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Abstract—Machine Learning (ML) techniques, such as Neural
Network, are widely used in today’s applications. However, there
is still a big gap between the current ML systems and users’
requirements. ML systems focus on improving the performance
of models in training, while individual users cares more about re-
sponse time and expressiveness of the tool. Many existing research
and product begin to move computation towards edge devices.
Based on the numerical computing system Owl, we propose to
build the Zoo system to support construction, compose, and
deployment of ML models on edge and local devices.

I. INTRODUCTION

Nowadays Machine Learning techniques such as Deep Neu-
ral Network (DNN) are used in numerous services. However,
there is a big gap between the current ML systems and
users’ requirements. On one hand, most existing machine
learning frameworks, such as TensorFlow and Caffe, focus
mainly on the “training” phase. They aim at accelerating the
training speed, enhancing performance on GPU, or improving
prediction accuracy. On the other hand however, the users,
either individuals who want to use the ML-based services
or researchers who do not fully commit to the ML field,
care less about those benchmarks, but rather about issues
such as expressiveness of the tool for constructing a neural
network, fast development of new algorithms or neurons on
existing systems, access to ML models on local devices,
service response time, etc.

Both academia and industry begin to mitigate this gap. One
crucial aspect of existing solutions is to move ML computation
towards local devices. Most current end-side services, such as
personal intelligent assistants and smart home service, either
only support simple ML models or require users to upload raw
data (speech, image, etc.) to complex data analytics services
host on the cloud. The latter practice is known to associate
with issues such as communication cost, latency, and personal
data privacy. Neurosurgeon [1] is a system to partition a Deep
Neural Network into two parts, half on edge devices and the
other half on cloud, to reduce computing latency and energy
consumption. Similarly, [2] also propose to partition a neuron
network across mobile devices, edges, and cloud, so as to
give results with lower latency. [3] proposes an algorithm
in the collaborative training of a model by multiple mobile
devices. [4] explore the method of training personalised model
on local devices from an initial shared model, to provide for
model training and inference in a system where computation
is moved to the data. [5] focus on a particular kind of data
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Fig. 1. Owl Architecture

analytics: semantic analysis and recommendation of related
articles from large text corpora. It pushes this content provision
service into web browser at the users’ end. Some systems
also begin to focus on mobile platforms, such as Facebook’s
Caffe2go, but they still place emphasis on shifting what
existing computing platform can do from data centre to mobile
devices, and have not provided systematic solutions to address
the aforementioned issues.

In this poster, we present overall design of Owl system, its
advantages over other learning platforms, and propose a “Zoo”
module built on Owl to mitigate this gap. It aims to provide
the whole lifetime of a ML service, from model construction,
compose, and deployment on edge and local devices.

II. SYSTEM ARCHITECTURE

Owl [6] is an open-source numerical computing system
in OCaml language. Owl provides a full stack support for
numerical methods, scientific computing, and advanced data
analytics on OCaml. Figure 1 shows the architecture of Owl
system. Built on the core data structure of matrix and n-
dimensional array, Owl supports a comprehensive set of classic
analytics such as math functions, statistics, linear algebra, as
well as advanced analytics techniques, namely optimisation,
algorithmic differentiation, and regression. On top of them,
Owl provides Neural Network (NN) and Natural Language
Processing (NLP) modules.

Owl system can be extended towards two directions. First,
it can use the parallel and distributed engine at lower level to
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support distributed numerical computing and data analytics.
It supports different protocols and multiple barrier control
techniques[7]. Second, based on the ML modules, Owl can
connect to Zoo, a module that support Composable Services.
Its basic idea is users should not have to construct new
ML services every time new application requirements arise.
In fact, many services can be composed from basic ML
services: image recognition, speech-to-text, recommendation,
etc. The Zoo module aims at providing user-centric, ML-
based services, enabling service pulling, sharing, compatibility
checking, and composing on local devices.

III. INITIAL PERFORMANCE EVALUATION

Next, I present preliminary experiment results on Owl,
especially its Neural Network module, since it is the most
important module that the zoo module is based upon.

The most exciting feature of Owl is its expressiveness.
We have constructed InceptionV3 model[8], one of the most
complex network architecture in existing image recognition
models, with only 150 LoC, while constructing the same
model requires 400 LoC using TensorFlow code. Besides
enabling shorter and more compact code, another of its ad-
vantages compared with existing popular learning platforms
is its flexibility to add new features. As an example, we
insert instrumentation code into Owl to collect the computing
latency of each node in a neural network when doing inference.
Adding this feature only takes 50 LoC. Our initial experiment
shows an acceptable performance tradeoff, which is only about
2 times slower than state-of-the-art TensorFlow and Caffe2.

Besides enabling shorter and more compact code, Owl also
supports fast development of new features. As an example, I’ve
inserted instrumenting code into Owl’s source code to collect
the computing latency of each node in a neural network when
doing inference. And all it takes is only50 LoC. Using this
newly added feature, I get the computing latency of each node
in the Inception neural network. This new feature proves to
provides deep insights into how each node works and guidance
on possible optimisations.

With great expressiveness comes some performance trade-
off. Currently Owl is not as fast as industry-level mature
products such as TensorFlow and Caffe2. The question is: how
much slower? Since the Zoo relies heavily on inference using
Owl’s NN module, we want to compare the inference time
on Owl and the other two platforms. We choose three repre-
sentative DNNs that vary greatly in architecture complexity
and parameter sizes: 1) one small neural network (LeNet-
5 [9]) that only consists of 8 nodes and contains about 240KB
parameters, for the MNIST handwriting recognition task; 2)
an VGG16 [10] model that has a simple architecture with 38
nodes but a large amount of parameters (500MB) for real-
world image recognition task; 3) an InceptionV3 model also
for image recognition, with less parameters (100MB), but a
far more complex architecture (313 nodes). We compare the
time it takes for each model to finish its inference task on
different platforms: Owl, TensorFlow, and Caffe2. We use Zoo
to deploy these models on Owl.
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Fig. 2. Inference time comparison on different platforms.

The results are shown in Figure 2. We can see that,
regardless of great diversities in these models’ architectures
and sizes, Owl takes less time to do inference than Tensorflow
and Caffe2. It means that Owl can achieve both expressiveness
and good preformance. The superior performance of Owl on
large models is attributed to its efficient math operations.

IV. SUMMARY

In summary, based on Owl system, we are proposing to
build the Zoo system. It aims to mitigate the current gap be-
tween current ML computing systems and users’ requirements.
Initial experiment on Owl proves its outstanding expressive-
ness and acceptable performance tradeoff. We believe this area
of research is only just beginning to gain momentum.
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