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Abstract 
Using mineral additives and admixtures as self-healing agents in cement-based composites has 

been extensively researched. However, if the minerals are added directly to the cementitious 

matrix without any protection, they could immediately react, leading to a decrease in self-healing 

efficiency with further associated side-effects on the mechanical properties of cementitious 

composites. Thus, this paper describes the development of coated pellets as a self-healing system 

in cement based materials. Pan pelletisation was utilised for producing pellets from three 

different powder minerals as potential healing agents: reactive magnesium oxide (MgO), silica 

fume and bentonite. Of these materials, two types of developed prototype pellets in addition to 

another two commercial types of MgO pellets with different pellet sizes were then encapsulated 

in a polyvinyl alcohol (PVA) based film coating. The PVA coating was evaluated for the apparent 

solubility in water and in alkaline solution, swelling property, water permeability, dynamic 

mechanical properties, and shell thickness on pellets. Although PVA coating exhibited a decrease 

in its mechanical properties in water or in the simulated concrete environment, it retained 

integrity and stability in both environments. The PVA shell thickness varied from 10 to 50 µm. 

As the coated pellets partially replaced the natural sand in mortar mixtures, they were 

characterised in comparison with sand for the particle size distribution, density, porosity, 

crushing strength and particle shape. Experimental results indicated that the different types of 

pellets showed higher porosity and lower crushing strength compared to sand. In mortar 

mixtures, the pellets showed excellent compatibility with minimal influence on the fresh mixture 

properties and the compressive strength of the hardened specimens. This was accompanied by 

good distribution inside the concrete matrix. Further investigations on the self-healing 

performance of these pellets are under way. 
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1 Introduction: 
Concrete outperforms other commonly used construction materials as a long-lasting and durable 

material. However, it is prone to cracking due to its limited tensile strength. The use of 

reinforcement can improve tensile load carrying capacity but cannot completely prevent crack 

formation. Although cracks are not considered as a damage, provided a prevailing crack width 

criterion is not exceeded, they are nevertheless undesirable. These cracks provide pathways for 

ingress of water, carbon dioxide, acid rain and other aggressive agents. The latter can not only 

induce corrosion of steel reinforcement but also degrade the concrete and accordingly the service 

life of reinforced concrete structures is shortened. In addition, cracks cause leakage in concrete 

structures, such as water reservoirs, roofs and water pipes, negatively affecting their functionality 

[1]. Thus, maintenance and repair work are essential and indispensable. The conventional repair 

methods increase the associated life-cycle cost of concrete structures, have a significant 

environmental impact and demand long and intensive labour. This led researchers to develop 

concrete that had a sufficient healing capability; cracks in concrete could be self-healed after 

cracking under specific conditions without any human intervention. This paved the way for 

infrastructures with reduced lifetime costs, improved durability and service life, both from an 

economic and environmental point of view [2], [3]  

Cement based materials possess a certain capability to heal cracks intrinsically, which is called 

autogenous healing. This capability is mainly governed by chemical causes such as further 

hydration of cement grains and the formation of calcium carbonate [2], [4]. However, this 

autogenous healing is limited to microcracks (preferably less than 50µm) while the presence of 

water is essential [5], [6]. Using fibres can effectively improve the autogenous healing due to 

their capacity to control crack width and enhance multiple crack formation [7]. In an important 

step-forward, many researchers have explored the possibility of developing cement-based 

materials that heal autonomously. To achieve this, many techniques have been proposed such as 
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the addition of different mineral admixtures, bacterially induced carbonate precipitation, or using 

microcapsules or hollow fibres as carriers for healing agents. 

The direct inclusion of mineral additives and admixtures in the concrete in small dosages has 

been reported in several studies [8]–[10]. Despite the capability of these minerals to produce 

more healing products to fill the cracking area, they face certain disadvantages such as: premature 

consumption and uncontrolled reactivity in contact with water when directly added in the mix -

with other ingredients- without any protection [11]. Moreover in the case of expansive agents, 

expansion can occur in the interior matrix as well as in the cracked area, which could cause 

further cracking [1], [12]. Thus, researchers have suggested to envelope these minerals into 

capsules, glass tubes or coatings to be activated only at the time and location of cracking. For 

instance, Lee & Ryou [13] have investigated a coating encapsulation technique to envelope 

granulated calcium sulphoaluminate (CSA) into a polyvinyl alcohol (PVA) film. It was found 

that the PVA film coating could control the time of autonomic healing and prevented water 

migration via crack closing. Results also indicated an improvement of the healing efficiency of 

CSA in comparison with the direct application of healing agents in concrete without any coating. 

A recent study has also proposed to protect water soluble nutrients required for a special type of 

bacterial spore in a geopolymer coating [14]. Such coating will break whenever a crack occurs 

in the concrete matrix releasing the nutrients in the crack planes allowing the bacterial spores to 

germinate and precipitate calcium carbonate to heal the crack.  

Three requirements need to be met in order to develop any encapsulation technique for self-

healing of cement-based materials. Firstly, the encapsulation system should have compatibility 

and sufficient bonding with the concrete matrix. Secondly, it should be strong enough to preserve 

the sequestered healing compounds from unexpected events during the concrete mixing process, 

but brittle enough to rupture and release the healing agents when necessary. Thirdly, it should be 

chemically stable in the cement matrix, which is highly alkaline [14], [15]. The success of any 

system depends on the likelihood of two elements: (i) the crack path to coincide with the location 
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of the delivery system and (ii) the volume of healing agent to be released locally, since the latter 

is not ubiquitous in the matrix but concentrated at specific locations [16]. Similarly, the cargo 

material, in addition to promoting healing, has to disperse properly within the crack whilst having 

considerably extensive shelf life [16]. 

