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Acetylcholine-modulated plasticity 
in reward-driven navigation: a 
computational study
Sara Zannone   1, Zuzanna Brzosko2, Ole Paulsen2 & Claudia Clopath   1

Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous 
experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards 
depression, and the subsequent application of dopamine can retroactively convert depression into 
potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-
Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning 
of changing reward locations. Here, we employ computational modelling to further characterize the 
effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from 
negative outcomes, enhances exploration over the action space. We show that this results in a variety 
of effects, depending on the structure of the model, the environment and the task. Interestingly, 
sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other 
reward-modulated plasticity rules.

In order to survive, animals have to learn to interact with their environment in an effective way. They need to 
acquire new information, integrate feedback and modify their behaviour accordingly. Neuromodulation is 
thought to play an essential role in this process: it correlates with behavioural changes and can provide feedback 
and information about the environment. Dopamine, for example, acts as a reward signal and a positive reinforce-
ment of behaviour1–3. Acetylcholine, on the other hand, correlates with attention4,5, exploration6–9 and spatial 
learning in general6,10–14.

While the role of neuromodulation has been widely studied in the context of decision making15, it is still 
unclear exactly what neural mechanisms mediate these changes in behaviour. Research is increasingly focusing 
on elucidating the effects of neuromodulation on Spike-Timing-Dependent Plasticity (STDP), a form of plasticity 
that depends on exact spike timings. In its classic form, STDP dictates that, when a presynaptic spike precedes 
a postsynaptic spike, the synapse is potentiated; it is depressed if the spike order is reversed16,17. Classic STDP 
acts on a millisecond scale, a timescale much too fast to explain behavioural effects. However, experimentally, 
dopamine has been found to increase the window for potentiation in STDP18–20. In particular, we found that 
dopamine can potentiate hippocampal synapses that were previously active, even when applied after a delay21,22, 
bridging the gap between synaptic and behavioural timescales. This supports the concept of an eligibility trace, 
which has been theorized and employed in computational modelling. An eligibility trace associates actions, and 
the underlying patterns of neural activity, to distal rewards23–27. This also offers a solution to the credit assignment 
problem: the problem of identifying actions that lead to rewards. Although acetylcholine has been shown to 
modulate synaptic plasticity in both directions28, we found that acetylcholine biased hippocampal STDP towards 
depression. Interestingly, this effect could be retroactively converted into potentation by consequent application 
of dopamine22.

Building on this experimental evidence21,22, we have previously investigated the possible functional effects of 
sequentially neuromodulated plasticity (sn-Plast)22. Using a bottom-up approach, we incorporated this novel rule 
into a spiking neural network model of reward-driven navigation29–32. We found that sequential cholinergic and 
dopaminergic modulation of plasticity allows flexible learning, particularly useful in dynamic environments with 
changing reward locations22.
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Here, we set out to further investigate the functional roles of sn-Plast. Inspired by experimental observations 
of cholinergic effects on behaviour, we examine exploration and flexibile learning in particular. In order to con-
firm and expand on our previous findings, we compare our rule to other types of plasticity. We show how the 
effects of neuromodulated STDP on behaviour depend on various model features, including state and action 
spaces, maze geometry and task details. This allows us to deepen our mechanistic understanding of the model, 
and gain some insight into the complex relationship between synaptic and behavioural learning.

Results
We base this work on recent experimental results that shine light on how hippocampal plasticity is affected by 
neuromodulation. In particular, dopamine was shown to retroactively potentiate previously active synapses, even 
when applied after a delay21. This provides evidence for the existence of an eligibility trace, a mechanism formerly 
proposed in the reinforcement learning literature as a solution to the credit assignment problem. Acetylcholine, 
on the other end, was found to induce depression in active synapses, regardless of the precise spike order22.

Based on these experimental findings, we propose a spike-timing dependent plasticity rule (Fig. 1A.i). We 
then explore the functional roles of our neuromodulated learning rule in a neural network (Fig. 1A.ii). Given 
the established role of dopamine as a reward signal and the increased release of acetylcholine during exploratory 
behaviours, we model navigation, specifically a task where the agent has to learn the path to the reward32.

Cholinergic depression yields systematic exploration.  Radial arm maze - discrete model.  We start 
our investigation with a simplified network model of a radial arm maze test (Fig. 1B.i–ii). At the beginning of each 
trial, the agent is positioned at the centre of the maze. From there, it has to decide to which of the eight arms to 
move. One of the arms contains a reward (e.g. upper-central arm in Fig. 1B.i–ii), which the agent has to find and 
learn to reach. The network model (Fig. 1A.ii) of this task is composed by: i) a single presynaptic neuron, which 
can be thought of as a place cell coding for the position of the agent in the maze; and ii) a post-synaptic layer of 
eight neurons, each representing a different arm. For clarity, we call these action neurons, since they represent 
the action to take from the current position. When the trial starts and the agent is positioned in the centre of the 
maze, the place cell starts spiking (an inhomogeneous Poisson process, where the rate depends on the position 
of the agent). This, in turn, excites the action neurons (SRM0

33). Due to a winner take-all connectivity in the 
post-synaptic layer, one of the neurons is always substantially more active by the end of the trial. The winner 
determines the arm that will be chosen (see Methods).

