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ABSTRACT
In this paper, we propose a trained perceptually transform for
quality assessment of high dynamic range (HDR) images and
video. The transform is used to convert absolute luminance
values found in HDR images into perceptually uniform units,
which can be used with any standard-dynamic-range met-
ric. The new transform is derived by fitting the parameters
of a previously proposed perceptual encoding function to 4
different HDR subjective quality assessment datasets using
Bayesian optimization. The new transform combined with a
simple peak signal-to-noise ratio measure achieves better pre-
diction performance in cross-dataset validation than existing
transforms. We provide Matlab code for our metric 1.

Index Terms— Image quality assessment, high dynamic
range, perceptually uniform encoding

1. INTRODUCTION

Quality metrics are necessary to develop robust compression
and processing algorithms for high dynamic range (HDR)
imaging. However, given that the perception of linear red,
green, blue or luminance values, found in HDR content,
is strongly non-linear, standard low-dynamic-range quality
metrics, such as Peak Signal-to-Noise Ratio (PSNR) or Struc-
tural Similarity Index (SSIM), cannot be directly used with
HDR images and video. Linear HDR pixel values can be
made more perceptually uniform by transforming them into
the logarithmic domain [1, 2]. However, such a logarithmic
transform does not account for the absolute brightness of an
HDR display. A content shown on a brighter display will
reveal more distortions than the same content shown on a
darker display. Therefore, most widely used HDR metrics
are display-referred and require HDR values to be adjusted
by a display model so that they represent absolute luminance
values (in cd/m2) emitted from an HDR display. Such adjust-
ment usually involves multiplying pixel values by a constant
and clipping the values above or below the dynamic range of
a particular display.

The display-referred HDR quality metrics include those
that were specifically designed to handle HDR content, such
as HDR-VDP [3, 4], HDR-VQM [5], or DRIQM [6], and

1https://github.com/ynyCL/T-PT-metric

those that were adapted from standard-dynamic-range (SDR)
metrics to process HDR content. The adaptation involves
a perceptual transform (PT) that converts linear HDR pixel
values into perceptually uniform units, which can be directly
used with SDR metrics [7], such as PSNR or SSIM. Figure 1
illustrates the typical processing blocks of PT-based metrics.
The original HDR images are first transformed by a display
model to simulate an HDR display and to obtain absolute
display-referred color values. Then, a perceptual transform
converts both distorted and reference images into perceptually
uniform units, which could be input directly into an SDR
quality metrics. Such an approach may not provide the best
predictive performance but it leads to a simple, fast and differ-
entiable quality metric, which could be easily used as a cost
function in image processing algorithms. The property of be-
ing differentiable is especially important when the metric is
used as a loss function in optimization-driven problems.

In this paper, we extend previous work on PT-based
metrics [7], proposing a new version that improves the predic-
tive performance of the PU-PSNR metric. Instead of deriving
PT from contrast detection models (contrast sensitivity func-
tion), we use existing HDR subjective image quality datasets
[8, 9, 10, 11] to fit the parameters of a new PT function. We
provide Matlab code for our metric.

2. PREVIOUS WORK

Quality metrics for HDR images are traditionally based on
the models of low-level vision, accounting for the limitations
of the visual system. The very first metric, HDR-VDP [12]
was designed to predict a map representing visibility of differ-
ences between a pair of images, rather than a quality score that
would be correlated with mean opinion scores (MOS). The
prediction of quality was added in HDR-VDP-2 [3] and then
improved in HDR-VDP-2.2 [5] by calibrating metric param-
eters on HDR quality datasets. The Dynamic Range Indepen-
dent Quality Metric (DRIQM) [6] extended HDR-VDP with
a set of rules for predicting loss, amplification and reversal of
visible contrast to predict objectionable changes between im-
ages of different dynamic range, for example a tone-mapped
image and its HDR counterpart. The metric for high dynamic
range video, HDR-VQM [5], simplified spatial processing but
added temporal pooling to offer quality predictions for video.
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Fig. 1. The existing SDR quality metrics, such as PSNR, can be adapted to handle HDR content by transforming display-
referred color values into perceptually uniform values.