Three different powder minerals were examined in this study as core materials for the prototype 

pellets. A reactive magnesium oxide (MgO) was selected as the main potential self-healing agent 

in all formulations. MgO is an expansive mineral, able to yield irreversible and stable hydration 

products with compatible characteristics with the cement matrix [17]. Silica fume (SF), a silica-

based additive was also tested for its potential to enhance self-healing. SF does not possess 

hydraulic behaviour by itself but can react with free Ca(OH)2 and water, produced during the 

hydration of cement to form stable insoluble and densified calcium silicate hydrate (C-S-H) [18], 

[19]. Thus many researchers have proposed it for concrete repair and strengthening purposes 

[20], [21]. Bentonite (B) was also used as a dual-purpose material in some formulations. It is 

commonly used as a binder in the production of pellets [22], [23]. Bentonite has adequate binding 

properties throughout the temperature range of operation; it is also easy to handle, abundantly 

available, and inexpensive [23]. It can also play another significant role in filling cracks due to 

its high swelling capacity. It swells 15-18 times its dry size when wetted by water [24]. It is 

noteworthy here that all of the above minerals have good compatibility with the cementitious 

matrix.  

Polyvinyl alcohol (PVA) was selected as the coating material for the pellets in this study because 

of its excellent chemical resistance, physical properties, low cost and ease of preparation [25]. 

As PVA is a water soluble substance, its films are easily prepared by a casting evaporation 

technique from aqueous polymer solutions, thus avoiding the use of organic solvents. The 

resultant films are clear, homogenous and resistant to tearing [26]. PVA is produced by the 

polymerisation of vinyl acetate to polyvinyl acetate, which is subsequently hydrolysed to PVA. 

The degree of hydrolysation represents the extent to which polyvinyl acetate has been hydrolysed 
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to produce PVA. Commercial PVAs are available as fully hydrolysed grades (degree of 

hydrolysis ≥98%) and partially hydrolysed grades (degree of hydrolysis ~86-89%) [27]. The 

solubility of PVA in water depends on the degree of hydrolysis and the degree of polymerization, 

with the effect of the former being especially significant. Some PVA grades with higher degrees 

of hydrolysis (˃98%) are only soluble in hot water (50-100 °C); and form films that are insoluble 

in water at lower temperatures. In contrast, PVA grades with degrees of hydrolysis in the range 

of 75-98% are easily soluble in water. Molecular weight is another factor affecting the solubility 

of PVA and the extent of influence is related to the degree of hydrolysis. The solubility of highly 

hydrolysed PVA increases as the molecular weight decreases while the solubility of less 

hydrolysed PVA is relatively independent of molecular weight [26]. Thus, PVA with a high 

molecular weight and degree of hydrolysis of 98-98.8 % was used in this study.  

This paper aims to provide the basic design and characterisation concepts of developed coated 

pellets as a self-healing system in cement based materials. To achieve this, pelletisation of 

potential powder self-healing agents was investigated in this study. Polymer film coating was 

then employed to envelope the formed pellets. The laboratory-developed pellets were compared 

with other types of pellets, which are commercially available.  

2 Materials 
2.1 Healing agents and coating material  

Different magnesium oxide (MgO) based pellets were tested in this study. These included two 

types of commercial pellets (CP) in addition to different formulations of laboratory prepared 

pellets (prototype pellets, referred to as PP). The two CP types were LUVOMAG MgO pellets 

supplied by Lehmann & Voss, Germany, and MagChem, hard-burnt MgO pellets, supplied by 

Martin Marietta Magnesia Specialties, USA. For the PP, light-burnt MgO 92/200 (RBH, UK) 

was used. Silica fume (Elkem, UK) and bentonite clay (Macromin Kentish minerals, UK) were 

also utilised in different formulations of the prototype pellets. Magnesium oxide, silica fume and 
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bentonite are referred to as MgO, SF and B, respectively. The physical properties and chemical 

compositions of these materials are listed in Table 1. 

 Table 1: Chemical and physical properties of the pellet materials as provided by the suppliers 
Chemical composition 

/properties 

LUVOMAG 

Pellets 

MagChem 

Pellets 

MgO  

92/200 

Bentonite 

Clay 

Silica fume 

C
he

m
ic

al
 c

om
po

si
ti

on
 

CaO % 3.10 0.87 0.87 4.90 1.20 

SiO2 % 2.47 2.25 2.25 54.20 93 

Al2O3 % 0.41 0.22 0.22 18.80 1 

Fe2O3 % 1.75 0.53 0.53 5.00 1 

MgO % 91.76 93.18 93.18 3.70 0.50 

SO3 % - - - - 1 

Na2O % 0.03 - - 3.00 0.50 

TiO2 % 0.03 - - 0.70 - 

K2O % 0.04 - - 0.60 - 

Pr
op

er
ti

es
 

Loss on ignition LOI % 4.83 2.59 2.59 - ≤ 3 

Mean Particle Size (µm) 600-4750 75 75 4.75-75 ≤ 45 

Particle density (g/cm3) - 3.02 3.02 2.8 - 

Surface area (m2/g) - 16.3 16.3 0.48 (15-30) 

Bulk density (g/cm3) - -  - 200-350 

Reactivity* (sec) 283 4440 136 - - 

(*) Measured in the laboratory by the accelerated acidic test [28]. 

The developed pellets were protected by a coating shell. Polyvinyl alcohol (PVA) was used as 

the main coating material. PVA was obtained from Fisher Scientific as a 98-98.8% hydrolysed 

powder with an average molecular weight of 146,000-186,000g/mol. 

2.2 Mortar mixtures 

The cement used for the preparation of all mortar mixtures was CEM I (52.5N) with a particle 

density of 2.7-3.2g/cm3 and a specific surface area of 0.30-0.40m2/g, supplied by Hanson, UK. 

The chemical composition of the cement is presented in Table 2. Natural sand provided by a 

local supplier of building materials, Ridgeons, Cambridge, with 4mm maximum particle size was 

used in mortar mixes. All subsequent references to sand in this study refer specifically to this 

type of sand rather than natural sand in general.  