We implement our plasticity rule on the feed-forward connections between the place cell and the action neu-
rons. Synapses follow a spike-timing dependent plasticity rule modulated by dopamine and acetylcholine. We 
assume that dopamine is delivered at synaptic sites whenever the agent finds the reward, and acetylcholine is pres-
ent during exploration6,10–14 but not consummatory behaviour4,34. The STDP learning window is symmetric and 
negative under cholinergic influence (Fig. 1A.i) so, when the agent explores the environment, the active synapse 
gets depressed22. An eligibility trace (modelled as an exponential decay, see Methods) keeps track of the synaptic 
activity during the trial. When dopamine is delivered, synapses become potentiated retroactively by an amount 
proportional to the value of the eligibility trace (positive and symmetric STDP window, Fig. 1A.i). Thanks to the 
eligibility trace, only the most active synapse gets potentiated, and the agent can successfully learn which action 
leads to the reward (Fig. 1B.v)23,24,27. In the present task, once an arm has been chosen, there are two possible 
outcomes: i) the arm is rewarded, dopamine is delivered and synaptic depression is converted to potentiation, ii) 
the arm is not rewarded and the synapse remains depressed.

Whereas dopamine is essential to learn from a reward, acetylcholine allows learning from negative out-
comes22. The agent is able to exclude the unrewarding arms it has already tried from future options, thereby 
achieving what we call systematic exploration (Table 1). If the effect of acetylcholine is not included in the model 
(−ACh), the initial exploration of the maze is entirely random. The first successful trial is thus a random variable 
that follows a geometric distribution with p 1

8
=  (Fig. 1B.iii) and mean 8. If, on the other hand, we assume perfect 
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 in the third trial and so forth. The first rewarded trial is distributed as a discrete uniform random 
variable over the interval [1, 8] (Fig. 1B.iv, filled circles). Numerical simulations of agents with cholinergic depres-
sion (+ACh) appear to closely match the theoretical distribution (Fig. 1B.iv, histogram) which means that the 
agent never takes more than 8 trials to find the reward. Systematic exploration leads to the reward faster, thus 
enhancing the overall performance (Fig. 1B.v). Systematic exploration is further shown in a different test experi-
ment, where we use an identical but completely unrewarded task. In this case, all the +ACh agents simulated 
manage to fully explore the environment by trial 8, whereas approximately half of the −ACh agents need more 
than 20 trials to visit all arms (M = 10000 simulations, Fig. 1B.vi).

T-maze - continuous model.  The radial arm maze example is a very simple model of navigation that could be 
practically reduced to a single decision making problem. We therefore move to a more detailed, but similar model 
(Methods). The basic structure of the network was kept unchanged, but new features were introduced, in par-
ticular: i) infinite possible positions for the agents (inside of the maze), ii) infinite possible actions, and iii) online 
decision-making at each timestep.

In this task, the maze has the shape of a T (Fig. 1C.i–ii). There are N = 441 place cells distributed as a grid 
along the stem and the arms. The position of the agent is represented by a vector of its Cartesian coordinates and 
can be anywhere in the maze (a continuous state space). Action neurons represent each a different direction, and 
are arranged in a winner-take-all fashion, as before. Decisions are taken at every timestep. The direction and 
speed of each move is taken to be the average of the action neurons’ directions, weighted by their firing rate. This 
means that any arbitrary direction can be chosen (continuous action space). The recurrent connectivity ensures 
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Figure 1.  Cholinergic depression yields systematic exploration of a radial arm maze and a T-maze. (A.i) 
Sequentially neuromodulated spike-timing-dependent plasticity rule. When acetylcholine is present at the synapse, 
the plasticity window (black) is negative and symmetric (i.e. the weight changes proportionally to the lag between 
the spikes, irrespectively of the order). If dopamine is added, the plasticity window converts to positive (red). (ii) 
Schematic of a neural network model of a reward-driven navigation task. A place cell is connected to action 
neurons, which inhibit each other following a winner-take-all scheme. (B) Radial maze: (i-ii) Example trajectories. 
The maze consist of eight arms, the reward is located in the upper-central arm (with the star). (i) The agent without 
cholinergic depression (−ACh, green) visits the same unrewarded arm more than once. (ii) The agent with 
cholinergic depression (+ACh, brown) explores the maze in a systematic way: it excludes unrewarded arms and 
finds the rewarded arm sooner. (iii) Percent cumulative distribution of the first rewarded trial (histogram) and the 
corresponding theoretical distribution (geometric distribution with p 1

8
= ; filled circles) for simulations without 

cholinergic depression. (iv) Percent cumulative distribution of the first rewarded trial (histogram) and the 
corresponding theoretical distribution (discrete uniform distribution on [1, 8]; filled circles) for simulations with 
cholinergic depression. (v) Percentage of successful simulations over consecutive trials for −ACh and +ACh agents 
(solid lines). Theoretical learning curves, assuming one-shot learning (cumulative distribution of the first successful 
trial; dashed lines with dots). (vi) Agents navigating the environment without any reward. Percent cumulative 
distribution of the trial when the maze is fully explored (green: −ACh, brown: +ACh). (C) T-maze: (i–ii) Example 
trajectories. The maze has two arms, the reward is located in the right arm (with the star). (i) Without cholinergic 
interaction (−ACh), the agent consistently goes to the the same unrewarded arm. (ii) With cholinergic interaction 
(+ACh), the agent finds the rewarded arm sooner. (iii) Percent cumulative distribution of the first rewarded trial 
(histogram) and the corresponding theoretical distribution (geometric distribution with =p 1

2
; filled circles) for 

simulations without cholinergic depression. (iv) Percent cumulative distribution of the first rewarded trial 
(histogram) and the corresponding theoretical distribution (discrete uniform distribution on [1, 2]; filled circles) for 
agents with cholinergic depression. The empirical distribution approximates the theoretical one, but does not match 
it exactly. (v) Percentage of successful simulations over consecutive trials for −ACh and +ACh agents (solid lines). 
The theoretical learning curves (assuming one-shot learning) are the cumulative distribution of the first successful 
trial (dashed lines with dots). (vi) Agents navigating the environment without any reward. The graph shows the 
percent cumulative distribution of the trial when the maze is fully explored (green: −ACh, brown: +ACh).
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that only neurons with similar orientations are active at the same time. This coherent bump of activity creates 
smooth and consistent trajectories. The agent is limited inside the maze: if it tries to cross the boundaries, it 
instantly bounces back in the opposite direction (it turns by 180 degrees).

