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Abstract: 

The goal was to predict pressure reactivity index (PRx) using non-invasive transcranial Doppler (TCD) 

based indices of cerebrovascular reactivity, systolic flow index (Sx_a) and mean flow index (Mx_a). 

Continuous extended duration time series recordings of middle cerebral artery cerebral blood flow 

velocity (CBFV) were obtained using robotic TCD in parallel with direct intracranial pressure (ICP).  PRx, 

Sx_a and Mx_a were derived from high frequency archived signals.  Using time-series techniques, 

autoregressive integrative moving average (ARIMA) structure of PRx was determined and embedded in 

the following linear mixed effects (LME) models of PRx:  PRx ~ Sx_a and PRx ~ Sx_a + Mx_a. Using 80% of 

the recorded patient data, the LME models were created and trained. Model superiority was assessed 

via Akaike information criterion (AIC), Bayesian information criterion (BIC) and log-likelihood (LL).  The 

superior two models were then used to predict PRx using the remaining 20% of the signal data. 

Predicted and observed PRx were compared via Pearson correlation, linear models and Bland-Altman 

(BA) analysis. Ten patients had 3 to 4 hours of continuous uninterrupted ICP and TCD data and were 

used for this pilot analysis. Optimal ARIMA structure for PRx was determined to be (2,0,2), and this was 

embedded in all LME models.  The top two LME models of PRx were determined to be: PRx ~ Sx_a and 

PRx ~ Sx_a + Mx_a. Estimated and observed PRx values from both models were strongly correlated 

(r>0.9; p<0.0001 for both), with acceptable agreement on BA analysis. Predicted PRx using these two 

models was also moderately correlated with observed PRx, with acceptable agreement (r=0.797, 

p=0.006; r=0.763, p=0.011; respectively). With application of ARIMA and LME modelling, it is possible to 

predict PRx using non-invasive TCD measures.  This is the first and preliminary attempts at doing so.  

Much further work is required. Keywords:  autoregulation, brain injury, TBI, TCD, time series 

 

Introduction: 



Pressure reactivity index (PRx) is considered the “gold standard” of continuous cerebrovascular 

reactivity monitoring after traumatic brain injury (TBI).1,2 Derived from the moving correlation 

coefficient between slow-wave fluctuations in intra-cranial pressure (ICP) and mean arterial pressure 

(MAP), PRx provides a continuously updating assessments of cerebral autoregulation, with positive 

values indicative of impaired cerebrovascular reactivity.1,3  Numerous observational studies have linked 

persistently positive PRx values with poor global outcome in TBI, with well-defined critical thresholds 

associated with morbidity and mortality.4,5  Furthermore, PRx is one of only a few continuous indices of 

cerebrovascular reactivity to have been validated for  assessing the lower limit of autoregulation in an 

experimental model.6  Finally, current applications of continuously updating indices of cerebrovascular 

reactivity have focused on the derivation of “personalized” cerebral perfusion pressure (CPP) targets 

(also referred to as CPP optimum), utilizing PRx.7,8 However, the requirement of invasive ICP 

measurements for PRx calculation is a limitation of the technique.   

Various other continuous indices of cerebrovascular reactivity exist based on other invasive and non-

invasive monitoring devices employed after TBI.3,9  In particular, non-invasive transcranial Doppler (TCD) 

can be utilized to derive flow-based  indices.4,10  Recent multi-variate co-variance analysis has confirmed 

a close association between non-invasive TCD derived systolic flow index (Sx_a) – the moving correlation 

between systolic flow velocity (FVs) and MAP) and invasively derived ICP based indices, including 

PRx.11,12  Furthermore, time series linear modelling techniques highlight this strong relationship between 

PRx and Sx_a, while providing evidence to support the ability to estimate PRx accurately using this non-

invasive TCD index.13   

The next natural step would be to attempt the prediction of PRx using this non-invasive TCD measure.  

This has never been attempted before, given complexity of analysis and limitations surrounding 

acquisition of continuous longer uninterrupted TCD recordings.  The goal of this study was to outline the 



first experience at predicting PRx using non-invasive Sx_a, derived from extended duration robotic TCD 

recordings. 

 

Methods: 

 

Patient Population 

The data utilized in this retrospective analysis was part of a prospective observational study conducted 

over a 6-month period within our unit (December 2017- May 2018).  All patients suffered from 

moderate to severe TBI and were admitted to the neurosciences critical care unit (NCCU) at 

Addenbrooke’s Hospital, Cambridge.  Patients were intubated and sedated given the severity of their 

TBI.  Invasive ICP monitoring was conducted in accordance with the Brain Trauma Foundation (BTF) 

guidelines.  Therapeutic measures were directed at maintaining ICP less than 20 mmHg and CPP greater 

than 60 mmHg (datum at the tragus).   

