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Abstract
Organisations are starting to publish datasets containing

potentially sensitive information in the Cloud; hence it is
important there is a clear audit trail to show that involved
parties are respecting data sharing laws and policies.

Information Flow Control (IFC) has been proposed as a
solution. However, fine-grained IFC has various deploy-
ment challenges and runtime overhead issues that have
limited wide adoptation so far.

In this paper we present MrLazy, a system that prac-
tically addresses some of these issues for MapReduce.
Within one trust domain, we relax the need of continuously
checking policies. We instead rely on lineage (informa-
tion about the origin of a piece of data) as a mechanism
to retrospectively apply policies on-demand. We show that
MrLazy imposes manageable temporal and spatial over-
heads while enabling fine-grained data regulation.

1 Introduction
Currently, governments and regulatory agencies are intro-
ducing data protection and compliance laws that cloud
computing providers have to comply with [1, 2, 3]. This
usually entails (i) tracking and (ii) enforcing data propa-
gation according to certain policies; for example, ensuring
that data is not shared with unauthorised third parties.

Information Flow Control (IFC) has been advocated as a
good mechanism for regulating data usage in the Cloud [4].
IFC works by attaching labels (i.e., privacy or security
metadata) to input data and continuously propagating these
labels through computations to control where data flows.

Although IFC can operate at different granularities,
field-level granularity is required to effectively track data
transformations. However, practitioners generally believe
that fine-grained IFC is not feasible as it incurs deployment
challenges and prohibitive runtime overheads [5].

We observe, nonetheless, that tracking data flows (i.e.,
audit) is orthogonal to the use of IFC to limit data prop-
agation (i.e., control). In particular, we advocate that by
delaying the enforcement of data dissemination policies to
the point where data crosses a trust boundary, we can sig-
nificantly reduce the overheads of maintaining fine-grained
IFC in modern Big Data frameworks.

Within a given trust domain a company can do compu-
tations on sensitive datasets without the need to actively
check complex policies at runtime. Regulations have to be
enforced only when data is about to leave a trust domain
(e.g., publishing results). It is, therefore, enough to have an

audit mechanism to ensure we can provide enforcements
when needed.

Based on this observation, we propose the use of lin-
eage [6] to check, at a later stage, if a given output record
complies with rules and regulations. Lineage associates an
output record with all input records contributing to its cre-
ation. For example if we are computing the average of 5
inputs, lineage represents a link between the output value
and these specific 5 inputs.

We introduce the Lazy label propagation mechanism:
we do not propagate any labels associated with input data
(e.g., security metadata) during the actual computations.
We only track lineage during computation, which we use
to construct output labels and enforce policies retrospec-
tively when data is about to leave the trust domain.

In this paper we present MrLazy, a prototype system that
implements lazy label propagation for Hadoop MapRe-
duce. We choose MapReduce because it is a popular com-
putation framework in the Cloud. Our preliminary eval-
uations show that MrLazy incurs 19% additional runtime
overhead on the actual computation while typical policy
enforcement queries run in 15–20% of the actual computa-
tion time. Additionally, MrLazy has storage requirements
of up to 50% of the output dataset size.

We start by describing a motivating use case that we use
to illustrate the benefits of MrLazy (Section 2). Based on
this use case we discuss the design of MrLazy (Section 3)
and show overhead measurements from our prototype im-
plementation (Section 4). We then present related work
(Section 5) and conclude (Section 6).

2 Motivating Use Case
In our simple example we assume that a large retailer (say
Walmart) performs data analytics on customer order logs
from its stores. Walmart’s data scientists that work on
this project have full-access to this dataset and they use
MapReduce to execute their jobs. This analysis requires
a number of computations. The resulting data are not ex-
pected to leak any sensitive data as all outputs are solely
produced for the consumption of Walmart personnel (e.g.,
senior management). Therefore there is no need to control
data flows at this point.

Let us further assume that Walmart wants to provide
some of these results to a marketing agency. As these
datasets are produced from potentially sensitive customer
individual orders, Walmart is concerned whether this ac-
tion might breach data sharing policies. Some of Wal-
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mart’s customers have specifically requested that their data
is not exposed to third parties. Additionally, Walmart
wants to enforce some policies to protect their competitive
edge; for example, recent orders are not shared. Conse-
quently, Walmart has to sanitise results before they can be
transferred to the marketing agency.