Aydin et al. [7] proposed a perceptually uniform (PU)
transform to convert absolute display-referred HDR color val-
ues into perceptually uniform units2, which could be used
with existing SDR metrics, such as PSNR or SSIM. The trans-
form is derived to ensure that the change in PU units is relative
to just-noticeable-differences in luminance, as predicted by
the contrast sensitivity function. The transformation is further
constrained so that the range of luminance values typically
reproduced on SDR monitors (0.8-80 cd/m2) is mapped to a
range 0-255, so that the resulting quality values for SDR im-
ages corresponded to those produced by SDR quality metrics.
Some authors started to apply PQ EOTF [13] to achieve a
similar goals as the PU transform. The main difference be-
tween PU and PQ transforms is that the former was derived
from the HDR-VDP-2 CSF function while the latter from
Barten’s CSF [14]. It should be noted that a perceptual trans-
form is one of the first processing steps of all advanced HDR
quality metrics, including HDR-VDP, HDR-VDP-2, DRIQM
and HDR-VQM.

While simple quality metrics based on a perceptual
uniform transform do not achieve as high predictive per-
formance as more advanced HDR quality metrics, they offer
many benefits. They are much less complex, fast to compute
and differentiable, making them a suitable candidate for a per-
ceptual loss function in optimization problems. The obvious
limitation of the PU transform is that it does not account for
more complex visual phenomena, such as contrast masking.
In this paper we explore whether such more complex effects
can be partially accounted for by training the PU transform
on HDR quality datasets.

3. TRAINED PERCEPTUAL UNIFORM ENCODING

Perceptual transform functions (PT), such as PU and PQ,
were derived and optimized from contrast detection models
intended for simple patterns, such as sinusoidal gratings and
Gabor patches. This results in some of the drawbacks found

2The code for the PU transform can be found at https:
//sourceforge.net/projects/hdrvdp/files/simple_
metrics/

with the existing PT encodings: i) the used models predict
visibility but visibility may not be directly related to quality
and ii) those models do not take complex semantic informa-
tion in images into account, thus, their may not perform well
on complex scenes. These two reasons motivate us to con-
sider fitting the PT using HDR image quality datasets with
real-world complex images.

To train such a PT, we first need to determine which trans-
form to use. In practice, both PU [7] and PQ [13] PT en-
codings have very similar function shapes. However, after
analyzing their results we can see that the PU function’s per-
formance is better than the PQ function. This is shown in
Table 2, where it can be seen that the Spearman Rank Corre-
lation Coefficient (SROCC) of PU-PSNR is higher than that
of PQ-PSNR. Because of this, we use the function used for
the PU encoding. The PU transform is defined as an integral
of inverse of detection thresholds:

P (L) =

∫ L

Lmin

1

T (l)
dl (1)

where Lmin is the minimum luminance to be encoded. The
detection thresholds T (L) are modeled as a function of abso-
lute luminance L:

T (L) = S·

((
C1

L

)C2

+ 1

)C3

(2)

Where S is the absolute sensitivity constant, L is the luminance,
C1, C2, C3 are scaling parameters. We further linearly rescale
the P (L) values so that P (0.8) = 0 and P (80) = 255.
Because of the rescaling, the parameter S does not influ-
ence the shape of the function and the only three adjustable
parameters are C1, C2 and C3. To illustrate how the curve
changes with regard to C1, C2 and C3, in Figure 2 we plot
the PU curves when each parameter is varied individually in
the range of [0.1-10].