TCD monitoring is a part of standard intermittent cerebral monitoring within the NCCU.  The application 

of the newer robotic TCD device (see description below) was therefore in alignment with our usual care, 

negating the need for formal direct or proxy consent.  All data related to patient admission 

demographics and high frequency digital signals from monitoring devices were collected in an entirely 

anonymous format and ethical approval for research using anonymous data acquired as part of clinical 

practice is not required under UK regulations.  

 

 



Signal Acquisition 

Various signals were obtained through a combination of invasive and non-invasive methods.  Arterial 

blood pressure (ABP) was obtained through either radial or femoral arterial lines connected to pressure 

transducers (Baxter Healthcare Corp. CardioVascular Group, Irvine, CA).  ICP was acquired via an intra-

parenchymal strain gauge probe (Codman ICP MicroSensor; Codman & Shurtleff Inc., Raynham, MA).  

Finally, TCD assessment of MCA CBFV was conducted via a robotic TCD system, the Delica EMS 9D 

(Delica, Shenzhen, China, www.delicasz.com). This system allows for continuous extended duration 

recording of MCA CBFV, using robotically controlled TCD probes, with automated correction algorithms 

for probe shift.  To our knowledge, this is the first study on the application of extended duration TCD 

acquisition via a robotic system in critically ill TBI patients. 

This study aimed to record 3 to 4 hours of continuous data from all devices simultaneously, given the 

previous work from our group on inter-index relationships focused on recording durations of only 0.5 to 

1-hour duration due to limitation of conventional TCD.  As such, this data set also proved to be ideal for 

complex time series modelling and analysis.  Only patients with 3 or more continuous, uninterrupted, 

ICP and TCD recordings were utilized for this study.  Thus, only a sub-population of the group from the 

original study were utilized for this analysis. Figure 1 displays an example of the recording set up, 

including triple bolt, near infrared spectroscopy and robotic TCD. 

 

*Figure 1 here 

 

 

 

http://www.delicasz.com/


 

Signal Processing 

Signals were recorded using digital data transfer, sampled at frequency of 100 Hertz (Hz) or higher 

(depending on the modality), using ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK, 

http://icmplus.neurosurg.cam.ac.uk).  Signal artifact were removed using a combination of manual and 

semi-automated methods within ICM+ prior to further processing or analysis. 

Post-acquisition processing of the above signals was conducted using ICM+ software.  CPP was 

determined using the formula:  CPP = MAP – ICP.  TCD signal was analyzed from the right side in the 

majority of the patients given right frontal placement of ICP monitors.  The only exception to this is 

when we were unable to obtain quality TCD on the right due to poor windows for TCD.  

Systolic flow velocity (FVs) was determined by calculating the maximum flow velocity (FV) over a 1.5 

second window, updated every second.  Diastolic flow velocity (FVd) was calculated using the minimum 

FV over a 1.5 second window, updated every second. Mean flow velocity (FVm) was calculated using 

average FV over a 10 second window, updated every 10 seconds (ie. without data overlap). 

Ten second moving averages (updated every 10 seconds to avoid data overlap) were calculated for all 

recorded signals:  ICP, ABP (which produced MAP), CPP, FVm, FVs and FVd.  These non-overlapping 10-

second moving average values allow focus on slow-wave fluctuations in signals by decimating the signal 

frequency to ~0.1Hz. 

Cerebrovascular reactivity indices were derived in a similar fashion across modalities. PRx:  A moving 

Pearson correlation coefficient was calculated between ICP and MAP using 30 consecutive 10 second 

windows (ie. five minutes of data), updated every minute.  Similar to our previous work on non-invasive 

estimation of PRx using Doppler measures, two non-invasive TCD based indices were also derived:  Mx-a 



(the correlation between FVm and MAP) and  Sx-a (the correlation between FVs and MAP).  Diastolic 

flow index (Dx-a) was not evaluated in this study, given our previous work documenting poor time series 

and linear mixed effects (LME) model performance in relation to PRx.13   

Data for this analysis were provided in the form of a minute by minute time trends of the parameters of 

interest for each patient.  This was extracted from ICM+ in to comma separated values (CSV) datasets, 

which were collated into one continuous data sheet (compiled from all patients).   

 

Statistical Analysis 

Similar statistical modelling approach as seen in our previous work for time series data and LME model 

creation were followed with this data set, and almost identical statistical description to his work will be 

found below.13  Minute-by-minute time series data was utilized for the entirety of the analysis described 

below.  Statistical significance was set at an alpha of less than 0.05.  All statistical analysis was conducted 

using R statistical software (R Core Team (2016). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). 