In order to test the effects of acetylcholine on systematic exploration in this model, we use a task similar to the 
radial maze. Each trial starts with the agent in the stem and ends when the agent enters one of the arms (or when 
a time limit has passed). A reward is placed in one of the arms (e.g. right arm in Fig. 1C.i–ii). The agent has to 
discover it and learn how to reach it.

While cholinergic depression still makes the discovery of the reward faster (Fig. 1C.i–iv) and achieves a better 
performance on average (Fig. 1C.v M = 1000 simulations), the empirical distribution does not match the theoretical 
distribution perfectly (~Uniform [1, 2]; Fig. 1C.iv, +ACh). When the reward is removed, full exploration of the envi-
ronment is still aided by cholinergic depression. The agent fully explores the maze in just two trials in about 85% of 
the simulations (Fig. 1C.vi). However, exploration of the environment is more systematic with acetylcholine, but not 
perfect. A clearcut exclusion of wrong choices was easier to obtain in the radial maze, where there was a one-to-one 
correspondence between the arm and the synapse. Here in the T-maze, which has more decision points and contin-
uous actions, more complex dynamics come into play. It is still possible to suppress wrong actions (mainly because 
the geometry of the maze translates into a sort of discretization of the action space), but it is difficult to achieve the 
same level of precision (Table 1). This concept will become clearer in the following sections, where we investigate this 
mechanism further by changing the maze to an open field. In an open field, no discretization is possible.

Cholinergic depression enhances exploration of the action space.  Learning in an open field.  The 
influence of cholinergic depression on systematic exploration seems to be more complex in the continuous model. 
In order to study this in more detail, we choose an environment where the agent can move more freely the open 
field. We model the field as a square, with place cells evenly distributed over the entire area. The task is analogous 
to the previous ones: the agent starts each trial in the centre of the square, and has to find and learn how to reach 
the reward location (circle in the top right corner of the field; Fig. 2A.i–ii).

Again, due to the retroactive effect of dopamine, the vast majority of the agents are able to learn the task and 
navigate to the reward (Fig. 2A.iv; M = 1000 simulations under each condition) increasingly faster (Fig. 2A.v). 
Since dopamine affects synapses through an eligibility trace that decays over time, actions that are closer in time 
to reward delivery are reinforced more. Even though agents do not always pick the optimal path (Fig. 2A.i–ii), 
they do develop a preference for shorter paths by an amount that depends on the time constant of the eligibility 
trace. Thanks to cholinergic depression, +ACh agents learn to avoid unrewarding paths; this leads to increased 
precision in navigation and a marginal improvement in performance (Fig. 2A.iv). Unlike previous tasks, cholin-
ergic depression does not provide any advantage in reward discovery (Fig. 2A.iii). Thus, in this particular envi-
ronment, cholinergic depression does not affect systematic exploration (Table 1).

Exploration in an open field.  We decide to further investigate the exploration patterns of our models. We remove 
the reward, and let the agent explore. As a proxy measure of the patterns of exploration over the open field, we 
take the place cells’ mean firing rates (average across time and simulations; Fig. 2B.i–iv). Once normalized to 
1, place cells’ activity can be thought of as a probability distribution over the open field. This provides us with a 
proxy for establishing where in the field the average −ACh and +ACh agents spend the longest time. The patterns 
of exploration are indeed altered by cholinergic interaction: whilst +ACh agents spend more time around the 
centre of the field (starting position; Fig. 2B.ii) on average, −ACh agents tend to stay closer to the boundaries 
(Fig. 2B.i). In order to quantify the amount of exploration, we want to calculate how closely the distribution under 
the two conditions (−ACh and +ACh) approximates a benchmark distribution for a uniformly random explora-
tion of the environment. The benchmark distribution was calculated by sampling (M = 1000) random locations 
inside the open field for the duration of a trial, and provides a benchmark measure for random exploration of 
the environment (Benchmark Exploration over the Environment, BEE; Fig. 2B.iii). We use the Kullback-Leibler 
divergence (KL) as a metric to quantify the difference between distributions (the more different, the higher the KL 
divergence). Then, we calculate the KL divergence between the distributions under either condition (−ACh and 
+ACh) and the benchmark (BEE). The average agent explores the environment more evenly without cholinergic 
interaction (KL(−ACh||BEE) = 0.03; KL(+ACh||BEE) = 0.07). However, averaging over all simulations provides 
only limited information about the behaviour of a single realization (as an extreme example, it could happen 
that each agent explores only one of the corners for the entire duration of the trial, but that it chooses one of the 
four corners with equal probability). We therefore also calculate the KL divergence between the output of each 
simulation and the benchmark (Fig. 2B.v). According to this analysis, acetylcholine seems to modestly enhance 
exploration. The reason for this discrepancy is that, without cholinergic depression, there is no way of suppressing 
unrewarding choices. Nothing prevents −ACh agents from spending a long time in the same area at the bound-
aries, whereas cholinergic depression encourages +ACh agents to change direction. As a consequence, −ACh 
agents bounce against the walls of the maze significantly more often than +ACh agents (Fig. 2B.vi).