Table 2: Chemical composition of cement as provided by the manufacturer  

Materials Composition (%) 

CaO SiO2 Al2O3 Fe2O3 MgO SO3 LOI 

Cement 63.60 19.50 4.90 3.10 0.90 3.30 2.10 
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3 Experimental procedure 
3.1 Pelletisation process 

The pelletisation process was conducted in a DP-14 “Agglo-Miser”, a disc pelletiser supplied by 

Mars Mineral, USA. It is an inclined pan and variable angle and speed-pelletising device for 

laboratory or small production rate service. All pelletisation processes were conducted at ambient 

conditions of 20 ± 2oC and 50 ± 5% RH. First, the powder raw materials, MgO with SF or MgO 

with bentonite, were dry-mixed together using a cement paste mixer at the lowest speed for 3 

minutes or until a homogenous blend was achieved by visual inspection. The dry mix was then 

loaded into the pelletiser drum wherein it was left to mix for 1 min ±5 sec. Subsequently, an 

appropriate quantity of tap water was uniformly added by a spray gun within 1 min ± 5 sec. 

Figure 1a shows the pelletisation process. During the process, the pelletiser was intermittently 

stopped to scrape the materials stuck to the pan and on the blades by a spatula. Thereafter, the 

formed pellets were dried in an oven at 60oC for one day. It is noteworthy to mention that various 

combinations of the selected pelletised powder materials with different water contents could be 

considered. However, as the number of possible proportions can increase infinitely, a preliminary 

stage was conducted to narrow down the number of trials. This was based on maximising the 

amount of self-healing agents and minimising the amount of water used as much as possible. 

Based on the preliminary investigations, two formulations were selected for this work: (1) MgO: 

B (1:1) with 30 % distilled water, and (2) SF: MgO (1:1) with 10% distilled water; all are by 

weight. 
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Figure 1: DP-14 “Agglo-Miser” pelletiser: (a) pelletisation process and (b) Spraying the coating 

solution on the pellets while the disc pelletiser rotates.  

3.2 Coating process and characterisation  

3.2.1 Preparation of the coating material 

The coating solution was prepared by adding a pre-determined amount of PVA into distilled 

water which was allowed to hydrate overnight. The next day, the dispersion was slowly heated 

to 90oC ± 5oC while stirring at 700rpm until a homogeneous solution of 10% PVA was formed. 

The solution was then cooled to ambient temperature [29]. Water was added to compensate for 

any moisture loss that may have occurred during the heating process.  

3.2.2 Coating process 

The selected formulations of prototype pellets in addition to the commercial types of pellets were 

coated with the PVA based coating material. Each type was sorted into three groups upon size; 

0.6-1mm, 1-2mm, and 2-4mm. The coating solution was applied in three layers to each group of 

pellets separately using a spray coating technique combined with simultaneous drying through a 

stream of hot air (60oC). During rotation of the disc pelletiser, pellets were sprayed with the 

coating solution as illustrated in Figure 1b. The coated pellets were then dried at room 

temperature for 48hrs and stored in an airtight plastic container until testing. Hereinafter, the 

coated prototype pellets are referred to as PP_MB and PP_SM for the formulations of MgO: B 

(1:1) and SF: MgO (1:1), respectively. The commercial coated pellets are referred to as CP_M1 

and CP_M2 for LUVOMAG MgO and MagChem pellets, respectively. 
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3.2.3 Characterisation of the coating material 

Three PVA solution samples, 20g each, were poured into a glass petri dishes (diameter 10cm) 

and oven-dried at 50 ± 2oC for 24hrs. The dried films were peeled from the petri dishes and 

stored in a desiccator at room temperature. The thickness of the films was measured by using a 

micrometre with 1µm accuracy. At least five thickness readings at different locations were taken 

for each test section and the results averaged. Thereafter, the PVA films were tested for specific 

properties to examine their suitability as encapsulation system for the healing materials according 

to the requirements discussed in the introduction.   

3.2.3.1 Apparent solubility in water and in alkaline solution 

To investigate the stability of the coating material in water, rectangular pieces (1x7cm2) were cut 

from the PVA films and weighted. The dried pieces were immersed in distilled water for 24hrs; 

thereafter, the pieces were removed, spread on a clean petri dish and oven dried again at 50 ±2oC 

to a constant weight. The percentage weight loss, W%, expressed as the percentage of decrease 

in the weight of the film after immersion, represented the apparent solubility of the film. Five 

measurements were made and the average W% obtained [27]. 

In order to examine the survivability of the coating materials in the highly alkaline concrete 

environment, the PVA coating samples were immersed in a solution that simulated concrete pH 

conditions. For this purpose, a high pH solution (pH=12.5) was prepared, under continuous 

stirring, by dropwise addition of Ca(OH)2 (10M) in distilled water.  

3.2.3.2 Evaluation of the swelling properties 

The swelling properties of the coating films were evaluated by using square pieces of the coating 

material of 1x1cm2. The dimensions of each piece were accurately measured before immersion 

in distilled water for 5hrs. The pieces were then removed and spread on a clean petri dish. 

Accurate measurements of the dimensions were made immediately. The swelling index was 

defined as the percentage increase in the dimensions of the film after swelling [27]. Five pieces 

were made and the results averaged. 
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3.2.3.3 Water permeability 

Three dried films were cut into circular sections with a diameter slightly larger than 4cm. The 

thickness of the tested films varied between 50µm and 100µm. Water permeability was measured 

using 4cm-diameter rounded polypropylene jars containing each 5gr of completely dried silica 

gel beads. These jars were capped by PVA films with different thicknesses and then stored at 

25oC and ˃  95% RH for 24hrs. The weight of silica gel beads in each jar was recorded afterwards.  

The water permeability of the PVA films is calculated by the following formula [30]:  

𝑊𝑃 = ∆𝑚𝑇𝑆  
(3) 

Where: WP is the water permeability (g/m2.h-1), Δm is the variation of the weight of silica gel 

beads (g), T is 24hrs and S is the cross-sectional area of the jar which equals 1.257x10-3m2. 

3.2.3.4 Dynamic Mechanical Analysis (DMA) 

DMA analysis was performed using a DMA 8000 (Perkin Elmer, UK), in tensile mode, at a 

frequency of 1Hz, and by heating from 0oC to 100oC at a rate of 5oC/min in a nitrogen 

atmosphere. Strips with dimensions of about 6x10x0.25mm3 were subjected to a sinusoidal 

deformation of 5mm amplitude. The test was conducted on strips in three conditions: (1) dried, 

(2) immersed in water for 24hrs and then dehydrated in the oven at 50 ± 2oC to a constant weight 

and (3) immersed in alkaline solution for 24hrs and then dehydrated in the oven at 50 ± 2oC to a 

constant weight. 

