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Abstract

The process by which the subsurface ocean on Enceladus is heated remains a

puzzle. Tidal interaction with Saturn and Dione is the leading candidate but

whether the dominant heating occurs in the solid core, ice crust or in the ocean

itself is an outstanding question. Here we consider the driving effect of the

longitudinal libration of the ice crust on the subsurface ocean and argue that

the flow response should be turbulent even in the most benign situation of a

smooth spherical ice shell when the motion of the boundary is only transmitted

viscously. A rigorous upper bound on the turbulent viscous dissipation rate

is then derived and used to argue that libration should be potent enough to

explain the observed heat flux emanating out of Enceladus when the effects of

tidal distortion and roughness of the ice crust are included.
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1. Introduction

The data from recent solar system probes suggest the existence of subsurface

oceans in many icy satellites [1] which opens up the fascinating possibility of

extraterrestrial life relatively close by. Of the many oceans currently believed

to exist, those in Europa, Titan and Enceladus are the most certain having5

been inferred by more than one type of measurement (e.g. for Enceladus see

[2] ). Given the surface temperatures in the outer solar system, there is a ques-

tion as to how these oceans avoid freezing and answering this is nowhere more
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challenging than on Enceladus given its small size (its radius is just 252 km)

[1, 2, 3, 4, 5, 6]. Cassini observed a heat flux of 15.8 ± 3.1 GW [7] emanat-10

ing from Enceladus’ south pole whereas radiogenic heating is only estimated to

provide 0.3 GW [8]. Other possible explanations such as accretional heating,

heat release through differentiation and exothermal chemical reactions have all

been dismissed as insignificant leaving only tidal heating as a possible explana-

tion [1, 3, 6]. Enceladus is currently in a 2:1 orbital resonance with Dione and15

has an orbital eccentricity of 0.0047 with current observations suggesting that

Enceladus’s ice crust is decoupled from its rocky core: i.e. there is a global sub-

surface ocean [2, 8, 9]. The question is then where the dominant tidal heating

occurs - is it in the rocky core, the ice-crust or in the ocean itself?

The ability of tidal effects to heat solids by the time-dependent distortions20

they induce is well understood and established after the successful prediction of

Io’s volcanic state [10, 11]. As a result, the majority of studies have focussed

either on Enceladus’s solid core [12, 13, 14, 15, 16] or, more recently, on its ice

crust [5, 6, 17]. Despite this work, no generally-accepted solid model for tidally

heating Enceladus’s ocean has emerged [1].25

In contrast, the ability of tidal effects to drive fluid flows and thereby heat the

ocean itself through the accompanying viscous dissipation is poorly understood.

Dissecting the exact tidal response of the coupled system of solid core, subsurface

ocean and overlying ice crust is a complicated problem fraught with unknowns.

As a result, limiting scenarios have been studied in which a) the ice crust is a30

passive flexible skin over a tidal ocean and the counter scenario b) where the ice

crust is rigid enough to suppress ocean tides but which instead drives the ocean

through its libration. An attraction of the latter is that it replaces the tidal

body force on the ocean by a boundary condition forcing which is conducive to

laboratory modelling. The former limiting scenario was first considered by Tyler35

[18, 19, 20, 21] who used Laplace’s 2D tidal equations for a shallow ocean to

show via a resonant response that more than enough energy could be deposited

in Enceladus’s ocean given a large enough obliquity angle or a shallow enough

ocean (see also [22, 23] and [24] who claim that this is not the case for a non-
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resonant response).40

Concurrently another body of work has considered the second limiting sce-

nario by studying the effect of imposing a longitudinal libration on rotating

fluid-filled spheres, spherical shells and ellipsoids [25, 26, 27, 28, 29, 30]. Here

the approach has been a combination of laboratory and numerical experiments

treating the full 3D Navier-Stokes equations. While the use of tidally-distorted45

containers is more realistic for planetary applications, librating axisymmetric

containers are (far) easier to theoretically model and allow the simpler and

weaker effect of only (viscous) tangential forcing to be understood. In this vein,

the experiments of Noir et al. [25] librate only spherical shells yet even then the

flow clearly becomes turbulent near the boundary at sufficient librational am-50

plitude. Later numerical work [31] showed that inertial waves could be driven

into the interior which, when driven at sufficient amplitude, should break down

to small scale turbulence through triad resonances [32] as seen in experiments

with ellipsoidal containers [30]. No estimates of the turbulent viscous heating

have, however, emerged for either the axisymmetric or asymmetric container55

situations as yet due either to the difficulty of measuring it in the laboratory or

resolving all the relevant length scales on the computer.

