coull AJ, Rothwell PM (2004) Early risk of recurrence by subtype of

ischemic stroke in population-based incidence studies. Neurology 62: 569–573.

43. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide

association studies. Nat Genet 38: 904–909.

44. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of

genomewide association scans. Bioinformatics 26: 2190–2191.

45. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics

55: 997–1004.

46. Levula M, Oksala N, Airla N, Zeitlin R, Salenius JP, et al. (2012) Genes involved

in systemic and arterial bed dependent atherosclerosis–Tampere Vascular study.

PLoS One 7: e33787.

47. Niinisalo P, Oksala N, Levula M, Pelto-Huikko M, Jarvinen O, et al. (2010)

Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in

advanced atherosclerotic plaques: Tampere vascular study. Ann Med 42: 55–63.

48. Oksala N, Levula M, Pelto-Huikko M, Kytomaki L, Soini JT, et al. (2010)

Carbonic anhydrases II and XII are up-regulated in osteoclast-like cells in

advanced human atherosclerotic plaques-Tampere Vascular Study. Ann Med

42: 360–370.

49. Oksala N, Parssinen J, Seppala I, Raitoharju E, Kholova I, et al. (2013)

Association of Neuroimmune Guidance Cue Netrin-1 and its Chemorepulsive

Receptor UNC5B with Atherosclerotic Plaque Expression Signatures and

Stability in Human(s) - Tampere Vascular Study. Circ Cardiovasc Genet 6:579–

87.

50. Raitoharju E, Seppala I, Lyytikainen LP, Levula M, Oksala N, et al. (2013) A

comparison of the accuracy of Illumina HumanHT-12 v3 Expression BeadChip

and TaqMan qRT-PCR gene expression results in patient samples from the

Tampere Vascular Study. Atherosclerosis 226: 149–152.

51. Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, et al. (2013) All

SNPs are not created equal: genome-wide association studies reveal a consistent

pattern of enrichment among functionally annotated SNPs. PLoS Genet 9:

e1003449.

52. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. (2012) An

integrated encyclopedia of DNA elements in the human genome. Nature 489:

57–74.

53. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. (2012) An

integrated map of genetic variation from 1,092 human genomes. Nature 491:

56–65.

54. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.

55. Achterberg S, Kappelle LJ, Algra A (2008) Prognostic modelling in ischaemic

stroke study, additional value of genetic characteristics. Rationale and design.

Eur Neurol 59: 243–252.

MMP12 and Large Artery Atherosclerotic Stroke

PLOS Genetics | www.plosgenetics.org 11 July 2014 | Volume 10 | Issue 7 | e1004469