The following packages were utilized during the analysis: tseries, forecast, lubridate and lme4. 

The statistical methods sections to follow will outline the techniques employed to:  [A] estimate the 

autocorrelative structure of PRx in time series; [B] create an accurate model estimating PRx using non-

invasive TCD indices of cerebrovascular reactivity via application of linear mixed effects (LME) modelling 

(with embedded PRx autocorrelative error structure);  [C] assess the correlation and agreement 

between model based estimated PRx and the observed PRx value; and [D] predict PRx using the derived 

LME models and estimated PRx time series data.  For LME model creation/training we utilized the 1st 

80% of the data for each patient, with the remaining 20% utilized for the prediction of PRx using the 

LME models. 



 

 Autocorrelative Structure of PRx 

Prior to being able to model PRx using TCD based indices, it was necessary to determine the 

autocorrelation structure of PRx.  We used Box-Jenkin’s autoregressive integrative moving average 

(ARIMA) modelling   PRx  to determine:  the autoregressive structure of order “p”, the differencing 

factor or order “d”, and the moving average component of order “q”; commonly denoted “(p,d,q)”.  The 

autoregressive structure refers to the dependence of PRx at time t (denoted PRxt) on previous measures 

of PRx (ie. called “lags”), say at time t-1 (ie. PRxt-1), and so forth (ie. say to PRxt-p), with the order “p” 

indicating how many previous PRx measures PRxt is dependent on.  Stationarity is defined here as the 

presence of a stable variance, autocorrelative structure and mean over time.  Stationarity can be 

introduced by differencing previous PRx measures from current measures, thus removing  trending 

structure from a time series, and allowing further modelling to occur.  The differencing order “d” refers 

to how many previous terms should be included in the differencing process.  Finally, the moving average 

term refers to the need to include the error in the ARIMA model at time t (ie. εt) as well as “q” previous 

error terms (ie. εt-I, i=1..q).  Assuming stationarity (ie. no “d” order), the ARIMA model folds to a general 

ARMA model that can be represented by the following formula: 

PRxt = c + εt +  ∑ 𝜑
𝑝
𝑖=1 𝑃𝑅𝑥t-i + ∑ 𝜃𝜀

𝑞
𝑖=1 t-i 

Where:  PRxt = PRx at time t, PRxt-i = PRx at time t-i, εt = error at time t, εt-i = error at time t-i, c = 

constant, φ and θ are parameters at time t-i, p = autoregressive order, and q = moving average order. 

The following process was conducted on all patient recordings, in order to derive the optimal ARIMA 

structure for PRx time series. This would provide insight into the approximate best ARIMA structure for 

future LME models. 



First, data had already been artifact cleared and had a 10-second moving average filter applied to the 

data, leading to some data smoothing (as described above in the signal processing section).  Thus, our 

initial step for the ARIMA modelling focused on determining stationarity of the signal.  This was 

assessed, and confirmed, using  three methods.  First, we assessed the autocorrelation function (ACF) 

correlogram for PRx, looking for a rapid decline in significant lags, indicating a stationary signal.  Second, 

we employed the Augmented Dickey Fuller (ADF) test to assess for stationarity. Third, we attempted 

seasonal decomposition using the like-named function in R for each PRx time series, which employs 

locally weighted scatterplot smoothing (LOWESS) to identify seasonal and trend components to a time 

series. All above processes confirmed stationarity within our patient examples. 

Second, the autoregressive structure of PRx was assessed using the ACF correlograms and partial 

autocorrelation function (PACF) correlograms.  ACF correlograms were assessed to see how many 

previous consecutive terms (ie. “lags”) PRx may be dependent upon.  Similarly, the PACF correlograms 

were assessed to see how many non-consecutive previous lags, PRx may be dependent upon. Significant 

level on ACF/PACF correlograms is set at a correlation level of +/-(2/N1/2), where N = sample size. We 

then ran sequential ARMA models for PRx by varying the order “p” from 0 to 3, while also varying the 

moving average order “q” from 0 to 3.  Given our analysis for stationarity confirmed a stationary signal 

within our 10 patient examples, we fixed the differencing order “d” at 0. In doing so we generated 16 

separate ARMA models for PRx within each patient.  Model superiority was assessed by Akaike 

Information Criterion (AIC) and Log-Likelihood (LL), with the lowest AIC and highest LL indicating the 

best ARMA model for PRx.  In addition, model superiority was assessed via residuals, model ACF and 

PACF correlograms, with an adequate model represented by random residuals, and ACF/PACF failing to 

display any lags reaching significance.   