The purpose of this paper is remedy this situation at least in the axisymmet-

ric situation by theoretically deriving a rigorous upper bound on the turbulent

dissipation rate inside a librating fluid-filled spherical shell directly from the gov-60

erning Navier-Stokes equations. The result makes a prediction for the scaling of

the dissipation rate with the parameters of the problem (the libration amplitude,

the libration frequency and Ekman number) in the limit of vanishing Ekman

number. The numerical prefactor, however, is typically very conservative and

data - either from laboratory experiments or numerical simulations - are needed65

to renormalise the bound down to make a realistic prediction of what dissipa-

tion actually occurs. Exactly this approach was used to estimate the turbulent

dissipation rate possible in a precessing spheroid [33, 34]. There the bound cor-

rectly predicts that the dissipation rate becomes independent of the precession

rate and Ekman number but the numerical prefactor needs to be renormalised70
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by one and a half orders of magnitude to match experimental data (see figure

1 in [34]). Significantly, even with this adjustment, this bound highlights the

fact that precessionally-driven turbulence in the outer core is energetic enough

to drive the geodynamo [34].

That the response to Enceladus’s (longitudinal) libration should be turbulent75

even under the idealised assumption of a smooth axisymmetric ice crust-ocean

interface is clear from experiments [25] (see figure 1) and a simple estimate.

The situation below the librating ice crust is essentially Stokes’s second prob-

lem where an oscillating plane drives a half space of fluid. For Enceladus, the

Reynolds number can be estimated as Ro/
√
E ≈ 7200 where Ro ≈ 2.1 × 10−380

is ratio of the peak librational rotation rate to the basic spin rate (the Rossby

number) and the Ekman number E ≈ 8.5 × 10−14 (see Table 1). This is well

above the Reynolds number of ≈ 500 for which the flow to observed to be

turbulent [35]. 1

2. Bounding the dissipation in a librating spherical shell85

Enceladus’s subsurface ocean is modelled as a fluid-filled layer sandwiched

between two concentric hard spheres of inner and outer radii r = ri and ro

respectively. For simplicity, the inner sphere is assumed to be uniformly rotating

about its axis (labelled hereafter as the z-axis) at a constant angular frequency Ω

(i.e. we ignore the libration of Enceladus’s solid core which is estimated as being90

4 times smaller than that of the ice crust: see Table 1 in [2]) whilst the outer

sphere is librating (so rotating about the same axis at Ω(1 + Ro sinωt) where

the Rossby number, Ro, is the amplitude (in units of the basic rotation rate Ω)

and ω the angular frequency of the libration). Non-dimensionalising using the

outer radius ro and the base rotation rate Ω, the Navier-Stokes equations in the95

1Note that the Reynolds number in [35] is
√

2 larger than the one used here.
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librating frame of the outer boundary 2 are then

∂u

∂t
+ u · ∇u+ 2[1 + γ(t)]ẑ × u+ γ̇(t)ẑ × r +∇p = 2E∇ · e, (1)

where γ(t) := Ro sin(f∗t) with f∗ := ω/Ω, γ̇ := dγ/dt, eij := 1
2 (∂jui + ∂iuj),

the Ekman number E := ν/r2oΩ (ν is the kinematic viscosity) and the fluid is

assumed incompressible

∇ · u = 0. (2)

Ice Crust
Subsurface Ocean

Rocky Mantle

Figure 1: A model of librating Enceladus. The picture is in the mantle frame which is

presumed uniformly rotating. In this the crust is librating across the top of the subsurface

ocean (inner radius ri and outer radius ro). Figure courtesy of Jerome Noir.