3.2.3.5 Measurement of coating thickness 

Ten pellets were taken randomly from each group of the coated pellets to measure their coating 

thickness using scanning electron microscopy SEM-PHENOM PRO. 

3.3 Characterisation of pellets 
The particle size distribution of the coated pellets was assessed by a set of sieves ranging from 

75µm to 20mm and an automatic sieve shaker (Controls, UK). A pycnometer method was chosen 

for determination of the true density (ρa) of pellets using ethanol (95%) as an immersion fluid 
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[31]. The bulk density (ρb), which is the mass of pellets divided by the volume including the pore 

volume, was also determined by the pycnometer. The porosity is thus calculated using Eq 1 [32]: 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = [1 − 𝜌𝜌 ]% 
 

(1) 

Pellet crushing strength was measured for both uncoated and coated pellets by a semi-automatic 

hardness tester (TH3, 500N). At least 20 pellets in the size range of 2-4mm of each type of the 

pellets were tested to establish crushing strength and the mean value was adopted. In addition, 

the shape factor (φcircularity) also called circularity, reported by [33] was used to evaluate the pellets 

shape. Pellets of different sizes (minimum 20) were placed on a flat surface on their most stable 

plane to produce the largest projection area. The shape factor is then calculated as follows: 

𝜑 = 4. 𝜋. 𝐴𝑃  
 

(2) 

where (A) is the projected area of the pellet and Prough is the perimeter of the projection. Due to 

the incorporation of the overall perimeter, this shape factor takes into account the roughness of 

pellets in addition to the shape. Microscope images of pellets on the largest projection area were 

taken and the perimeter was measured counting all pixels of the pellet outline. Measurements 

were carried out using image analysis software (Image-J). Shape factor values can range from 

zero to one, where one represents a perfect spherical shape. 

3.4 Survivability and compatibility studies: 
3.4.1 Mechanical properties and distribution: 

Ten mortar mixes with water-to-cement ratio (w/c) of 0.5 and sand to cement ratio of 3:1 were 

prepared for this study as presented in Table 3. The developed self-healing pellets (SHP) were 

incorporated as a partial replacement of sand for all mixes except for the control mix. All 

specimens were demoulded after 1 day and then cured in a water tank at a temperature of 20 

±2°C until the desired testing age. For each mix, 12 cube specimens (40x40x40 mm3) were 

prepared in order to investigate the influence of pellets on the mechanical properties of mortar 

specimens. Two cylinders of Ø100x50mm were also cast for investigating the distribution of 
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pellets inside the concrete matrix. The cylindrical specimens were sawn into 15 mm thick discs 

and the middle discs from each specimen were extracted and photographed.  

Table 3: Compositions of mortar mixes by percentage weights 

Mix ID 

Mix ingredients 
fractions by weight (%)

SHP used 

Portland Cement Water Natural sand SHP Type 
Size 

(mm) 
M1 

22.2 11.1 

66.7 - - - 

M2 

60 6.7 

PP_MB 1-2 

M3 PP_MB 2-4 

M4 PP_SM 1-2 

M5 CP_M1 0.6-1 

M6 CP_M1 1-2 

M7 CP_M1 2-4 

M8 CP_M2 1-2 

M9 63.35 3.35 PP_MB 1-2 

M10 53.3 13.4 PP_MB 1-2 

3.4.2 Workability  

To determine the effect of adding the pellets on the flow and consistency characteristics of the 

fresh mortars, a flow table test was conducted according to BS EN 1015-3:1999. The truncated 

conical mould (larger base at the bottom) with its funnel was set centrally on the disc of the flow 

table. The mortar was introduced into the mould in two layers, each layer being compacted by at 

least 10 short strokes of the tamper to ensure uniform filling of the mould. The excess mortar 

was then skimmed off with a palette knife and the disc was carefully cleaned of any paste or 

water. After 15 seconds, the mould was lifted vertically and the disc was jolted 15 times at a 

constant frequency of one per second to spread out the paste. The diameter of the paste spread 

was measured in two directions at right angles and the average was stated to the nearest mm. The 

test was replicated. 

3.4.3 Isothermal calorimetry test 

A Calmetrix I-Cal 2000 high precision isothermal calorimeter compliant with ASTM C1679 was 

used to evaluate the effect of pellet additions on the hydration process of the different mortar 

mixes. The test was replicated for each mix. The instrument functions by measuring the heat 
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flow required to maintain isothermal conditions, recorded in watts. When this data is normalized 

by the mass of the sample used, the changes in heat evolution in the binder can be measured. The 

thermostat of the calorimeter was set to 23 °C and left to stabilise for 24hrs. Pre-conditioning of 

the cement, sand, pellets, and water took place for 2hrs before being mixed for one minute using 

a plastic spoon. The quantities of cement, sand and water used were 15g, 30g and 12g, 

respectively and pellets replaced sand by 10% of weight. The heat of hydration and the 

cumulative heat production was then recorded for the first 48hrs. This time was sufficient to 

obtain the initial setting peak. The peak power is calculated as the maximum power (first peak) 

minus the power during the induction period (first trough). The initial setting time was then 

calculated as the time at one-third of the peak power.  

3.4.4 Unconfined compressive strength  

The compressive strength testing was carried out using Controls Advantest 9 with a maximum 

capacity of 250kN and a loading rate of 2400 N/s. Triplicate cubes were tested at ages of 7, 28, 

56 and 90 days and the strength reported was an average of the three specimens. 

4 Results and discussion 
4.1 Characterisation of the PVA coating 

An overview of the main characteristics of the PVA coating material used in this work is given 

in Table 4. Through visual observations, it is evident that PVA films were clear, non-tacky, 

homogenous, tough and glassy at room temperature, but turned into rubbery films in the presence 

of water at room temperature. Nevertheless, they retained their integrity in water and in high 

alkaline solution. They were slightly soluble in water (11%) and less soluble in high pH solution. 