Walmart might naively decide to filter out sensitive
records from the source dataset and rerun the needed com-
putations. However, we argue that this is not an efficient
solution. Walmart already has the results computed by its
data scientists. All it needs to do is to remove any output
records that are produced from sensitive input records.

2.1 Features
Based on the example above, we identify the following
properties in a practical IFC deployment: (i) The system
should incur acceptable runtime overhead because it has to
be always enabled. (ii) We can omit checking complex
policies within a trust domain. It is just enough to have a
mechanism to enforce these policies on data that is cross-
ing borders (e.g., publishing results). (iii) The framework
should be able to enforce complex policies without requir-
ing the data scientist to manually check rules and regula-
tions. (iv) Additionally, IFC should be enforcable at field-
level granularity because in a single record some fields are
sensitive but others are not.

The system should also support multiple labels for the
same record (e.g., metadata representing terms for differ-
ent output views). Hence, it would be more practical if the
system deals seamlessly with these labels without the need
to change the underlying structure or data model. More-
over, labels can be missing (or even wrong) when the com-
putation is executed. The system should be able to retro-
spectively deal with these situations efficiently.

3 MrLazy System
MapReduce is a paradigm [7] for large-scale data process-
ing and analysis. This simple but effective model consists
of two higher-order functions: map and reduce. The
user-provided Map function reads, filters and transforms
data from an input file, outputting a set of intermediate
records. These intermediate records are typically split ac-
cording to their key into disjoint buckets. Further on, the
user-provided Reduce function processes and combines all
intermediate records associated with the same key into new
records which are written to an output file. Programs de-
veloped according to this model are considered “embar-
rassingly parallel” as there are no inter-key data dependen-
cies. Moreover MapReduce is tolerant to failures as erro-
neous and incomplete tasks can be restarted independently
of each others. Usually computations are expressed as a
series of MapReduce jobs constituting a workflow.

MrLazy enables lazy label propagation in Hadoop
MapReduce by maintaining lineage that is captured dur-
ing job execution. In other words, labels are not prop-

Figure 1: Lazy Output Label Generation in MrLazy:
MrLazy uses lineage (dashed-lines) to link output values
to relevant input records and their labels (metadata). Out-
put labels are defined as a function of the corresponding
input labels. Input labels are not propagated through the
MapReduce job.

agated while the job is running; hence, we do not incur
any overheads associated with processing and shuffling
this additional data. As MrLazy knows the origin of any
piece of data, it can effectively generate output labels post-
processing (Figure 1).

MrLazy design is composed of four subsystems: Lin-
eage Tracking, Garbage Collection (Lineage Reconstruc-
tion), Static IFC, and Label Generation and Policy En-
forcement.

3.1 Lineage Tracking
MrLazy tracks lineage of records as they are being pro-
cessed in MapReduce. Lineage is defined as the causal
relationship between input and output records [6]. In
MapReduce terms, MrLazy links an output key/value
record back to the input key/value record(s) affecting its
creation [8, 9].

As a MapReduce job has a Map phase emitting interme-
diate records that are then shuffled to a Reduce phase, we
can leverage this behavior to treat Map and Reduce tasks
independently. For example, at the end of a Map task, we
materialise links between intermediate (hash) keys and in-
put positions. Likewise at the end of a Reduce task, we
record links between intermediate (hash) keys and output
positions.

A major design decision is not to augment key/value
records with lineage as this mechanism will add temporal
and spatial overheads to the MapReduce framework (es-
pecially during the Shuffle phase). Propagating the full
lineage during the actual MapReduce job has previously
been shown to incur prohibitive overheads up to 75% on
job runtime [10].

3.2 Garbage Collection (Lineage Recon-
struction)

As we discussed previously, MrLazy captures lineage for
Map and Reduce tasks independently to lower the over-
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head on the actual job. Although the resulting raw lineage
files can be used to answer any query, a job is required to
(i) construct direct links between input and output records
and (ii) discard intermediate keys.