In this librating frame the outer boundary is stationary so u|r=1 = 0 while100

the inner boundary appears to oscillate back and forth with velocity u|r=1−d =

−γ(t)ẑ × r where d = (ro − ri)/ro is the non-dimensional ocean depth. The

(non-dimensionalised) long-time-averaged energy dissipation rate per unit mass

2We use this frame to demonstrate the general situation although for the particular set up

here, a frame fixed in the inner boundary would be easier to analyse.
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is defined as

ε := 2E〈 1

V

∫∫∫
V

eijeijdV 〉 (3)

where V is the non-dimensional volume (= 4/3π(1 − (1 − d)3) ) and 〈. . . 〉 :=105

limT→∞
1
T

∫ T
0
. . . dt represents long-time averaging.

The method used to bound the dissipation requires taking 2 projections of

equation (1) [36]. The first is the energy equation, found by taking the long-time

and volume averages of the scalar product of u with (1) (and assuming that the

total kinetic energy stays bounded in time):110

〈 γ̇
V

∫∫∫
V

u · ẑ × r dV 〉 = 2E 〈 γ
V

∮
r=1−d

s erφ dS 〉 − ε (4)

where u := ur̂ + vθ̂ + wφ̂, erφ|r=1−d = r
2
∂
∂r

(
w
r

)
|r=1−d and s := r sin θ is the

cylindrical radius. Here the work done by the body force due to the changing

rotational rate (on the left of (4) ) balances the work done at the inner wall by

the fluid (which may be negative) and the internal dissipation (on the right) (in

this frame the outer boundary does no work).115

The second projection is the time-averaged rate of working of the axial torque

component of the Navier-Stokes equations relative to the librating frame inte-

grated over a spherical shell r ∈ [r′, 1] with 1− d ≤ r′ ≤ 1, i.e. 〈
∫ 1

r′

∮
γ(t)ẑ · r×

(1) dS dr〉 (dS := r2 sin θ dθdφ is an area element on a sphere of radius r). This

gives120

− 〈 γ̇
∫ 1

r′

∮
u · ẑ × r dS dr 〉+ 2〈γ (1 + γ)

∫ 1

r′

∮
∇ · (1

2
s2u) dS dr〉

− 〈 γ
∮
r=r′

s uw dS 〉 = 2E〈 γ
[∮

r=1

s erφ dS −
∮
r=r′

s erφ dS

]
〉.

(5)

Here, the first term is the γ-rectified rate of change of the angular momentum in

the shell (since 〈γ(t)sφ̂ · ∂u∂t 〉 = −〈u · γ̇ẑ× r 〉) or perhaps more understandably

one part of the rate of change of rotational kinetic energy which vanishes on

time-averaging

〈 d
dt

(γẑ · r × u) 〉 = 〈 γ̇ẑ · r × u+ γẑ · r × ∂u

∂t
〉 = 0. (6)

The second term comes from the Coriolis torque, the third comes from the125

nonlinearity of the Navier-Stokes equations and the fourth term is the boundary
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torque contribution. The special choice r′ = 1− d causes both the Coriolis and

nonlinear terms to vanish (no flow across the inner surface) and gives simply

Vε = 2E〈γ
∮
r=1

s erφ|r=1 dS 〉 (7)

after utilising (4). With this, (5) can be rearranged to give

ε =− 〈 γ̇
V

∫ 1

r′

∮
u · ẑ × r dS dr〉 − 〈 γ

V

∮
r=r′

s uw dS 〉

+ 2〈γ (1 + γ)

V

∫ 1

r′

∮
∇ · (1

2
s2u) dS dr〉+ 2E〈 γ

V

∮
r=r′

s erφ dS 〉.
(8)

The final step is to average (8) over the layer r′ ∈ [1−`, 1] - i.e. form 1
`

∫ 1

1−` (8) dr′130

- where 0 < ` < d is a free variable to be selected judiciously later. Then taking

the modulus of each of the terms yields the following simple bound on the

dissipation

ε 6

∣∣∣∣〈 γ̇V 1

`

∫ 1

1−`

∫ 1

r′

∮
u · ẑ × r dS dr dr′ 〉

∣∣∣∣(1)
+

∣∣∣∣〈 γV 1

`

∫ 1

1−`

∮
s uw dS dr′ 〉

∣∣∣∣(2)
+ 2

∣∣∣∣〈γ (1 + γ)

V
1

`

∫ 1

1−`

∫ 1

r′

∮
∇ · (1

2
s2u) dS dr dr′〉

∣∣∣∣(3)
+ 2E

∣∣∣∣〈 γV 1

`

∫ 1

1−`

∮
r=r′

s erφ dS dr
′〉
∣∣∣∣(4) .