These results are in accordance with Chan et al. (1999). The authors showed that PVA with a 

degree of hydrolysis of 99.45% and a molecular weight of 140,000-150,000g/mol exhibited 

apparent solubility of 15.5 ±3.4% after 24hrs immersion in water at room temperature. In general, 

the amount of material which may be extracted by water from any polymer film depends on its 

chemical nature, the temperature of water, the length of the polymer chain and the time of 
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immersion in water [34]. Thus, a possible explanation for the weight reduction in PVA films 

might be that the hydroxyl groups in the polymer interact with water molecules through hydrogen 

bonds. Since the PVA used, has a high degree of hydrolysis and molecular weight, strong 

intermolecular and intramolecular hydrogen bonds were formed via hydroxyl groups between 

molecules of PVA. This reduced the extent of interaction between PVA and water molecules, 

resulting in lower solubility in water [27], [35]. The further reduction of solubility in high pH 

solution could be due to the decrease in free hydrogen ions in the water solution that could react 

with the hydroxyl groups in PVA [36], [37].  

Results also showed that the swelling index of the PVA films varied from 30% to 45% (Table 

4). The thickness of the tested films varied between 100µm and 250µm. As the amount of PVA 

increased and accordingly the thickness of the film increased, the swelling index decreased. 

Given that the PVA molecule has both crystalline and amorphous regions, the swelling of PVA 

films will be governed by both the degree of crystallinity and the average chain length in the 

amorphous region of the film. Increasing the degree of crystallinity by increasing the amount of 

PVA in the produced films decreases the swelling [38].   

Table 4: Characteristics of the PVA coating material  
Parameter Average value 

The percentage weight loss W% in water 11 % (SD = 2.22)  

The percentage weight loss W% in alkaline environment 4% (SD = 0.67) 

Swelling index (%) 30% - 45% (depends on the thickness of the 

film) 

Water permeability (WP) (g/m2.h-1) ~ zero 

SD: standard deviation 

With DMA, the sample was subjected to an oscillatory stress and the material response was 

measured. The nature of this response was used to determine the elastic and viscous properties 

of the material; storage modulus and phase angle (tan delta). DMA thermographs, shown in 

Figure 2, present the storage modulus and the phase angle (tan delta) as a function of the dynamic 

force. These graphs illustrate the effect of water and the high alkaline solution on the mechanical 

behaviour of the coating material.  
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Figure 2: (a) storage modulus and (b) tan delta (the ratio between the loss modulus and the storage 
modulus) for: (1) dried PVA film, (2) dehydrated PVA film after immersion in high pH solution and (3) 

dehydrated PVA film after immersion in water.  

 

The storage modulus is a measure of the elastic energy stored during deformation [39].  Results 

showed a decrease in the storage modulus of the PVA sample when immersed in water or high 

pH solution. At room temperature (20± 2oC), the storage modulus was about 3670MPa and it 

reduced to 911MPa and 723MPa after immersion in high pH solution and water, respectively. 

Figure 2b shows the change of tan delta with temperature and from this plot the glass transition 

temperature (Tg) is calculated as the peak of the tangent delta signal. Tan delta is defined as the 

ratio between the loss modulus and the storage modulus and represents the relative contribution 

of the viscous versus elastic properties [39]. The glass transition temperature is defined as the 

point at which a material changes from a stiff, “glassy” state to a softer, more “rubbery” state. 

Physically, it is the point at which polymer chains gain enough energy in order to substantially 

increase their mobility within the polymer matrix and this is reflected in a sharp change in 
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material flexibility and an increase in the sample’s heat capacity. From the tan delta graph 

(Figure 2b), it is observed that the immersion of PVA samples in water or a high pH solution 

shifted Tgto lower temperatures. Tg exhibited a decrease from 39oC when tested as a dried sample 

to 27oC and 28.7oC when tested after dehydration from a high pH solution and water, 

respectively. This can be attributed to the interaction of some PVA hydroxyl groups with water 

molecules through hydrogen bonds and thus reduced the stiffness of the PVA sample [25]. 

Although PVA films exhibited a decrease in their mechanical properties in water or high pH 

solutions, as expected for a water-soluble material, they maintained integrity and stability, which 

meets the desired requirements here.  

4.2 Characterisation of the pellets 

Figure 3 shows samples of each type of pellets used in this study; they are categorised in three 

different size groups. Figure 4 compares the particle size distributions (PSD) of PP_MB, 

PP_SM, and CP_M1 pellets with respect to the PSD of the sand. The CP_M2 pellets are excluded 

herein as they were provided from the manufacturer as batches with sorted sizes; 0.6-1 mm, 1-2 

mm or 2-4 mm. The PSD curves indicate that the size distribution of the three types of pellets 

was close to the size distribution of the sand with a slight shift towards greater particle size for 

the PP_MB, and CP_M1 while PSD of PP_SM pellet shifted towards smaller particle sizes. As 

shown in Table 4, D50 of PP_MB, PP_SM, CP_M1, and sand were 1.2mm, 0.35mm, 1.35mm, 

and 0.47mm, respectively. It is noteworthy here that ≤10% of the two types of PP are exceeded 

4 mm; this couldn’t be entirely controlled in the pelletisation process.  
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Figure 3: Samples of different types of the coated PP and CP pellets categorised according to the 

size.  

The various geometrical and physical properties of the different types of pellets and sand are 

presented in Table 5. The coefficient of uniformity (Cu) and the coefficient of curvature (Cc) for 

pellets and sand are demonstrated. Cu is an important shape parameter indicating how wide the 

range of the particle sizes is as well as describing the slope of the PSD curve. Thus, a high Cu 

value indicates a wide range of particle sizes. Cc is another shape parameter describing the 

grading of the particle. Holtz and Kovacs (1981) proposed that for a sand to be classified as well 

graded, the following criteria should be met: Cu ≥ 6 and 1˂ Cc ˂ 3. These criteria were applied 

to both the PP and CP pellets for their characterisation. Cu values for both PP pellets are ˃ 6. In 

contrast, Cu of CP-M1 pellets is less than 6. Cc values of both PP_MB and CP_M1 are between 



18 
 

1 and 3 but Cc of PP_SM is less than 1. This indicates that among all types, PP_MB are the most 

well graded pellets.  
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Figure 4: PSD of PP_MB, PP_SM and CP_M1 pellets compared to the PSD of sand. 