This Garbage Collection (Lineage Reconstruction) job
takes raw lineage files as inputs, joins them by intermediate
keys, and then outputs the final lineage graph. It also car-
ries out optimisations necessary to speed up typical queries
in MrLazy. The final lineage file has a much smaller size
compared to the raw input lineage files as we discard in-
termediate keys and remove any redundancies in the data.
This process works iteratively for multi-stage jobs.

To optimise the join procedure of these two sets it is im-
portant to record, at the Reduce stage, from which Map
tasks a given record has been emitted. This limits the
search to only relevant Map side lineage files. Moreover,
we leverage the fact that MapReduce already sorts inter-
mediate keys, which further optimises the join procedure.

Garbage Collection (Lineage Reconstruction) is not
strictly required in the design but we highlight it is a one-
time cost that provides a good optimisation for reducing
storage overhead and query time. Moreover it can be
scheduled when there is slack in the cluster and not nec-
essarily upon main job completion.

3.3 Static IFC
Lineage Tracking as described in the previous section will
only provide record-level causality. However, in many
cases we require field-level visibility.

MrLazy design has, therefore, a Static IFC (Taint Analy-
sis) [4] component to address this requirement. It works by
analysing the job binaries (jar files). As Hadoop MapRe-
duce is Java-based, analysis at the byte code is practi-
cal [11].

The output of Static IFC is a conservative list of each
input field (to the Map and Reduce tasks) that might result
in an output field being emitted. Having this information
will enable MrLazy to verify whether a given job has used
a sensitive field to produce an output.

We note here a subtle behavior that we can model cor-
rectly with Static IFC. A sensitive field might be used as
the intermediate key in the MapReduce job; but if its value
is not ultimately emitted in the final output, no sensitive
data has been inadvertently leaked.

3.4 Label Generation and Policy Enforce-
ment

Queries in MrLazy involve generating labels for outputs
records based on labels associated with corresponding in-
put records (Figure 1). The generated labels can then be
used to retrospectively control what the system should do
with a specific output according to policies. For example
if the label of an input record is evaluated as sensitive, the
output record can also be labeled as sensitive.

Once an output record is deemed sensitive we can eas-
ily omit it from the output dataset. This process is cheap
compared to the naive approach of rerunning the computa-
tion with sensitive data filtering out from the input dataset.
Intuitively MrLazy can deal with arbitrary labels and poli-
cies.

Output label generation is efficient using lineage. We
just need to read labels of input records that contributed to
the creation of a specific output record and apply a func-
tion. For multi-stage jobs, once we build lineage (iter-
atively) to the source input we can effectively apply the
same process to produce output labels.

By combining static IFC with lazy runtime label propa-
gation we can have a system that enforces dynamic com-
plex policies. For example if “only recent dates (during the
past week) are sensitive”, MrLazy can practically filter out
records that are linked to these sensitive dates.

3.5 Other Technical Challenges
To design an end-to-end IFC system, there are some addi-
tional challenges that we need to address. So far we as-
sumed that there are labels associated with the input data.
However, translating high-level rules and policies to fine-
grained labels is not simple. Practically, the process of la-
beling should be applied automatically; for example, a tool
that scans files and tags labels on matched patterns. Labels
in the general form can be defined as a tuple (filename,
offset, length, metadata) [12]. We can also have labels that
are formulated as a function of the input data (e.g., dates
before 2010 are sensitive) marked per file.

MrLazy tracks lineage for pure Map and Reduce tasks.
This is not always the case; for example, a Map task can
save some state during different map invocations and then
emits records during task cleanup. We are exploring the
possibility of intercepting these side-effects and augment-
ing the job binary to disclose hints to the framework so that
lineage is precise.

We assume that the framework is trusted. However, a
malicious developer might leak data in the output. Al-
though MrLazy knows which individual input values have
been used to compute a specific output value, it is not al-
ways straight forward to generate the output label when
part of the input is sensitive (e.g., computing averages or
emitting a special value for a specific input). In these cases,
MrLazy will conservatively mark the resulting output as
sensitive. Alternatively, we can employ differential pri-
vacy techniques to prevent against any indirect data leak-
age [13].