 



LME Modelling of PRx Using TCD Derived Indices 

LME modelling was conducted on the entire patient population. LME modelling involved various fixed 

linear models, and a random component introduced into the intercept and independent variable 

coefficient (based on individual patient).  We embedded the PRx ARIMA structure within the LME 

models (based on the ARIMA modelling results analysis above).  This analysis was done on the full data 

set, deriving LME models for each patient as well as for the entire population. The following LME models 

were assessed, initially with random intercept only (stratified by patient), as above:  PRx ~ Sx_a, PRx ~ 

Mx_a, and PRx ~ Sx_a + Mx_a.  All models were corrected using maximum likelihood estimation method.  

Adequacy of the LME model was assessed via QQ plots and the residuals distribution plot, with linear 

shape to the QQ plots and normally distributed residuals confirming validity of the model.   

Models were compared using AIC, Bayesian Information Criterion (BIC), LL and analysis of variance 

(ANOVA) testing.  Superior models were attributed to the lowest AIC, lowest BIC and highest LL.  

Significance differences between models were assessed by ANOVA testing, with a threshold for 

significance set at a p < 0.05. The top 2 superior LME models were reported in detail, with a final 

assessment of model adequacy through ACF/PACF plots of the model residuals, observing for a minimal 

number of significant lags which decay rapidly.   

Generalized fixed effects models were also created based on the top two LME models. However, these 

models performed poorly, with substantially inferior AIC, BIC and LL values.  In addition, these general 

fixed effects models maintained continuous significant lags in the residuals, further indicating poor 

modelling of PRx.  Hence, these models will not be discussed further.  

 

 



Observed versus Estimated PRx 

We assessed the correlation between the observed (minute-by-minute) PRx values in our population 

versus those estimated from our optimal two LME models using Pearson correlation coefficient.  We 

then produced linear regression plots between observed and estimated PRx for the best two LME 

models, using grand mean data (ie. mean value per patient).  Finally, Bland-Altman plots were produced 

to assess agreement between the observed and estimated PRx values, using grand mean Fisher 

transformed data (ie. Fisher transform applied to both observed and estimated PRx). 

 

Predicting PRx  

We predicted PRx based on the top two LME models from the above discussed methods. Using the LME 

models themselves and the remaining 20% patient data not used in LME creation, we derived predicted 

PRx (pPRx) values from observed Sx-a and Mx-a values within this data subset. The predicted values 

were then compared to the actual observed PRx values during this period using Pearson correlation, 

linear modelling and Bland-Altman analysis.  

 

Results: 

a. Patient Demographics 

A total of 10 patients with moderate/severe TBI had sufficient quality TCD signals (ie. at least 3 – 4 hours 

duration and uninterrupted).  The mean age for this population was 34.5 +/- 17.0 years, with 8 patients 

being male.  The median admission GCS was 7 (IQR 4 to 8), with median admission GCS motor score of 4 

(IQR 2 to 5). The mean duration of ICP/TCD recording was 223.2 +/- 38.4 minutes. Only 80% of the total 



recording duration for each patient was utilized for model formation and training, with the remaining 

20% reserved for predictive testing. 

 

b. Building the Model to Estimate PRx 

 

ARIMA Modelling of PRx  

In all 10 patients the ARIMA structure of PRx was investigated in order to determine the appropriate 

structure for future LME modelling of the entire population.  Upon inspection of the ACF/PACF plots, 

ADF test results and seasonal decomposition techniques, it was determined that no significant trend or 

seasonality were present in any of the 10 patient recordings. Thus, no differencing order “d” was 

introduced.  Next, sequential ARMA models were produced for each patient, varying the autoregressive 

order “p” and moving average order “q”, from 0 to 3.  Across all patients the optimal ARMA model for 

PRx was found to be (2,0,2), based on the principle of parsimony, and the lowest AIC and highest LL. 

Figure 2 displays the ACF and PACF plots of PRx for one patient with 4 hours of continuous recording, 

demonstrating a rapid decay in significant lags (implying stationarity). Figure 3 shows the residuals for 

the ARMA model for PRx in the same patient, with an ARMA structure of (2,0,2).  This figure 

demonstrates a lack of significant lags on ACF and PACF plots, with randomly distributed residuals, 

confirming adequacy of the chosen model.  