A major challenge when using multiple image quality
datasets is that each dataset represents quality scores using
a different scale. For example, the quality score for two im-
ages in two different datasets could be very similar, but the
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Fig. 2. Plausible PT encoding functions, where C1, C2 and
C3 follow uniform distributions in [0.1-10] with 100 samples.

actual quality of both images could be very different. To
use all datasets together, those datasets have to be realigned
and put into a common quality scale. Zerman at el. [15]
realigned four HDR image quality datasets by using multiple
well-known quality metrics. We argue, however, that this
may not be an appropriate approach when trying to test the
performance of quality metrics as the realignment may bias
the quality scores to offer better prediction for the metrics
used in the alignment.

To address the alignment problem we optimize the PT by
maximizing Spearman Rank Correlation Coefficient (SROCC)
between the predicted quality and dataset’s MOS scores.
SROCC is computed individually for each dataset and the
values are averaged. SROCC is invariant to any monotonic
scaling function and thus avoids the need for quality realign-
ment. We use a Bayesian optimization method to optimize the
parameters that was proven effective in hyper-parameter fine-
tuning in many applications [16]. The Bayesian optimization
method uses Gaussian process regression to estimate the land-
scape of the loss function and determine the next parameter
set for evaluation.

4. RESULTS

This section presents the experiments performed to test the
behavior of the new trained PU encoding function.

4.1. HDR image quality datasets

For our experiments, we selected Narwaria’s 2013 dataset3 [8]
and 2014 dataset [9], the dataset by Korshunov4 [11] and the
latest HDR image quality assessment dataset [15] by Zerman
et al.5. These are, to the best of our knowledge, all the datasets
that can be found for HDR image quality assessment. A sum-
mary of the main characteristics of these datasets can be found
in Table 1, including the number of observers, the subjec-
tive quality measurement method, the number of conditions
and scenes, the distortion type and display type. All datasets

3http://ivc.univ-nantes.fr/en/databases/JPEG_
HDR_Images/

4http://mmspg.epfl.ch/jpegxt-hdr
5http://webpages.l2s.centralesupelec.fr/perso/

giuseppe.valenzise/download.htm

contain images in absolute display-referred units, which cor-
responds to physical luminance and color emitted from the
display used in the original experiments. However, due to the
differences in implementation of Radiance HDR format, the
values from Narwaria2013 and Narwaria2014 datasets need
to be multiplied 179 when reading images with pfstools soft-
ware 6.

4.2. Trained perceptually uniform encoding

In order to derive the trained PT encoding function and vali-
date the consistency of the results on different datasets, we
train our metric using three datasets and test it on the remain-
ing dataset, repeating the procedure four times. Parameters
are initialized in our optimization procedure to the original
parameters for the PU function. The results are shown in Ta-
ble 2, which includes the final trained parameter C1, C2 and
C3 (T-C1, T-C2 and T-C3) and our optimized result (T-PT-
PSNR), the original PQ encoding’s result (PQ-PSNR) and the
original PU encoding’s result (PU-PSNR).

Resulting T-PT encoding functions are shown in Fig-
ure 3. The name of the dataset in the legend indicates the test
dataset. From this figure we can observe that despite training
on different datasets, the curves show a similar trend. The
biggest difference in the shape of curves can be observed for
low luminance, where the T-PT curves have steeper slope.
This suggests that the visibility of distortions is higher than
predicted by the simple detection models (CSFs) used to de-
rive PU and PQ. From Table 2, we can also conclude that
T-PT functions achieved better results than PU and PQ func-
tions on all datasets. Note that despite improved performance,
the new T-PT-PSNR metric is still worse than HDR-VDP2.2
and VQM metrics. However, the new T-PT-PSNR can com-
pute quality in a fraction of the time required by these two
complex metrics.

Test Dataset T-PT-PSNR
#1 Narwaria2013[8] 0.6186
#2 Narwaria2014[9] 0.5230
#3 Korsunov2015[11] 0.8906
#4 Emin2017 [15] 0.8669

Table 3. T-PT-PSNR SROCC results when training on all
datasets.