In addition, it would be useful to consider what the data reveal about the porosity and density of 

PP and CP pellets. These results, in comparison with sand, are presented Table 5. All pellets 

exhibited lower bulk densities and greater porosities than those for sand. The bulk density of 

pellets was between 0.95-1.54g/cm3 whereas it was 2.05g/cm3 for sand. This denotes that the 

replacement of sand by the same weight of pellets in any concrete mix will increase the occupied 

volume by 33% to 115% according to the pellet type. PP_MB, CP_M1 and CP_M2 pellets 

exhibited very close porosity values (61.2%, 60% and 58.9%, respectively). In contrast, the 

porosity of PP_SM was much lower (45.2%). This could be attributed to the particle size of SF 

(≤ 45 µm) while the particle size of the MgO is ~75 µm. Accordingly, the presence of SF in the 

formulation, results in less inter-particle voids  
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Table 5: Properties of PP and CP pellets in comparison with sand particles 
Parameter PP_MB PP_SM CP_M1 CP_M2 Sand 

D50 1.2 0.35 1.35 - 0.47 

Coefficient of uniformity 𝑪𝒖 = 𝑫𝟔𝟎𝑫𝟏𝟎 

 

7.8 7.65 4.7 - 3.3 

Coefficient of curvature 𝑪𝒄 = 𝑫𝟑𝟎𝟐𝑫𝟔𝟎×𝑫𝟏𝟎 

 

1.24 0.48 1.62 - 1.02 

Oven bulk density (g/cm3) 0.95 1.59 1.3 1.54 2.05 

Particle density (g/cm3) 2.45 2.9 3.25 3.75 3.33 

Porosity (%) 61.2 45.2 60 58.9 38.4 

The circularity factor was adopted here as it takes into consideration not only the shape of pellets 

but also the roughness of surfaces. Figure 5 presents the shape factor values with the standard 

deviations for all pellet types compared to sand. All values of the pellets were in the range of 

0.81 to 0.86 while the value of sand was 0.79. This indicates that PP and CP were partly rounded 

and slightly more circular than sand particles. 

 
Figure 5: Shape factor (φcircularity) of the different type of pellets in comparison with sand. 

Taken PSD, density, porosity and shape properties together, the prototype pellets showed 

comparable mechanical and physical properties to the commercial pellets and sand. Therefore, it 

could be concluded here that the selected powdery healing agents were successfully converted 

into pellets.   

PP_MB PP_SM CP_M1 CP_M2 Sand
0.0

0.2

0.4

0.6

0.8

1.0

Sh
ap

e 
fa

ct
or



20 
 

When the PVA solution was sprayed on the pellets while they were tumbling in the pan of the 

disc pelletiser, it formed a thin film on the surface of the pellets. In order to obtain a complete 

coating, covering all the surface of the pellet, at least three cycles of spraying of the PVA solution 

were required. SEM images in Figure 6 show the PVA coating of an individually coated pellet 

after three cycles of spraying the coating material. The thickness of the PVA shell varied between 

10µm and 50µm.  

 
Figure 6: Cross-section scanning electron microscope (SEM) of the film-coated pellets: (a) the 

thickness of the PVA coating for individual pellet, and (b) the surface of a pellet completely covered 
by the PVA coating.  

In addition, crushing strength tests for uncoated and coated CP and PP pellets were performed 

for pellets with 2-4mm size, from each type. This size was selected in compliance with the range 

of hardness testing equipment used. Figure 7 illustrates the average crushing strength values 

with the standard deviations of all pellet types. The average crushing strength of PP_MB and 

PP_SM uncoated pellets were 7.4N and 9.5N; these values increased to15.2N and 11N after 

coating, respectively. While CP_M1 and CP_M2 showed a strength of 11.3N and 38N before 

coating respectively, they both gained more strength after coating (24.4N and 41N). It could be 

inferred here that there is a direct correlation between the strength and the porosity values shown 

above. An increase of the former accompanies a decrease in the values of the latter. Results 

indicated that the coating increased the pellet crushing strength between 15% and 105%. 

However, this is a wide range and could not be translated to an empirical relation. Moreover, this 
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could be attributed to the variability of the coating thickness (10-50µm), which was not 

controlled in this work. However, none of the crushing strength values of the coated PP and CP 

exceeded 33% of the sand particles crushing strength. This is favourable as the pellets are 

expected to rupture when a crack occurs provided that they survive first the concrete mixing. 

Yet, none of the previous research has dealt with specific values for the required strength to meet 

these requirements.  
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Figure 7: Average crushing strength values of different types of pellets compared to sand  

4.3 Influence of pellets on the properties of the mortar mixtures 

4.3.1 Flowability of the fresh mixes 

Figure 8 illustrates the influence of different types of pellets on the flow values. The control mix 

(M1) showed a flow value of 156mm; this was reduced to 142.5mm, 129mm, 152mm, and 

155mm for M2, M4, M6 and M8 mixes, respectively. The addition of CP had a lower influence 

on the flow values compared to the addition of PP, leading to a noticeable decrease in the flow 

values. The latter effect was more pronounced in M4 with PP_SM; with a flow value which was 

reduced by 17%. The change in pellet weight fraction also affected the workability of the mix. 

As Figure 8b shows, when the PP_MB fraction increased, the flow value decreased. Results 



22 
 

indicate that the addition of 5% of PP_MB had a negligible influence on the flowability of the 

mortar mix. In contrast, the addition of 10% and 15% of PP_MB decreased the flow value by 

~10% and 18%, respectively.  

Figure 8: The flow table values for mortar mixes with: (a) different type of pellets and (b) different 
proportions of PP_MB pellets, compared to the control mix. 