(9)

The strategy now to is bound each of these terms by some appropriate function

of ε and `: see Appendix A for details. The result is135

ε 6

√
2

V
πRo

(
4[ 1 +Ro ](3) + f∗ (1)

) √`3ε√
E

+
1

2
Ro

`ε

E

(2)

+
2π√
V
Ro

√
Eε√
`

(4)

(10)

where the red superscripts indicate the origin of the terms from (9). Minimising

this expression over ` yields an optimal value of ` = (4π2/V)1/3Eε−1/3 when the

second and third terms contribute at leading order and the first is negligible in

the limit E → 0 (which is why the particular frame of reference is unimportant)

and the best (lowest) bound140

ε 6
27π2

2

Ro3

V
(11)
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where V = 4π(1− (1−d)3)/3 is the non-dimensional volume (with this maximal

value of ε, the optimal boundary layer scale is O(E/Ro) and so smaller than the

usual Ekman boundary layer scale of O(
√
E)). It turns out that d = 1 can be

taken in this result to retrieve a bound for a librating fluid-filled sphere. Past

experience in other bounding calculations suggests that the numerical prefactor145

in the bound (11) could be improved (decreased) by an order of magnitude

by solving the variational problem numerically (e.g. see expressions (2.43) and

(2.55) in [34]). After this, one would then still expect the bound to be about 1.5

orders of magnitude above the data (e.g. see figure 1 in [34]) giving a likely total

renormalisation factor of 102.5 ≈ 300 of the bound down to produce a realistic150

numerical prediction of the turbulent dissipation rate. It’s worth emphasizing

that in the turbulent regime, this renormalisation only needs to be done once -

by its very nature the numerical prefactor does not depend on the parameters

of the problem (i.e. it is not E-dependent).

3. Implications155

The bound (11) is on the turbulent dissipation rate per unit mass (of fluid)

in units of r2oΩ
3. A bound on the total (dimensional) dissipation rate is therefore

ε 6
27π2

2
Ro3ρΩ3r5o (12)

which formalises the usual estimate of the turbulent dissipation rate as the rate

of working of turbulent drag (parametrised by a drag coefficient cD) integrated160

over the (outer) boundary: i.e. ρcDu
2 × u × 4πr2o = 4πcDρu

3r2o where u is

estimated as (ΩRo)ro. The bound translates into the condition that cD 6

27π/8 ≈ 10.6 or, using a renormalisation factor of 102.5, that cD ≈ 0.0335.

The dimensional dissipation rate bound per unit surface area of the outer

ice shell (of thickness diro) is165

ε∗ 6 ε∗bound :=
27π2

2

ρ(Ro roΩ)3

4π(1 + di)2
, (13)

and ρ is the density of the fluid. For Enceladus, the radius of the rocky core

is inferred to be 180-185 km (= ro(1 − d) ), the mean total radius is 252 km
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(= ro(1 + di) ) [2] and the ice shell thickness is 18− 22 km (= diro) on average

[37]. The base rotation rate Ω is 2π/(1.4 days) ≈ 5.2 × 10−5 s−1, the body

librates at the same frequency as the base rotation so f∗ = 1 [2] and the libration170

magnitude is 0.12◦, so Ro = 2.1 × 10−3. Using these values gives a bound on

the dissipation per unit surface area of Enceladus

ε∗ 6
27π

8

(2.1× 10−3)3(232× 103)5(5.2× 10−5)3 × 103

(252× 103)2
W/m2 ≈ 146×10−3W/m2

(14)

which is 20 times greater than the measured value of the globally averaged flux

of 7× 10−3W/m2 [20].