3.6 Implementation
In our prototype implementation of MrLazy we focus on
evaluating Lineage Tracking, Garbage Collection (Lineage
Reconstruction), and Label Generation as these are the dis-
tinguishing factors in the design. We have augmented the
core of Hadoop MapReduce v2 to record lineage with low
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overheads. As MrLazy required changes to the framework,
jobs run seamlessly without modifications. For Garbage
Collection (Lineage Reconstruction), we developed a sep-
arate MapReduce job that runs on the cluster to construct
the final lineage from task-level lineage files. We imple-
mented Label Generation as a set of jobs that read the
lineage output and evaluate simple labels based on input
records.

4 Evaluation
4.1 Workload
In this section we discuss preliminary results from
MrLazy. We choose a join workload from the Big-
DataBench benchmark suite [14], which comes with a data
generation tool that we used to produce two synthetic ta-
bles ORDER and ORDER ITEM (Figure 2) for our experi-
ments. The total size of these two tables is 120 GB (3 bil-
lions records) and they are stored in text format on HDFS.

The cluster that we use for our evaluation consists of
7 machines having each 8x2.2 GHz CPUs, 24 GB RAM
and a 4 TB local disk. The cluster is virtualised using
XenServer 6.3 and connected with a 1 Gbps ToR switch.

ORDER: ORDER ID int, BUYER ID int, CREATE DT string
ORDER ITEM: ITEM ID int, ORDER ID int, GOODS ID int,
GOODS NUMBER int, GOODS PRICE double, GOODS AMOUNT
double

Figure 2: ORDER and ORDER ITEM Tables.

SELECT BUYER ID, GOODS PRICE, GOODS AMOUNT
FROM ORDER, ORDER ITEM
JOIN ORDER.ORDER ID = ORDER ITEM.ORDER ID
WHERE GOODS PRICE > 800

Figure 3: Evaluation Workload.

We run a single MapReduce job that joins the two tables
on ORDER ID while selecting only orders more than 800
price units (Figure 3). The output of this query is approx-
imately 10 GB and 300 millions records. The job takes
on average 27 minutes running on unmodified Hadoop
MapReduce.

4.2 Overheads
Runtime Overhead In this section, we discuss the over-
heads of MrLazy. Numbers present averages of 5 runs. We
first measure the overhead of tracking lineage in MrLazy.
By running the same job on our modified version of
Hadoop, the job takes on average 32 minutes which con-
stitutes approximately 19% increase in runtime.

Garbage Collection (Lineage Reconstruction) Over-
head As we described before, MrLazy has a Garbage
Collection (Lineage Reconstruction) job that joins Map
and Reduce side raw lineage files on the intermediate keys
to produce the final input to output lineage. This jobs takes
on average 5 minutes (18% of the actual job runtime). We

highlight that this job can be scheduled asynchronously
and is not required right after the main job.

Space Overhead While tasks are running MrLazy cap-
tures their lineage files. These files are saved on HDFS.
For our example job these raw lineage files have a com-
bined size of 25 GB.

After Garbage Collection (Lineage Reconstruction),
size is significantly reduced to 5 GB as we discard interme-
diate keys after the join procedure. This overhead is 50%
of the job output size (10 GB) and 5% of the job input size
(120 GB).

Label Generation and Policy Enforcement (Query)
Overhead We now present two example queries that
might be asked by MrLazy users. The first query (Query
1) illustrates how the system deals with users that decide
to opt-out of data sharing. It is still legal to process their
information privately. We only need to exclude records of
users that opted-out when sharing data with third parties.

We assume that 5% of users decided not to share their
data. We then run Query 1 to identify output records
linked to input records belonging to these users. Answer-
ing Query 1 takes on average 4.5 minutes which is 16% of
the main job runtime.

The alternative solution to answer this query is to rerun
the computation but filtering out sensitive users from the
input. To rerun the job with this extra filter, the recompu-
tation job takes approximately 26 minutes, almost equal
to the actual job runtime. Clearly answering queries in
MrLazy is considerably faster compared to the naive case.