+ACh −ACh

Radial maze Systematic Random

T-maze Approximately systematic Random

Open field Enhanced over the action space Random

Table 1.  Exploration patterns.
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Figure 2.  Acetylcholine-modulated plasticity enhances exploration over the action space. (A.i–ii) Example 
trajectories. Agents start each trial from the centre of the open field (red dot). Simulations without (−ACh, 
green) and with (+ACh, brown) cholinergic depression learn to navigate to the reward location (black circle) in 
20 trials. Trials are coded from light to dark, according to their temporal order (early = light, late = dark). (iii) 
Reward discovery. Percent cumulative distribution of the first rewarded trial (−ACh, green histogram; +ACh, 
brown histogram). (iv) Learning curve presented as a percentage of successful simulations over successive trials. 
(v) Average time to reward in each successful trial. Unsuccessful trials, in which the agent failed to find the 
reward, were excluded. The shaded area (A.iv–v) represents the 95% confidence interval of the sample mean. (A.
iii–v) are taken from our previous work (cf. Fig. 4A.ii–v in Brzosko et al.22). (B) Exploration of an open field, 
without any reward. (i–iv) Place cells’ activity during one trial, averaged across time (Tmax = 15 s) and 
simulations (M = 1000), displayed over the open field; 2D (top) and 3D (bottom) views. (i) Simulations of the 
model without cholinergic depression (−ACh). (ii) Simulations of the model with cholinergic depression 
(+ACh). (iii) Benchmark simulations for Exploration over the Environment (BEE). Locations inside the field 
are sampled at random for the duration of one trial. (iv) Benchmark simulations for Exploration over the Action 
space (BEA). At each timestep, actions are chosen at random, starting from the initial position. (v) Histograms 
of the Kullback-Leibler divergences between each simulation (−ACh, green histogram; +ACh, brown 
histogram) and the benchmark simulations for exploration over the open field (Fig. 4B.iii). (vi) Boxplot of the 
rate of the bounces back from the walls per trial .( )no of bounces

trial duration
. (vii) Boxplot of the difference between 

consecutive actions measured in radians. Acetylcholine yields greater variability in the action space. In a 
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Because of the winner-take-all connectivity of the action neurons, agents tend to keep their action choice 
constant and thus follow straight lines. However, acetylcholine depresses active synapses, which correspond to 
the currently winning action. +ACh agents are thus encouraged to pick a different action in consecutive time-
steps and change direction more often (Fig. 2B.vii). This translates into more circular trajectories that tend to be 
focused around the centre of the maze rather than the boundaries (Fig. 2B.ii).

We can understand these findings by considering that cholinergic depression makes the postsynaptic activ-
ity (and therefore the winning action neurons) more variable, thereby enhancing exploration over the action 
space. This, however, does not translate into increased exploration over the open field. In order to confirm this, 
we use another benchmark distribution, this time as a proxy for exploration over the action space (Benchmark 
Exploration over the Action space, BEA). In each benchmark simulations (M = 1000 simulations) the position 
of the agent is initialized at the centre of the field. From there, every action is taken completely at random: the 
angle of the direction is chosen from a uniform distribution over [0, 2π], while the velocity is kept fixed (ran-
dom walk; Methods). Place cells’ activity shows a high peak around the initial position (Fig. 2B.iv), meaning 
that the average benchmark agent does not move very far. As expected, the distribution of place cells’ activity 
in the +ACh simulations (Fig. 2B.ii) is more similar to this benchmark distribution than −ACh simulations 
(KL(−ACh||BEA) = 13.12, Fig. 2B.i; KL(+ACh||BEA) = 9.7, Fig. 2B.ii). In conclusion, acetylcholine enhances 
exploration over the action space but not necessarily over the environment (Table 1).

Cholinergic depression improves performance in dynamic environments.  Relearning in an 
open field.  We have shown that cholinergic depression allows the agent to learn from negative outcomes and 
increases exploration over the action space. These characteristics suggest that cholinergic depression might be 
especially advantageous in dynamic environments. We consider a task in which, after 20 initial trials where the 
agent learns how to navigate to the reward (Fig. 2A), the reward is moved to a new location. In our case, it is 
moved to the opposite corner (Fig. 3A.i–ii). +ACh agents discover the new reward location in fewer trials, while 
as much as one out of four −ACh agents cannot find it before the end of the experiment (Fig. 3A.iii)22. In addi-
tion, the +ACh agents show better task performance than the −ACh agents (96.8% correct versus 63% correct; 
Fig. 3A.v). −ACh agents mostly just extend the previously learned path (Fig. 3A.i), whereas +ACh agents stop 
visiting the old reward location altogether (Fig. 3A.ii,iv). This results in a difference in the time to navigate to the 
new reward location (Fig. 3A.vi). Even with the addition of noise in the neural activity (Supplementary Fig. 1) and 
in the weights (Supplementary Fig. 2), −ACh cannot achieve the same degree of behavioural flexibility (Table 2).