Planet Interior ro(km) ri(km) Tspin(day) f∗ E Ro Re

Callisto SO ∼ 2300 2000–2300 16.68 1 4× 10−14 4.22× 10−6 ∼ 20

Ganymede LC ∼ 800 0–500 7.15 1 4× 10−14 5.64× 10−6 ∼ 25

Earth’s moon LC ∼ 350 0–150 27.3 1 10−12 7× 10−5 ∼ 73

Titan(Grav) SO ∼ 2500 2350–2450 15.95 1 3.5× 10−14 2.3× 10−5 ∼ 123

Mercury LC ∼ 1800 0–1700 58.6 2/3 7.5× 10−14 1.33× 10−4 ∼ 490

Titan(Atm) SO ∼ 2500 2350–2450 15.95 3× 10−3 3.5× 10−14 1.3× 10−4 ∼ 690

Io LC ∼ 500 – 1.77 1 3× 10−14 1.3× 10−4 ∼ 800

Europa SO ∼ 1450 1300–1400 3.55 1 2.3× 10−14 2× 10−4 ∼ 1300

Enceladus SO ∼ 233 180–185 1.4 1 8.5× 10−14 2.1× 10−3 ∼ 7200

Pluto SO ∼ 975 830 6.39 1 9.2× 10−14 2.04× 10−5 ∼ 67

Table 1: A reproduction and update of table 2 of [25] (see original table for their sources)

which uses viscosities ν = 10−6 and ν = 3 × 10−7 m2/s, respectively, for subsurface oceans

(SO) and liquid cores (LC). The data for Enceladus [2, 37] and Pluto [3, 38] have been added.
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Figure 2: Bounds on the librational dissipation rate per unit surface area (units W/m2)

calculated for the bodies whose data is in table 1 versus the Reynolds number Re := Ro/
√
E

as defined in [25]. Subsurface oceans (of liquid water) are shown as blue empty circles and

molten iron cores are shown as red filled circles. The blue cross marks the measured value

of the flux per unit area for Enceladus [20]. The critical Reynolds number for boundary

turbulence due to libration has been estimated as Recrit = 120 [25] so the (un)shaded region

indicates (turbulent) laminar librational flow responses.

For the other satellites inferred to possess subsurface oceans or molten cores175

along with Mercury, the corresponding librational dissipation rate upper bounds

are shown in figure 2 (using the data from table 1). Titan, Io, Europa, Mercury

and particularly Enceladus all lie well within the region of Reynolds number

found experimentally by [25] to show boundary turbulence. As a result, one

can expect that the upper bound derived above will be a good predictor for180

the librational dissipation rate in these bodies modulo an appropriate renor-

malisation of the numerical coefficient (argued above to be about 2.5 orders of

magnitude). Conversely, Callisto, Ganymede, the Earth’s moon and Pluto all
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lie within either the stable or boundary layer rolls regime found in [25] and so

the increase in dissipation due to libration is not expected to be significant in185

these bodies.

4. Discussion

The upper bound on the turbulent dissipation rate derived here, which

is for a librating spherical shell where only the outer boundary librates, is

20 times greater than the measured value of the globally averaged flux of190

7 × 10−3W/m2 [20]. Building in the renormalisation factor of 2.5 orders of

magnitude (≈ 300) already discussed, would mean that the predicted dissipa-

tion rate for librationally-drived turbulence in a spherical shell is then about 15

times too small. On the face of it, this looks a negative result but actually is

not given that the ice crust on Enceladus will neither be perfectly smooth nor195

spherical. The same tidal effects which cause the libration will distort the crust

to be dominantly elliptical in cross-section and then the flow is known to be

even more prone to instability [39, 30] and experience dramatically enhanced

turbulent dissipation (e.g. [30, 40, 41]). Roughness of the ice crust will also

increase the librational driving of the subsurface ocean given the effect in other200

boundary-driven flows (e.g [42]) and provides a means by which locally-enhanced

heating may occur. In particular, the ice crust could have a particularly rough

inner surface near Enceladus’s south pole where the surface heat flux is observed

to be peaked.