 

*Figure 2 and 3 here 

 

 



c. Model Development and Accuracy Assessment 

LME Modelling of PRx Using TCD Indices 

Using the (2,0,2) PRx ARMA structure identified within the individual patients, various LME models 

were produced, embedding the PRx ARMA structure within them. Table 1 displays the model 

characteristics for those LME models derived from Sx_a and Mx_a, introducing random effects by 

patient into the intercept and coefficients. Model superiority was confirmed via ANOVA testing, with 

the lowest AIC/BIC and highest LL, indicating superiority. The top two LME models were:  PRx ~ Sx_a 

(AIC = -1564.957, BIC = -1510.159, LL = 792.4786) and PRx ~ Sx_a + Mx_a (AIC = -1597.345, BIC = -

1520.627, LL = 812.6726); with random effects by patient introduced into both the coefficients and 

intercept.  The QQ and residual density plots for these top two LME models can be seen in Appendix 

A, displaying normally distributed residuals, indicating model adequacy. The ACF and PACF plots for 

these two models can also be found in Appendix A, displaying acceptable rapid decay of significant 

lags.  

 

Population Based Estimation of PRx Using Sx-a and Mx-a 

Using the top two LME models described above, PRx was estimated using the available Sx_a and 

Mx_a measures in the training data set. Grand mean values were calculated per patient and plotted 

against the observed PRx values from the data.  A strong linear relationship was seen between 

estimated and observed PRx using both LME models.  Figure 4 displays estimated versus observed 

PRx plots for each model. The PRx ~ Sx_a model displayed a correlation between estimated and 

observed values of 0.998 (95% CI = 0.990 – 0.999; p<0.0001), while the PRx ~ Sx_a + Mx_a model 

had a correlation between estimated and observed PRx values of 0.997 (95% CI = 0.988 – 0.999; 

p<0.0001).  Bland-Altman analysis on Fisher transformed results displayed acceptable agreement, 



with slight underestimation bias in the estimated PRx for both models.  This bias in the Bland-

Altman plots was seen in our previous work as well.13  Appendix B contains the results of the Bland-

Altman analysis comparing the estimated to observed PRx for both LME models. 

 

 

  

*Table 1 here 

*Figure 4 here 

 

d. Predicting PRx Using Non-Invasive TCD Parameters 

Using the top two LME models derived above, we proceeded to predict PRx (pPRx) using the 20% of data 

not used in model construction/training.  Each patient had 20% of their recording data excluded from 

the prior model formation/training, each with ICP and TCD derived variables, amounting to ~30 to 60 

minutes of minute-by-minute data per patient. For each LME model, the Sx_a and Mx_a values from this 

new data were entered into the models to derive pPRx. Grand mean values were then calculated per 

patient.  For the model PRx ~ Sx_a, the correlation between predicted and observed PRx values was 

0.797 (95% CI = 0.336 – 0.949; p=0.006). Similarly, for the model PRx ~ Sx_a + Mx_a, the correlation 

between predicted and observed PRx was 0.763 (95% CI = 0.258 – 0.941; p=0.011). Predicted and 

observed PRx values displayed a linear association, though not 1:1.  Figure 5 displays the predicted 

versus observed PRx plots for the top two LME models. Bland-Altman analysis of Fisher transformed 

data demonstrated acceptable agreement between predicted and observed PRx values, with similar 



underestimation of the predicted PRx values as seen in the training data previously. All Bland-Altman 

results for comparing pPRx to observed PRx can be found in Appendix C.  

 

*Figure 5 here 

 

Discussion: 

Through the application of time-series ARMA and LME modelling in this pilot study we have been able to 

describe, for the first time, the prediction of pressure reactivity index PRx using non-invasive TCD 

derived cerebral autoregulation measures (in this case Sx_a and Mx_a).  Some important aspects of this 

preliminary pilot work require highlighting. 

First, through the application of ARMA modelling of PRx, and LME modelling of PRx using TCD measures, 

in this unique cohort of patients with extended duration continuous TCD recordings, we have been able 

to produced LME models that accurately estimate observed PRx.  This is similar to our prior 

retrospective work in a large TB population with TCD.13  Further, the superior two models from this 

current cohort were of similar AMRA and mixed-effects structure to those discovered in the prior work, 

as confirmed through the principle of parsimony.  This provides some validation of the previous work, 

and also provides some evidence to support these models regardless of the duration of TCD recording 

analyzed. In addition, the bias on Bland-Altman analysis comparing observed to estimated PRx displayed 

the same underestimation bias seen in our previous work, with acceptable agreement. 

Second, as with our previous work,13 the general fixed effects versions of our top two models performed 

poorly in estimating PRx, with continuous significant autocorrelation in the model residuals. As 

mentioned within the methods section, these models were subsequently not reported further. This 



again confirms patient-by-patient heterogeneity, limiting the extrapolation of this work to other general 

TBI populations.  