There are two main mechanisms underlying the behavioural flexibility exhibited by +ACh (Fig. 3B). On one 
hand, cholinergic depression decreases the strength of synapses associated to those actions that are no longer 
rewarding (Trial 26, lower weights in the upper-right corner). On the other hand, retroactive dopaminergic 
potentiation allows the agent to learn new sequences of actions that lead to the reward (Trial 40, higher weights 
in the bottom-left corner). Behaviourally, this results into the extinction of the previously learned path and the 
acquisition of a newly rewarding path. Thanks to dopaminergic potentiation, −ACh agents can also learn the path 
to the new reward location (Trial 26 and 40, weights in the bottom-left corner are higher than average), but they 
cannot unlearn the old reward location, which remains the agents’ most followed path (highest weights in the 
top-right corner; Fig. 3A.iv). It is worth noting here that acetylcholine affects all synapses, not only the ones that 
had been previously potentiated. For example, in the first part of the experiment, +ACh agents learn to navigate 
to the reward (Trial 21, higher weights in the top-right corner) but also to avoid unrewarding paths (Trial 21, 
lower weights in the left-bottom corner). This increases the precision of +ACh agents and improves performance 
(Fig. 2A.iv). For this reason, we use here the generic term “unlearning” to indicate the effect of synaptic depres-
sion on any sequence of actions that becomes less likely to be chosen again.

Learning and relearning in an open field with obstacles.  As mentioned earlier, the specifics of the task strongly 
affect the outcome. To explore this point further, we repeat the same experiment using a slightly different maze 
geometry. We insert two vertical obstacles in the open field, and move the reward location on the x axis (y = 0), 
to the right side of the obstacles, for the first part of the experiment (Fig. 4A.i–ii; obstacles = white vertical bars, 
reward location = black solid circle). In this case, −ACh agents initially perform better at finding the reward: 40% 
find the reward in the first trial, in contrast to just 30% of +ACh agents (Fig. 4A.iii). It is much easier to discover 
the reward when following straight lines in this particular maze geometry (even more so than in a simple open 
field; Fig. 4A.i–ii). Later in the experiment (Trial 20), however, agents equipped with cholinergic depression 
achieve a slightly higher success rate (Fig. 4A.iv), and are faster to navigate to the reward (because they do not get 
stuck against the walls or the obstacles; Fig. 4A.i–ii,v). The results for the second part of the experiment, when the 
reward is moved horizontally to the left side of the obstacles, are qualitatively similar to the open field but even 
more pronounced (Fig. 4B). Almost 40% of −ACh agents (39.7%) do not find the new reward before the end of 
the experiment (Fig. 4B.iii), and 89.2% of them still visit the old reward location in the last trial (Fig. 4B.iv). With 
this maze geometry, it is more difficult to extend the old path to the new reward location. More prominently than 
in the open field, agents with cholinergic depression are twice as successful as −ACh agents (Fig. 4B.v) and can 
navigate to the reward twice as fast (Fig. 4B.vi).

boxplot, the rectangle spans the q1 = 25th and q3 = 75th percentiles of the distribution. The line inside the 
rectangle is the median, and the whiskers indicate the minimum and the maximum points not considered 
outliers (minimum = q1 − 1.5(q3 − q1), maximum = q3 + 1.5(q3 − q1)). Points that are larger than the maximum 
or smaller than the minimum are outliers.
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Comparison with other learning rules.  Reward-modulated STDP.  Until now, we have focused on the 
functional role of cholinergic depression, comparing the same learning rule with and without cholinergic depres-
sion (+ACh and −ACh). We next investigate how sn-Plast compares to other reward-modulated learning rules.

To this end, we change the plasticity rule in our model to standard reward-modulated STDP (r-STDP; Fig. 5). 
In r-STDP, synapses follow a classical STDP rule with different amplitudes for the pre-post (Apre–post) and post-pre 
(Apost–pre) windows (e.g. Fig. 5B.i). However, all synaptic changes are gated by dopamine and become effective only 
retroactively through an eligibility trace. If no reward is found, weights are left unchanged. Notably, if the ampli-
tudes of the r-STDP learning window are set to Apre–post = Apost–pre = +1, reward-modulated STDP is equivalent to 
the plasticity rule used in our control simulations (sn-Plast without acetylcholine; −ACh).

We then investigate how the agent performs when equipped with r-STDP. We start from testing learning in a 
static environment. As before, the agent moves in an open field and has 20 trials to learn to navigate to the reward 
location (Fig. 2A). We then run a parameters sweep, and examine how the agent’s performance (mean percentage 
of successful trials, M = 200 simulations; Fig. 5A.i) varies with the amplitudes of the learning window (Apre–post 
and Apost–pre). When there is no learning (Apre–post = Apost–pre = 0; middle square, Fig. 5A.i), the average performance 

Figure 3.  Acetylcholine improves performance in dynamic environments. (A) After the 20 initial trials 
(Fig. 2A), the reward is moved to the opposite corner of the open field (old location = hollow black circle, 
new location = solid black circle). Trials are coded from light to dark, according to their temporal order 
(early = light, late = dark; Trials 21–40). (i) Agents without cholinergic depression do not unlearn the old path, 
but they can extend it to the new rewarded location. (ii) Agents with cholinergic depression can unlearn a 
previously learned path. (iii) Reward discovery. Percent cumulative distribution of trials when the reward is 
discovered for the first time. (iv) Percentage of agents visiting the old reward location as a function of the trial 
index. (v) Percentage of successful simulations as a function of the trial number. (vi) Average time to reach 
the new reward (only successful trials). The shaded area (A.iv–vi) represents the 95% confidence interval 
of the sample mean. (A.iii–vi) are taken from our previous work (cf. Fig. 4B.ii–v in in Brzosko et al.22). (B) 
Feed-forward weights, averaged across action neurons, displayed as an image over the open field. Each square 
represents the mean synaptic weight connecting the place cell centered in that location to all action neurons. 
Synaptic weights were stored at the beginning of the trials (21, 26, 40) and are averaged across M = 1000 
simulations.