Both roughness and tidal distortion crucially influence the fluid mechanics205

because then the librating ice crust will be inertially rather than just viscously

coupled to the subsurface ocean through pressure forces which push the fluid

back and forth as it librates. Ideally, these important effects should have been

included in the mathematical bounding analysis presented here but, unfortu-

nately, it is currently unknown how to treat boundary-driven flows where the210

boundary actually pushes the fluid around. Given this, the strategy pursued

here instead has been to demonstrate how much dissipation can be generated
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in the most benign situation and then argue that the excluded effects can only

dramatically increase the librational heating in the subsurface ocean beyond

that observed. In particular, it doesn’t take much to imagine that the presence215

of both roughness and tidal distortion in the outer ice crust could magnify the

dissipation rate in the subsurface ocean by at least a factor of 15 to explain the

observed heat flux emanating from Enceladus.

Our conclusion is then that indirect tidal stirring of the subsurface ocean

via tidally-driven boundary motion of the ice crust is a viable process to gen-220

erate the heat flux observed emanating from Enceladus. This complements the

conclusion drawn in the opposite end-member scenario where the ice crust is ig-

nored and the ocean tides are driven directly [19, 20, 21]. Taken together, these

end-member scenarios suggest that tidal forcing can heat Enceladus’s ocean suf-

ficiently in the more complicated, realistic situation where the ice crust, ocean225

and solid core are mutually interacting under tidal forces.

The theoretical analysis presented here, which assesses the limits of the tur-

bulent state directly, complements all the experimental and numerical work

currently being done to understand mechanistically the fluid flows driven by

precession and tides (e.g. see the review [43]). In the broader context, the230

general fact that small mechanical forcing can drive a significant (turbulent)

response in a body of rotating fluid is currently not well known in the earth

and space community (again see [43]). Here we have studied libration follow-

ing earlier work on precessing systems [34] to emphasize what is possible and

either seen or hinted at in experiments [33, 30, 40, 41, 44]. What is needed now235

is detailed numerical computations at low enough Ekman numbers to validate

the scalings predicted here and data to calibrate the numerical prefactor of the

bound so it can be used as a predictive estimate. If these work out, given the

paucity of alternatives, it could be that Enceladus will do for the idea of tidal

heating of fluids what Io did for tidal heating of viscoelastic solids nearly 40240

years ago.
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Appendix A. Detailed bounding calculation

Here the methods used to bound each of the terms in (9) are detailed. The

first term (1) is bounded as follows∣∣∣∣〈 γ̇V 1

`

∫ 1

1−`

∫ 1

r′

∮
u ·ẑ × r dS dr dr′ 〉| =

∣∣∣∣〈 γ̇V 1

`

∫ 1

1−`

∫ 1

r′

∫ 2π

0

∫ π

0

wr3 sin2 θ dθdφdrdr′〉
∣∣∣∣

6
Rof∗

`V

∫ 1

1−`

∫ 1

r′

∫ 2π

0

∫ π

0

〈|w|〉
√

sin θ dθdφdrdr′

6
Rof∗

`V

∫ 1

1−`

∫ 1

r′
〈
∫ 2π

0

∫ π

0

√
sin θ

∫ 1

r

∣∣∣∣ ∂w∂r′′
∣∣∣∣ dr′′dθdφ〉drdr′

6
Rof∗

`V

∫ 1

1−`

∫ 1

r′
〈
∫ 2π

0

∫ π

0

∫ 1

r

r′′2 sin θ

∣∣∣∣ ∂w∂r′′
∣∣∣∣2 dr′′dθdφ〉1/2

×
(∫ 2π

0

∫ π

0

∫ 1

r

1

r′′2
dr′′dθdφ

)1/2

drdr′.

6

√
2

V
πRof∗

√
`3ε√
E

(A.1)

where the second line uses the fact that r3 6 1, sin3/2 θ 6 1 and |γ̇| 6 Rof∗.