Third, the current, and previous,13 ARMA works demonstrate the strong relationship between measures 

of CBV (ie. ICP or PRx) and CBF (ie. CBFV or Sx_a/Mx_a). This strong association between measures of 

CBV and CBF is important to emphasize.  PRx, believed to be a measure of cerebrovascular pressure 

reactivity, relies on the correlation between vasogenic slow-wave fluctuations in ICP and MAP.  ICP in 

this instance is considered a surrogate measure of pulsatile CBV.  Thus, PRx is measuring changes in CBV 

in response to changes in MAP, with the corresponding correlation representing cerebral pressure 

autoregulation and having been validated to measure the lower-limit of autoregulation in various 

experimental models.6,14,15 Whereas, the TCD based cerebrovascular reactivity indices (ie. Sx_a and 

Mx_a) are based on the correlation between slow-wave fluctuations in CBFV and MAP.  Thus, TCD based 

indices may be considered to be closer measures of flow than those based on non-CBF/CBFV measures. 

The main limiting factor for TCD measures is the labor-intensive nature inherent with classic TCD devices 

leading to short and interrupted recordings.  Thus, the application of TCD for regular continuous 

monitoring of cerebrovascular reactivity has been limited, with no experimental studies in existence 

validating them as measures actual of pressure autoregulation. Through demonstrating the strong link 

between PRx and Sx_a/Mx_a, we have demonstrated that TCD based flow measures are close in relation 

to the validated pressure autoregulation measure PRx However, it also must be acknowledged this 

relationship between volume and flow is not necessarily the same across all patients, as exemplified by 

the poor performance of general fixed effects models and the need of LME modelling demonstrating 

clearly that the flow/volume relationship varies from patient to patient. 

Fourth, we demonstrated for the first time in the literature the ability to estimate PRx using non-

invasive TCD surrogates.  Comparing pPRx to the observed PRx values in the top two models, the 

correlation is of moderate strength with a linear relationship between the two and acceptable 



agreement on Bland-Altman analysis. However, a similar underestimation bias for pPRx is present on 

Bland-Altman analysis. Further, the relationship between pPRx and the observed PRx was not 1:1, 

indicating the prediction is not perfect.  This is despite having very strong correlations between the 

estimated PRx and observed PRx during the model training phase.  This potentially suggests model over 

fitting during the training, though it must be acknowledged the current work is mainly a proof of 

concept and pilot analysis. Much further work is required to optimize the prediction models. 

Fifth, for the first time in the literature we successfully applied the emerging robotic TCD technology for 

extended duration recording in critically ill TBI patients.   

Finally, this work is based on only 10 patients and is entirely preliminary with results that are not 

generalizable at this time. Thus, this type of modelling and prediction of PRx should not be conducted 

outside of a research setting.  Much further work is required for validation.  

 

Limitations 

As with our previous work in this area, the patient population was heterogeneous in terms of age, intra-

cranial injury patterns and therapies directed at ICP/CPP goals.  These heterogeneities could impact 

signal fluctuations and the results obtained for the time series modelling conducted.  Though in 

comparison to our larger time series work in TBI, the results of the modelling within this preliminary 

pilot study were similar, as described above. 

Second, our patient numbers were small, at only 10.  For the purpose of this type of analysis we chose 

only to look at patients with 3 to 4 hours of completely uninterrupted ICP and TCD recordings and thus 

the dataset, whilst small, is of exceptional length for routine clinical recordings.  The requirement for 

interrupted continuous TCD is a significant limitation with the described modelling, as conventional TCD 



is currently heavily limited by artifact and signal loss. The application of the robotic TCD mitigated this in 

our study, however this technology is relatively new and not without its own limitations, including 

patient eligibility (ie. no decompressive craniectomy, no cervical spine immobilization devices, etc.), 

because of the robotic probe relatively bulky design. Furthermore, even with the application of robotic 

TCD, it remains difficult to obtain continuous extended duration recordings given patient motion, 

bedside procedures and transport for routine and emergent neuro-imaging.  As robotic and automated 

TCD technology improves, we expect to be able to obtain extended duration uninterrupted recordings 

throughout a patient’s ICU stay.  Thus, even though the current results are limited given patient 

numbers, they provide the platform for future applications once technology catches up with the 

demands of this type of modelling/prediction. 

Third, the ARIMA structure highlighted for PRx, and the LME models within this study may not be widely 

applied outside this population.  This was also mentioned in our previous publication on this topic.  