+ACh −ACh r-STDP Dynamic reward Negative feedback

learning Yes Yes If STDP integral > 0 Mostly (better for small β) Yes

unlearning Yes No If STDP integral < 0 Partially (better for large β) Partially

Table 2.  Behavioural flexibility.
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Figure 4.  Flexible learning in an open field with obstacles. (A) Trials 1–20. Agents start each trial from 
the centre of the open field (red dot) and have to avoid the obstacles (white bars). Agents with and without 
cholinergic depression (+ACh and −ACh respectively) learn to navigate to the reward location (black circle). 
(i-ii) Example trajectories. Trials are coded from light to dark, according to their temporal order (early = light, 
late = dark). (iii) Reward discovery. Percent cumulative distribution of the first rewarded trial. (iv) Percentage 
of successful simulations across trials. (v) Average time to reward in each trial (only successful simulations). (B) 
Trials 21–40. The reward is moved to the opposite side of the open field. Agents with and without cholinergic 
depression (+ACh and −ACh respectively) learn to navigate to the new reward location (solid black circle). 
(i) Example trajectories. Without cholinergic depression, the agent learns a route to the new reward location, 
but mainly as an extension of the path learned previously. (ii) The agent with cholinergic depression unlearns 
the path to the previous reward location (hollow black circle) and navigates to the new reward. (iii) Reward 
discovery. Percent cumulative distribution of trials when the reward is discovered for the first time. (iv) 
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is 37%. Using this value as baseline, we can determine whether agents learn or unlearn. The agents’ performance 
varies as a function of the integral of the learning window: it rises above baseline for positive-integral windows 
(Apre–post + Apost–pre > 0; the part above the diagonal, Fig. 5A.i) and below baseline for negative-integral windows 
(Apre–post + Apost–pre < 0; the part under the diagonal, Fig. 5A.i). When the integral of the plasticity window is 
zero (Apre–post + Apost–pre = 0; diagonal of the matrix, Fig. 5A.i), there is little variation from baseline. However, 
the performance clearly increases with the amplitude of the pre-post learning window, Apre–post (Fig. 5A.ii). This 
is because, in a spiking neural network, presynaptic spikes contribute to elicit postsynaptic spikes (spike-spike 
correlation35). As such, the amplitude of the pre-post window, relatively to the post-pre window, brings an extra 
contribution to learning. We can conclude that the order of the spikes matters, although only marginally so. In 
our model, what really determines whether the agent learns or unlearns is the integral of the STDP window31.

We next compare four agents, equipped with different STDP windows having: i) positive integral (red), ii) 
negative integral (yellow), iii) zero integral and Apre–post > Apost–pre (dark orange) and iv) zero integral and Apre–post <  
Apost–pre (inverse STDP window; light orange). As expected, the best learner is the agent with the positive learning 
window, whereas the agent with a negative learning window effectively unlearns (Fig. 5B.ii). There is generally 
very little change in performance when the integral of the STDP window is zero: if Apre–post > Apost–pre, we can 
observe some slow learning; if Apre–post < Apost–pre there is very slow unlearning instead (Fig. 5B.ii). As mentioned 
earlier (Fig. 5A.ii), the spike order is still relevant, although only marginally so. This is due to spike-spike corre-
lation35. These patterns remain consistent in the second part of the experiment, when the reward is moved to a 
different corner of the field. The agent with a positive integral learns how to navigate to the new reward location 
(Fig. 5B.iv) but does not really unlearn the path to the first reward (the visits to the previously rewarded location 
are still as high as 62.4% at trial 40; Fig. 5B.iii). The agent with a negative integral completely unlearns the path to 
the second reward too (Fig. 5B.iv). Agents with vanishing integrals show very little change in both learning of the 
new reward location and unlearning of the old one (Fig. 5B.iii–iv).

Thus, r-STDP allows the agent to either learn or unlearn the path to the reward, depending on the integral 
of the learning window. This learning rule, however, appears to be quite rigid. It lacks the flexibility of sn-Plast 
which, thanks to the modulation of both acetylcholine and dopamine, can switch between these modalities 
in response to environmental changes (Table 2). For this reason, sn-Plast is more suited to dynamic tasks that 
require a degree of adaptation. This analysis also shows how the spike order is only relatively important to learn-
ing. This characteristic is intrinsic to the model31,32 and in striking agreement with the experimental data from 
which we derive our plasticity rule (both dopaminergic and cholinergic modulated STDP windows are symmetric 
and therefore invariant to spike order21,22).

Dynamic reward signal.  In sn-Plast, the reward signal is binary, it is either present or not. Alternatively, we could 
conceive signals with more complex temporal dynamics. In particular, we want to focus here on a signal that 
keeps track of the history of the reward delivery. This is particularly useful in a changing environment and worth 
comparing to our sequentially neuromodulated plasticity rule. We employ a dynamic reward signal, ρ(tr), given 
by the difference between the raw reward, R(tr), and a moving average of the past rewards, R tr( ): 
ρ = −tr R tr R tr( ) ( ) ( ) (Methods). Synapses modulated by the dynamic reward signal ρ(tr) are updated only if the 
outcome of trial tr is somewhat surprising, that is, if it differs from the outcomes of the most recent trials. The 
effect is twofold: if the reward is reached consistently and continuously, the average reward becomes very close to 
the actual reward value, ρ(tr) ≈ 0, and synapses stop being potentiated; if the agent stops receiving a reward sud-
denly ( <R tr R tr( ) ( ), second half of the experiment), the dynamic reward signal becomes negative and synapses 
are depressed.