To derive our final proposed PT encoding function, we use
all the datasets for training. In the training, we optimize the
mean of the SROCC values for each dataset to achieve bet-
ter performance on all datasets. The proposed function curve
is shown in Figure 4. The final T-C1, T-C2 and T-C3 on all
datasets are 0.14249, 2.192 and 0.30499. The SROCC results
for this final PT encoding, shown in Table 3, indicate further
improvement in prediction performance. To further evaluate
the results, we take the final PT encoding function and use it
as a transfer function for SSIM. The results in Table 4, indi-

6http://pfstools.sourceforge.net/



Dataset Observers Method Conditions Scenes Distortion type Display type
#1 Narwaria2013[8] 27 ACR-HR 140 10 JPEG SIM2 HDR47E S 4K
#2 Narwaria2014[9] 29 ACR-HR 210 6 JPEG 2000 SIM2 HDR47E S 4K

#3 Korsunov2015[11] 24 DSIS 240 21 JPEG-XT SIM2 HDR
#4 Emin2017 [15] 15 DSIS 100 11 JPEG, JPEG2000, JPEG-XT SIM2 HDR47E S 4 K

Table 1. Summary of the characteristics of the datasets used in the experiments.
Test dataset T-C1 T-C2 T-C3 T-PT-PSNR PQ-PSNR PU-PSNR HDR-VDP2.2 HDR-VQM

#1 Narwaria2013[8] 0.10568 4.7378 0.10824 0.6024 0.58478 0.5898 0.8911 0.8874
#2 Narwaria2014[9] 0.10078 8.8794 4.405 0.4887 0.38043 0.3605 0.5727 0.8126

#3 Korsunov2015[11] 0.1135 3.3663 0.22871 0.8908 0.8751 0.8833 0.9503 0.9572
#4 Emin2017 [15] 0.10054 9.794 2.2137 0.8673 0.81347 0.8249 0.9298 0.9193

Table 2. The trained T-C1 – T-C3 parameters and SROCC results for cross-dataset validation. Each row corresponds to different
test dataset. Bold font indicates the best result excluding complex metrics (HDR-VDP2.2 and HDR-VQM).
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Fig. 3. T-PT encoding function results from the cross-dataset
validation experiment, where the dataset name indicates the
one missing in training. The PQ curve is rescaled to have the
same maximum value as PU encoding curve.

cate that T-PT-SSIM offers better performance than PU and
PQ alternatives for datasets # 3 and # 4, but not for datasets
# 1 and # 2, for which PQ-SSIM provides better predictions.
We are not sure what could be causing this difference, but
we also observe that PQ-SSIM outperforms PU-SSIM for this
pair of datasets. Since T-PT is based on the PU function, it
is also likely to share worse performance for that particular
combination of metric and datasets. It must be noted that T-
PT-SSIM was not trained using SSIM metric and it is likely
that a transfer function needs to be trained separately for each
metric.

5. CONCLUSION

In this paper, we have proposed a trained perceptually
uniform transform for fast quality assessment for HDR im-
ages and videos by fitting a perceptual encoding function
to a set of subjective quality assessment datasets. We have
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Fig. 4. T-PT encoding function trained on all datasets. The
PQ curve is rescaled to have the same maximum value as PU
encoding

Test Dataset T-PT-SSIM PU-SSIM PQ-SSIM
#1 Narwaria2013[8] 0.6838 0.6969 0.7348
#2 Narwaria2014[9] 0.6145 0.5149 0.8292
#3 Korsunov2015[11] 0.9268 0.9239 0.8728
#4 Emin2017 [15] 0.8864 0.8430 0.8022

Table 4. T-PT-SSIM, PU-SSIM and PQ-SSIM results.

shown that when combined with SDR metrics, such as PSNR
and SSIM, better performance can be achieved compared to
original perceptually uniform transforms. The new transfer
function offers a better alternative for low-complexity HDR
quality metrics, which are used in the applications for which
computational cost is a significant factor.
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