There exists the potential for patient specific ARIMA structures, and thus the models described in our 

studies should not be applied clinically. Furthermore, as mentioned above, the general fixed effects 

versions of our top two models performed poorly in the estimation of PRx, resulting in persistently 

significant residual lags.  This also suggests significant patient-by-patient heterogeneity, negating the 

extrapolation of these results to other general TBI populations at this time. Further work on PRx, 

amongst other physiologic measures in TBI, is required in larger patient populations in order to 

determine the exact high frequency time series behavior.    

Finally, the statistical methodology employed within this study is quite complex. Thus, the wide spread 

applicability of these techniques is currently limited.  However, with the increasing availability of real-

time bedside computing software such constraints are becoming less important as even mathematically 

sophisticated models can be handled automatically allowing for a much more user-friendly application 

of such techniques.  Such functions will automate much of the analysis described in our works on time 



series, requiring limited user input.  This will hopefully bring this type of work to the wider clinical world 

for future multi-center validation studies.  

 

Conclusions: 

Through the application of ARMA and LME modelling, it is possible to estimate PRx using non-invasive 

TCD measures, such as Sx_a and Mx_a.  This is the first preliminary attempts at doing so.  Much further 

work is required prior to application within a clinical setting, as this the current work should be 

considered experimental at this time. 
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Table 1:  LME Models with PRx (2,0,2) ARIMA Structure – Entire Population 

LME Model  PRx ARIMA Structure AIC BIC  LL 

Fixed Effects Random Effects p q 

PRx ~ Sx_a intercept 2 2 -1543.672 -1499.833 779.8362 

PRx ~ Mx_a intercept 2 2 -1502.348 -1458.509 759.1738 

PRx ~ Sx_a + Mx_a intercept 2 2 -1550.704 -1501.385 784.3520 

PRx ~ Sx_a Intercept + Sx_a 2 2 -1564.957 -1510.159 792.4768 

PRx ~ Mx_a Intercept + Mx_a 2 2 -1516.367 -1461.569 768.1836 

PRx ~ Sx_a + Mx_a Intercept + Sx_a + Mx_a 2 2 -1597.345 -1520.627 812.6726 

AIC = Akaike Information Criterion, ARIMA = auto-regressive integrative moving average, BIC = Bayesian Information Criterion,  FVm = mean TCD flow velocity, FVs = TCD based 
systolic flow velocity, ICP = intra-cranial pressure, LL = log likelihood, LME = linear mixed effects model, p = auto-regression parameter for ARIMA model, MAP = mean arterial 
pressure, PRx = pressure reactivity index (correlation between ICP and MAP), q = moving average parameter for ARIMA model, Sx_a = systolic flow index (correlation between 
TCD based FVs and MAP), TCD = transcranial Doppler. *Note: bolded value represents the most appropriate ARIMA structure and LME model for the patient population tested, 
based on principle of parsimony, lowest AIC and BIC.   There was no integrative parameter (ie. “d” parameter) included within the ARIMA models, given stationarity testing during 
patient examples (see appendix A and Methodology section of manuscript). 

 



Figure 1:  Example of Recording Set up for ICP, NIRS and Robotic TCD 

 

 

ICP = intra-cranial pressure, NIRS = near infrared spectroscopy, TCD = transcranial Doppler.  Panel A: Displays left front bolt for 
ICP monitor, bifrontal NIRS pads (black bi-lobed pads on forehead), and robotic TCD secured with headband (black arrows 
denote the robotic drives which control TCD probe). Panel B: displays same as Panel A but from the side. Panel C: Delica EMS 9D 
TCD program display, showing TCD cerebral blood flow velocity wave form, M-mode display and automatic correction system 
(black hashed arrow – indicating the automated search pattern for the TCD correction algorithm, insonating at multiple sites, 
finding the area with superior signal quality). 



 

Figure 2: ACF and PACF for PRx – Patient Example 

 

ACF = autocorrelation function, a.u. = arbitrary units, PACF = autocorrelation function, PRx = pressure reactivity index 
(correlation between intracranial pressure and mean arterial pressure). Panel A: ACF plot displaying a rapid decay of significant 
PRx lag, suggesting stationarity. Panel B: PACF plot, also displaying rapid decay of significant PRx lags.  

 

Figure 3: Residual Plots for PRx (2,0,2) ARIMA Model and their ACF and PACF – A patient example 

 

ACF = autocorrelation function, PACF = autocorrelation function, PRx = pressure reactivity index (correlation between 
intracranial pressure and mean arterial pressure). Panel A: displays the residual plot for the ARIMA model in this patient 
example. Panel B: ACF plot displaying no significant lags with (2,0,2) ARIMA model for PRx. Panel C: PACF plot, also no 
significant lags with (2,0,2) ARIMA model for PRx.  