There are two possible explanations for these results. Firstly, since the pellets have lower 

densities when they partially replace sand by weight they lead to an increase of the occupied 

volume of sand by 33% to 115% according to the pellet type as discussed above in section 4.2 

Thus, the sand/ cement ratio by volume increased in the case of any SHP/ sand replacement, and 

this subsequently decreased the cement quantity available per unit volume of the mix. Cement 

content affects the workability of concrete; the larger the quantity of cement, the greater the 

volume of paste available to coat the surface of aggregates and fill the voids between them. This 

will help to reduce the friction between aggregates and smooth movement of aggregates during 

mixing and thus increasing the workability of concrete [41], [42]. Secondly, as discussed 

previously, the crushing strength of all SHP did not exceed 30% of sand. It is possible, therefore, 

that a proportion of the added pellets could not survive the mixing. This could imply that the 

cargo materials of the crushed pellets may have contributed to the hydration process from the 

beginning consuming some water and accordingly reducing the workability of the mix. 

In the case of PP_SM, any broken-down pellets would release SF and MgO into the mix. The 

water demand of concrete containing silica fume, increases with increasing amount of silica 

fume. This increase is caused primarily by the high surface area of the silica fume [43], [44]. 
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Thus, the effect of adding PP_SM on the workability was more pronounced compared to the 

other SHP.  

The effect of pellet size on the workability of the fresh mixes was also investigated. The general 

trend in Figure 9 shows that an increase in pellet size led to a workability reduction. This could 

be due to the amount of released cargo materials that can contribute to the hydration process 

from the mixing process as some pellets do not survive this. In the case of larger pellet sizes, 

broken-down pellets would yield larger amounts of inner materials that react early in the concrete 

matrix. The latter effect becomes less prominent with smaller sizes. However, this trend is not 

valid in the case of M6 where the increase of pellet size from 0.6-1mm to 1-2mm resulted in an 

increase of flow values from 146mm to 152mm. Nevertheless, all mortar mixes exhibited 

sufficient workability to be mixed, compacted and cast properly. 

Figure 9: The flow table values for mortar mixes with different sizes of: (a) CP_M1and (b) PP_MB, 
compared to the control mix. 

These results are in good agreement with those obtained by Hung and Kishi (2013). They studied 

the workability of fresh concrete containing granules of supplementary cementitious materials. 

The input of self-healing granules into the concrete mix caused a slight decrease in workability 

and accordingly increased the needed amount of superplasticiser compared to that in plain 

concrete. They attributed this to the water absorption and further reaction between the coating 

layer of granule and the mixing water. However, they concluded that granules could be 

considered as an effective approach to overcome the drawbacks of direct incorporation of healing 

materials in a powder form such as the reduction of workability. 
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4.3.2 Calorimetry 

The power and cumulative energy produced per gram of cement for the first 48hrs for mixes 

containing different SHP and their uncoated counterparts, in comparison to the control mix, are 

shown in Figure 10 and Figure 11. In addition, setting time and peak power values for all mixes 

are summarised in Table 6.  

Generally, it can be seen that the addition of coated pellets showed a slight variation in the setting 

time and peak power values compared to the control mix. The initial setting time was not affected 

by the addition of PP_MB or CP_M1 whereas PP_SM reduced it slightly (from 3.8 to 3.7) and 

CP_M2 increased it to 3.9hrs. In contrast, the addition of uncoated pellets caused a remarkable 

change in the setting time. PP_MB and CP_M1 increased the setting time from 3.8hrs to 4.1 hrs 

while CP_M2 accelerated the setting time (3.4hrs). 

Similarly, the peak power was only slightly affected by the addition of coated pellets. For 

example, it decreased by ~ 9% in the case of adding PP_MB while it increased by 10%, 7.5% 

and 15.6% when adding PP_SM, CP_M1 and CP_M2, respectively. On the contrary, the change 

in the peak power was more pronounced in the case of uncoated pellets. As Table 6 illustrates, 

the addition of uncoated pellets increased the peak power in the range of 15% and 40%.   
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Figure 10: Effect of pellet addition on isothermal (23oC) power and energy production of mortar 
mixes: (a) coated and uncoated PP_MB and (b) coated and uncoated PP_SM. 
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Figure 11: Effect of pellet addition on isothermal (23 oC) power and energy production of mortar 

mixes: (a) coated and uncoated CP_M1 and (b) coated and uncoated CP_M2. 
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Table 6: Initial setting time and peak power values for mortar mixes containing pellets compared with the 
control  

The type of pellets in the mix Initial setting time (hrs) Peak power (mW/g) 

Control 3.8 1.6 

Coated (PP_MB) 3.8 1.48 

Uncoated (PP_MB) 4.1 1.83 

Coated (PP_SM) 3.7 1.76 

Uncoated (PP_SM) 3.9 1.91 

Coated(CP_M1) 3.8 1.72 

Uncoated (CP_M1) 4.1 2.08 

Coated (CP-M2) 3.9 1.85 

Uncoated (CP-M2) 3.4 2.2 

 

This difference in the effect of coated and uncoated pellets on the setting time and peak flow of 

fresh mixes confirms the efficiency of enclosing pellets into the coating. For the mixes containing 

the coated pellets, the small differences in the setting times and peak power values compared to 

the control are not necessarily due to the rupture or breakage of coating during mixing: it could 

be attributed to the change in the volume. The pellets occupied more volume than the sand, which 

may have disturbed the hydration of cement or at least provided bigger volume to dissipate the 

exothermal heat.  

4.3.3 Distribution of pellets inside mortar matrix 

In order to explore the distribution of pellets inside the mortar specimens, sliced discs were taken 

from the middle of the cast cylinders. Figure 12 shows the distribution of PP_MB and CP_M1 

pellets across the sample sections. Some white (Figure 12a) and off white (Figure 12b) semi-

round dots can be seen indicating PP_MB and CP_M1 pellets, respectively, adhered to the 

cement or sand particles. Both types of pellets were distributed all over the mortar matrix and 

did not exhibit any agglomeration.  
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Figure 12: Characteristic disc sections showing the distribution of pellets inside the mortar 

specimens: (a) PP_MB pellets, and (b) CP_M1 pellets. 