In order to test the performance of this different learning rule, we use a similar task as before. In the first half of 
the experiment, the agent moves in an open field and has to learn how to navigate to the reward (as in the previous 
task, Fig. 2A). Agents receiving a dynamic reward signal are disadvantaged in this initial learning phase. Even 
though they are equally fast to discover the reward (Fig. 6A.i), they are slower to learn how to reach the reward 
location, and they are less successful (Fig. 6A.ii). Even when they learn the path to the reward, they take longer to 
reach it (Fig. 6A.iii). In general, learning is less efficient when using a dynamic reward signal. In the second part 
of the experiment, from trial 21 to trial 40, the reward is moved to the opposite corner of the environment. Unlike 
before, however, a trial ends if the agent enters either one of the rewarding areas (old or new), or if a time limit 
is reached. The agent has to discover the novel reward location and learn a new path. Agents equipped with the 
dynamic reward signal plasticity rule outperform −ACh agents, but their performance is still inferior to +ACh 
agents. Only 14% of the dynamic reward signal agents do not manage to discover the reward by the end of the 
experiment, this is significantly better than our control simulations (−ACh, 71.9%) but worse than sn-Plast agents 
(+ACh, 1.6%; Fig. 6B.i). Notably, the dynamic signal allows for some unlearning of the previous reward location 
(Fig. 6B.ii). Approximately half of the agents can reach the novel reward location by the end of the experiment 
(Fig. 6B.iii), and can do so fairly quickly (Fig. 6B.iv) suggesting that they do indeed learn a completely new path. 
However, at least 50% of the agents still visit the old reward location by trial 40, as opposed to almost zero +ACh 
agents (Fig. 6B.iii). Overall, agents equipped with sn-Plast outperform agents receiving a dynamic reward signal.

The dynamic reward signal can be both positive and negative in sign, this allows for both learning and 
unlearning of the appropriate actions. Even though this rule provides more flexibility than classic 
reward-modulated STDP, the mechanisms for learning and unlearning are still highly connected. Weight changes 

Percentage of agents visiting the old reward. (v) Percentage of successful simulations as a function of the trial 
number. (vi) Average time to reach the new reward (only successful trials). The shaded area (A.iv–v and B.iv–vi) 
represents the 95% confidence interval of the sample mean.
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are regulated by the timescale of integration of the moving average reward (Methods). In the first half of the 
experiment, a longer timescale leads to improved performance: the average reward R  requires more successful 
trials to converge to R, so synapses get potentiated more (Supplementary Fig. 3A). However, a longer timescale 

Figure 5.  Comparison with reward-modulated STDP. Agents equipped with reward-modulated STDP with 
varying parameters Apre–post and Apost–pre learn to navigate towards a reward in an open field. (A) Parameters 
sweep. We run M = 200 simulations of the task in Fig. 2A (learning to navigate to the reward in the top-right 
corner of the open field, 20 trials). (i) Percentage of successful trials, as a function of the amplitudes of the 
plasticity windows (pre-post and post-pre). The integral of the STDP window mostly determines the agent’s 
performance. (ii) Percentage of total successful trials for an STDP window with vanishing integral (Apre–post +  
Apost–pre = 0, diagonal of the matrix). (B) Simulations of the dynamic task, as in Figs 2A and 3, for four different 
parameters sets. (i) Legend and representation of the four learning windows: positive integral (red), negative 
integral (yellow), zero integral with Apre–post > 0 (dark orange) and zero integral with Apre–post < 0 (light orange). 
(ii) Agents have to learn to navigate to the reward in the top-right corner of the open field, trials 1–20. 
Percentage of successful simulations. The dashed line indicates the baseline performance. (iii-iv) The reward 
is moved to the opposite corner of the open field, trials 21–40. (iii) Percentage of agents visiting the previously 
rewarded location. (iv) Percentage of successful simulations. The shaded area (B.ii–iv) represents the 95% 
confidence interval of the sample mean.
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also implies that if the reward is moved, it will take longer to depress the appropriate synapses and unlearn the 
unrewarding path (Supplementary Fig. 3B). The dynamic reward signal compares poorly with our sequentially 
neuromodulated rule: sn-Plast uses separate mechanisms to learn and unlearn, increasing flexibility and improv-
ing performance (Table 2).

Negative feedback.  In sn-Plast, synapses are biased towards depression unless a reward is delivered. This kind 
of depression allows suppression of a previously learned sequence of actions, but it is indiscriminately persistent 
throughout exploration and is not specific to reward omission. Alternatively, we could imagine that a negative 
feedback is delivered to the synapse when the expected reward is omitted. This negative signal would retroactively 
depress synapses through the use of an eligibility trace, similarly to dopamine but opposite in sign. The synaptic 
change would then be positive if the reward is delivered (Afeedback = 1) and negative if it is omitted (Afeedback = −1). 
This feedback signal is reminiscent of a prediction error1, but different in that the expectations are not updated 
during the experiment. We thus compare sn-Plast to this model with targeted negative feedback. As before, the 
agent explores the open field for the first 20 trials and has to learn how to navigate to the reward. For the remain-
ing 20 trials the reward is moved to the opposite corner of the field, and the agent has to discover it and learn the 
new path. Unlike before, however, a trial ends if the agent enters either one of the rewarding areas (old or new), or 
if a time limit is reached. Whenever the agent enters the old reward location, a negative feedback signal induces 
synaptic depression.