 

 

Figure 4: Linear Regression Between Observed and Estimated PRx – Using Estimated PRx From Two Best LME Models 

 

a.u. = arbitrary units, ICP = intracranial pressure, LME = linear mixed effects, MAP = mean arterial pressure, PRx = pressure 
reactivity index (correlation between ICP and MAP). Panel A: LME model – PRx ~ Sx_a (random effects with intercept and Sx_a), 
Panel B: LME model – PRx ~ Sx_a + Mx_a (random effects with intercept, Sx_a and Mx_a).  Coef = coefficients, form linear model 
between observed PRx and model estimated PRx.  Dotted straight line – represents the relationship “y = x”, for comparison to 
our two models. 

 

 

Figure 5: Linear Regression Between Observed and Predicted PRx – Using Predicted PRx From Two Best LME Models 

 

a.u. = arbitrary units, ICP = intracranial pressure, LME = linear mixed effects, MAP = mean arterial pressure, PRx = pressure 
reactivity index (correlation between ICP and MAP). Panel A: LME model – PRx ~ Sx_a (random effects with intercept and Sx_a), 
Panel B: LME model – PRx ~ Sx_a + Mx_a (random effects with intercept, Sx_a and Mx_a).  Coef = coefficients, form linear model 
between observed PRx and model estimated PRx.   

 

 

 

 



Appendix A – QQ, Residual Density, ACF and PACF Plots for Top Two LME Models 

 

1. PRx ~ Sx_a LME Model (with random effects by patient in intercept and coefficients) 

 

QQ Plot 

 

 

Residual Density Plot 

 

 

 



ACF Plot 

 

 

PACF Plot 

 

 



2. PRx ~ Sx_a + Mx_a LME Model (with random effects by patient in intercept and coefficients) 

QQ Plot 

 

 

Residual Density Plot 

 

 

 

 

 

 



ACF Plot 

 

 

PACF Plot 

 

 

 

 



Appendix B – Bland Altman Analysis for Estimated vs. Observed PRx for Top Two LME Models 

*Grand mean Fisher transformed data utilized for Bland-Altman analysis 

 

1. PRx ~ Sx_a (with random effects introduced into intercept and coefficient) 

$lower.limit 
[1] -0.0628747 
 
$mean.diffs 
[1] -0.003253664 
 
$upper.limit 
[1] 0.05636738 
 
$lines 
 lower.limit   mean.diffs  upper.limit  
-0.062874705 -0.003253664  0.056367377  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.10056477          -0.02518464          -0.02501403           0.01
850671           0.01867731  
upper.limit.ci.upper  
          0.09405744  
 
$critical.diff 
[1] 0.05962104 
 



 
 

2. PRx ~ Sx_a + Mx_a (with random effects introduced into intercept and coefficient) 

$lower.limit 
[1] -0.0664208 
 
$mean.diffs 
[1] -0.003062638 
 
$upper.limit 
[1] 0.06029553 
 
$lines 
 lower.limit   mean.diffs  upper.limit  
-0.066420801 -0.003062638  0.060295526  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.10647333          -0.02636828          -0.02618697           0.02
006170           0.02024300  
upper.limit.ci.upper  
          0.10034805  
 
$critical.diff 
[1] 0.06335816 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C – Bland Altman Analysis for Predicted vs. Observed PRx for Top Two LME Models 

*Grand mean Fisher transformed data utilized for Bland-Altman analysis 

 

1. PRx ~ Sx_a (with random effects introduced into intercept and coefficient) 

$lower.limit 
[1] -0.2826737 
 
$mean.diffs 
[1] -0.05195699 
 
$upper.limit 
[1] 0.1787597 
 
$lines 
lower.limit  mean.diffs upper.limit  
-0.28267367 -0.05195699  0.17875969  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.42852364          -0.13682371          -0.13616351           0.03
224952           0.03290972  
upper.limit.ci.upper  
          0.32460965  
 
 
$critical.diff 
[1] 0.2307167 
 



 
 

2. PRx ~ Sx_a + Mx_a (with random effects introduced into intercept and coefficient) 

$lower.limit 
[1] -0.2932762 
 
$mean.diffs 
[1] -0.04899657 
 
$upper.limit 
[1] 0.195283 
 
$lines 
lower.limit  mean.diffs upper.limit  
-0.29327618 -0.04899657  0.19528303  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.44770008          -0.13885227          -0.13815326           0.04
016011           0.04085912  
upper.limit.ci.upper  
          0.34970694  
 
 
$critical.diff 
[1] 0.2442796 

 

 



 

 

 