The third line uses the Fundamental Theorem of Calculus to replace w by the250

integral of its radial derivative away from r = 1 where w vanishes and then

the integral is judiously split by the Cauchy-Schwartz inequality in the fourth

and fifth lines. A final bound comes from extending the range of integration

for r′′ in the first integral (fourth line), bounding |∂w/∂r′′|2 by |∇u|2 and then

bounding the second integrand (fifth line) (higher order terms in ` have been255

neglected as it is found that the optimal ` is much smaller than 1).
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The second term (2) is bounded as follows

∣∣∣∣〈 γ`V
∫ 1

1−`

∫ 2π

0

∫ π

0

r′3uw|r=r′ sin2 θ dθdφdr′〉
∣∣∣∣

6
Ro

`V

∫ 1

1−`

∫ 2π

0

∫ π

0

〈|u||w|〉|r=r′ sin θ dθdφdr′

6
Ro

`V

∫ 1

1−`

∫ 2π

0

∫ π

0

〈
∫ 1

r′

∣∣∣∣∂u∂r
∣∣∣∣ dr ∫ 1

r′

∣∣∣∣∂w∂r
∣∣∣∣ dr〉 sin θ dθdφdr′

6
Ro

`V

∫ 1

1−`

∫ 1

r′

1

r2
dr

∫ 2π

0

∫ π

0

〈

(∫ 1

r′
r2
∣∣∣∣∂u∂r

∣∣∣∣2 dr
)1/2

×

(∫ 1

r′
r2
∣∣∣∣∂w∂r

∣∣∣∣2 dr
)1/2

〉 sin θ dθdφdr′

6
Ro

2`V

∫ 1

1−`

∫ 1

r′

1

r2
dr

∫ 2π

0

∫ π

0

〈
∫ 1

r′
r2

(∣∣∣∣∂u∂r
∣∣∣∣2 +

∣∣∣∣∂w∂r
∣∣∣∣2
)
dr〉 sin θ dθdφdr′

6
1

2
Ro `

ε

E

(A.2)

where γ is bounded by its maximum, Ro, r′3 6 1 and sin θ 6 1 in the second

line. The fundamental theorem of calculus is used twice to replace u and w by

integrals of their radial derivatives in the third line before the Cauchy-Schwartz260

inequality is used to split the integrals up. The inequality, 2ab 6 a2 + b2, is now

used in the fourth line. Thereafter, the rest of the terms of |∇u|2 are added to

the second integrand and the range of integration extended to turn this into the

dissipation rate expression and we bound the first integrand by its maximum

(again higher order terms in l have been neglected).265

The third term (3) can be bounded by simply noting that sin θ 6 1 and

cos θ 6 1 and following similar steps to those used for the first term (1). This

leads to a final bound on (3) of

4

√
2

V
πRo (1 +Ro)

√
`3ε√
E
. (A.3)

The fourth term (4) is also bounded in the same fashion as (1) but without

the step using the fundamental theorem of calculus, leading to a final bound on270

14



(4) of

2√
V
πRo

√
Eε√
`
. (A.4)
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[43] M. Le Bars, D. Cébron, P. L. Gal, Flows driven by libration, precession,

and tides, Annual Review of Fluid Mechanics 47 (2015) 163–193. doi:

10.1146/annurev-fluid-010814-014556.390

[44] W. V. R. Malkus, An experimental study of global instabilities due to the

tidal (elliptical) distortion of a rotating elastic cylinder, Geophysical and

Astrophysical Fluid Dynamics 48 (1989) 123–134.

19

http://dx.doi.org/10,1029/2003JE002100
http://dx.doi.org/10,1029/2003JE002100
http://dx.doi.org/10,1029/2003JE002100
http://dx.doi.org/10.1029/98GL00237
http://dx.doi.org/10.1029/98GL00237
http://dx.doi.org/10.1029/98GL00237
http://dx.doi.org/10.1063/1.4922085
http://dx.doi.org/10.1002/2017JE005340
http://dx.doi.org/10.1146/annurev-fluid-010814-014556
http://dx.doi.org/10.1146/annurev-fluid-010814-014556
http://dx.doi.org/10.1146/annurev-fluid-010814-014556

	Introduction
	Bounding the dissipation in a librating spherical shell
	Implications
	Discussion
	Detailed bounding calculation