The second query (Query 2) that we test is: transactions
made in the last two years are considered sensitive. No-
tice that results of Query 2 depend on when it is executed,
which means that even if we propagate labels during the
actual job results will be outdated. Unless we use MrLazy,
the only other option is to recompute the job on-query.

In MrLazy Query 2 incurs on average 5 minutes or
18.5% of the time required to run the actual job. This is still
reasonable considering that the alternative (recomputation-
based) approach is expensive.

4.3 Discussion
Our preliminary results (summarised in Figure 4) show
that overheads are non-prohibitive considering that we
maintain record-level lineage at runtime. MrLazy is de-
signed as a general tool that can scale with the number of
labels. It assumes that we have field-level labels for all
input records. We might even have multiple labels for the
same records (e.g., different country regulations and multi-
ple output formats). Labels can also provide an indication
of data quality. Moreover, labels can change dynamically
or might actually be missing at computation time. MrLazy
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Figure 4: Runtime and Policy Enforcement Overheads in
MrLazy Compared With Recomputation-Based Approach
(Average and Standard Deviation of 5 Runs).

provides a mechanism to retrospectively deal with these
situations.

However, we acknowledge the fact that these overheads
are not negligible and there is still room for improvement.
There is a direct correlation between runtime overhead and
the size of data stored. We are investigating techniques to
capture less data for lineage without loosing granularity.

We also note that MrLazy might not work out of the
box for special types of jobs that depend on the number of
records emitted. For example, top-k queries might produce
less than k items when sensitive records are later omitted
from the output. MrLazy can at least inform the user on
how many records were removed. Alternatively, we can
detect these jobs and revert back to standard IFC.

On the other hand, lineage as an end product is very use-
ful. Fine-grained lineage can be used in audit systems to
provide a detailed log of data usage and transformation.
Moreover, lineage can enable interesting system optimisa-
tion (e.g., recovery from failures [15]).

The total size of lineage might be a concern for some
providers. MrLazy allows users to delete lineage for files
that are not expected to be used (i.e., cold data). In doing
so they can bound the storage requirement of the system.

5 Related Work
There is no system, to our knowledge, that performs
record-level audit and flow control specifically for MapRe-
duce. The closest work is RAMP [10] which augments val-
ues with lineage. Alternatively, Newt records fine-grained
lineage in data intensive workflows by instrumenting the
framework [9]. Both approaches can be extended for au-
dit using captured lineage but they report larger overheads.
Precisely, RAMP and Newt incur up to 75% and 36% run-
time overhead respectively while the prototype implemen-
tation of MrLazy achieves less than 19%.

Airavat [13] focuses more on security and privacy for
MapReduce. It employs differential privacy to circumvent

against indirect leakage of data in the output. Differential
privacy complements IFC; However, it compromises the
output quality.

On the other hand Sedic [12] takes a different approach
to privacy. It automatically partitions data based on sen-
sitivity and arranges the computation on hybrid clouds in
such a way that sensitive data is only processed on private
clouds. We argue that it is not always feasible to restruc-
ture data accordingly.

SilverLine enforces IFC by augmenting untrusted
MapReduce job binaries with information flow tracking
code [16] as they arrive at the Cloud. However, this system
focuses on file-level policy enforcements for workflows.

6 Conclusion and Future Work
In this paper we presented MrLazy; a system that tracks
information flow using record-level lineage in Hadoop
MapReduce. Lineage provides an audit mechanism that
is used to control data sharing with third parties. Enforce-
ment of policies is not expected to be frequent; we delay
this process until an output is about to be exposed.

In MrLazy labels are not propagated. Output labels are
generated from the relevant input labels and enforcements
can be applied retrospectively.

In our prototype implementation we showed that
MrLazy has non-prohibitive runtime overhead in the gen-
eral case. We are actively working on bringing this over-
head to less than 10%. We are also testing with other work-
loads to obtain bounds on overheads.

We are planning for large scale experiments—including
extensive comparisons with different IFC mechanisms—
to confirm these preliminary results. We are developing
an end-to-end system that includes multi-stage jobs, static
IFC, labeling, and policy enforcements.

For the longer term, we will explore lazy IFC in other
cloud computing frameworks. Specifically, we will be
looking at in-memory processing and key/value stores.
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