In addition, it was found that the pellets had a good bonding with the cementitious matrix as 

shown in Figure 13. This could be attributed to the hydrophilic nature of PVA, which enhances 

the bonding between the PVA shell and the cementitious matrix. This behaviour has been 

identified in PVA based fibres used in cementitious composites increasing their popularity 

throughout the world [46], [47]. The improved mechanical interlock of PVA to the cementitious 

matrix can be attributed to the hydroxyl groups on the carbon backbone which attract the water 

molecules and consequently result in to strong hydrophilic characteristics [48], [49].  

 
Figure 13: SEM images of PP_MB pellet in the cementitious matrix. 

4.3.4 Unconfined compressive strength (UCS) development 

The UCS values of mortar cube specimens at different ages (7, 28, 56 and 90 days) with their 

standard deviations are presented in Figure 14 and Figure 15. In terms of SHP type, it can be 
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seen from Figure 14a that M1, M2, M6 and M8 specimens demonstrated constant strength gain 

with time. In contrast, M4 showed a significant increase from 18MPa at 7 days to 37MPa at 28 

days and afterwards matched the other mixes. Generally, the replacement of sand by any SHP 

reduced the compressive strength. Nevertheless, M4 and M6 exhibited values very close to the 

control. The deviation did not exceed 10% at any age except for M4 at 7 days (~ 40%). 

Nonetheless at later ages (90 days), M4 displayed higher strength; namely, 45.7MPa compared 

to 44.2MPa for the reference. Conversely, M2 and M8 showed a remarkable reduction in 

compressive strength. The latter is more pronounced in the case of M8. Compared to the control, 

the decrease of the average compressive strength of M2 and M8 reached 14% and 25% at 28 

days and ~12 % and 15% at 90 days, respectively. The displayed reduction could be due to three 

reasons. Firstly, the difference in crushing strength between SHP and sand particles as illustrated 

above in Figure 7. Secondly, the partial replacement of sand by SHP increased its volume and 

accordingly decreased the cement and water proportions in terms of specific volume, resulting 

in a reduction of the compressive strength. Thirdly, the possible breakage of some pellets in the 

mortar matrix could have released the cargo materials from the crushed pellets. These can 

contribute in the hydration process; however, their effect varies according to the type and 

reactivity of these materials. 



30 
 

 
Figure 14: UCS of mortar samples containing: (a) different pellet types at different ages, and (b) 

different proportions of PP_MB at different ages. 
The effect of changing the weight fraction of the added PP_MB is shown in Figure 15b. There 

is a clear trend of decreasing compressive strength with increasing weight fraction of pellets. M9 

containing 5% of pellets showed negligible differences in strength values compared to the control 

at all ages. Increasing the pellet fraction to 10% by weight resulted in a reduction of ~ 8% of the 

compressive strength at all ages. Increasing the replacement of sand by PP_MB to 20% by weight 

led to a detrimental decrease (~ 30%) in the strength values at all ages.  
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On the other hand, it is clear from Figure 15, that there is a pronounced descending trend in the 

UCS values of the mortar samples with the increase of pellet size. For instance, it was observed 

that the strength values of CP_M1 pellets at 28 days decreased from 40.28MPa for M5 with 0.6-

1mm pellets to 39.8 and 37.3MPa for M6 and M7 with pellets of size 1-2mm and 2-4mm, 

respectively (Figure 15a). Similarly, when PP_MB size increased from 1-2mm in M2 to 2-4mm 

in M3, the average strength values decreased from 35MPa to 24.8MPa at 28 days and from 

37.65MPa to 32.1MPa at 90 days. However, the reduction in UCS values was more obvious in 

the case of PP_MB when compared to CP_M1. 

Overall, it could be concluded here that the addition of SHP reduced the compressive strength 

values. However, up to 10% replacement of sand, the reduction did not exceed 15%, which 

corresponds to the literature. For instance, Pelletier et al. (2011) reported that the addition of 2% 

volume of microcapsules with a diameter up to 800µm decreased the compressive strength by 

12-15%. Hung & Kishi (2013) also showed that the reduction of compressive strength due to the 

addition of self-healing granules varied between 2% and 13% at 28 days and 3% and 19% at 91 

days.  
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Figure 15: UCS of mortar samples containing different sizes of: (a) CP_M1, and (b) PP_MB at 

different ages. 

5 Conclusions 
In this paper, the development of pellets and encapsulation in a PVA-based coating for potential 

healing agents was investigated as a system to improve self-healing properties of cement-based 

composites. Two commercial types of MgO-based pellets in addition to two developed prototype 

pellets were examined; their characteristics and the PVA coating were evaluated. The influence 

of the coated pellets on the workability and hydration process of the fresh mortar mixtures and 
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on the compressive strength of hardened mortar specimens was examined; the pellets replaced 

sand in mortar mixes by different proportions. 

The developed prototype pellets exhibited several similar physical and mechanical properties 

compared to the two commercial types of MgO pellets. In comparison with the sand used, both 

of the prototype and commercial pellets used here demonstrated approximately 20% higher 

porosity and not more than one-third of the crushing strength. This would be considered as an 

advantage as the pellets are needed to rupture and disintegrate upon cracking into the 

cementitious matrix.  

Encapsulation of the active minerals into a PVA coating resulted in promising results as the 

coating material maintained integrity and stability in water and high pH solutions. This was 

associated with a decrease in mechanical properties in both environments, which needs to be 

explored. When applied on pellets, PVA coating was required to be sprayed in three layers to 

cover the entire surface of pellet. The thickness of coating ranged between 10µm and 50µm. 

Moreover, the coated pellets showed an increase in their crushing strength by ~ 15-105%. In 

mortar mixtures, the characterisation of fresh mortars by using flowability and calorimetry tests 

showed negligible effect when SHP replaced up to10% of sand weight. This replacement caused 

a reduction in compressive strength of mortar samples by less than 15% in all cases. Overall, this 

study has introduced the basic design and characterisation concepts of developing pellets for self-

healing cement-based composites. A further study, which is to verify the healing efficiency of 

the coated pellets, will be conducted. 
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