Figure 6.  Comparison with dynamic reward signal. (A) Trials 1–20. Agents start each trial from the centre of 
the open field and have to navigate to the top-right corner (task as in Fig. 2A). Simulations are run under three 
different conditions: with only dopaminergic potentiation (−ACh, green); with dopaminergic potentiation 
and cholinergic depression (+ACh, brown); with STDP modulated by a dynamic reward signal (blue). (i) 
Reward discovery. Percent cumulative distribution of trials when the reward is discovered for the first time. 
(ii) Percentage of successful simulations across trials. (iii) Average time to reward in each trial (only successful 
simulations). (B) Trials 21–40. The reward is moved to the opposite side of the open field (task as in Fig. 3A; but 
the task is stopped whenever the agent enters either the new or the old rewarded area). (i) Reward discovery. 
Percent cumulative distribution of trials when the reward is discovered for the first time. (ii) Percentage of 
agents visiting the old reward location. (iii) Percentage of successful simulations as a function of the trial 
number. Acetylcholine yields the best performance. (v) Average time to reach the new reward (only successful 
trials). The shaded area (A.ii–iii and B.ii–iv) represents the 95% confidence interval of the sample mean.
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Since no negative feedback is present in the first half of the task, agents with negative feedback signal per-
form identically to −ACh agents (Fig. 7A). The continuous updating of cholinergic depression increases the 
success rate (Fig. 7A.ii) and diminishes the average time to reward (Fig. 7A.iii), but it slightly deteriorates the 
initial exploration (it takes longer to discover the reward; Fig. 7A.i). It is in the second part of the experiment, 
after reward displacement, that we see the effect of the negative feedback. As expected, −ACh agents show the 
poorest performance (Fig. 7B). In contrast, agents with negative feedback signal are able to partially unlearn the 
previously rewarded location (Fig. 7B.ii). They can therefore also find (Fig. 7B.i) and reach (Fig. 7B.iii) the newly 
rewarded location more often. Nevertheless, +ACh agents still show the best results. They unlearn the old reward 
location completely (Fig. 7B.ii). They also find and learn the new reward location, reaching an almost perfect 
performance (Fig. 7B.iii). The time to the reward is also shorter for +ACh agents, whereas almost no difference 
can be found between the other two sets of simulations (Fig. 7B.iv).

Targeted negative feedback acts retroactively through an eligibility trace. Consequently, synapses active more 
recently get depressed more. This mechanism allows suppression of previously rewarded actions to some extent, 
but performs quite poorly when compared to cholinergic depression, at least in the current model (Table 2). 
Cholinergic depression acts equally on all synapses throughout exploration, and therefore offers a more powerful 
and direct way of unlearning.

Figure 7.  Comparison with learning from negative feedback. (A) Trials 1–20. Agents start each trial from the 
centre of the open field and have to navigate to the top-right corner (task as in Fig. 2A). Simulations are run 
under three different conditions: with only dopaminergic potentiation (−ACh, green); with dopaminergic 
potentiation and cholinergic depression (+ACh, brown); with dopaminergic potentiation and negative 
feedback (grey). (i) Reward discovery. Percent cumulative distribution of trials when the reward is discovered 
for the first time. (ii) Percentage of successful simulations across trials. iii) Average time to reward in each trial 
(only successful simulations). (B) Trials 21–40. The reward is moved to the opposite side of the open field (task 
as in Fig. 3A; but the task is stopped whenever the agent enters either the new or the old rewarded area). (i) 
Reward discovery. Percent cumulative distribution of trials when the reward is discovered for the first time. (ii) 
Percentage of agents visiting the old reward location. (iii) Percentage of successful simulations as a function of 
the trial number. Acetylcholine yields the best performance. (v) Average time to reach the new reward (only 
successful trials). The shaded area (A.ii–iii and B.ii–iv) represents the 95% confidence interval of the sample 
mean.
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Discussion
In this paper we investigated the possible functional consequences of neuromodulated hippocampal STDP, 
based on our recent experimental findings22. In particular, we analyzed this plasticity rule in a network model of 
reward-driven navigation. Consistent with previous models, dopamine makes it possible to learn the path to the 
reward23,24,27. Acetylcholine, instead, allows learning from negative outcomes. This yields behavioural flexibility and 
is particularly useful in dynamic environments, where it is necessary to both learn and unlearn in a task-relevant 
manner. In a simple model with discrete state and action space, cholinergic depression allows suppression of unre-
warding choices and systematic exploration of the maze. In more complex continuous models, it enhances explo-
ration over the action space, but this does not necessarily translate into increased exploration over the entire maze.

Dopamine.  Dopamine is thought to signal reward delivery and reinforce behaviour1–3. The behavioural36–38 
and algorithmic39 mechanisms of reward-modulated learning have been thoroughly investigated and charac-
terized. Recently, its neural substrates have been explored as well. Dopamine has been reported to shift STDP 
towards potentiation18–20. In this study, we build on our previous experimental findings on the retroactive effect 
of dopamine on hippocampal synaptic plasticity21. Taking inspiration from both reinforcement learning39 and 
biology40, dopamine was theorized to act on synaptic eligibility traces. These traces keep track of and reinforce 
neural activity associated with distal rewards23,24,27. Given the similarity of sn-Plast to other reward-modulated 
plasticity rules23, our network unsurprisingly succeeds in learning rewarded patterns of activity. Nevertheless, our 
learning rule does differentiate itself from other reward-modulated plasticity rules because of the symmetrical 
positive shape of its STDP window. Consistently, in our model the integral of the learning window has greater 
importance than the exact spike timing35. In a different framework, however, spike timing could have functional 
roles, for instance when precise spike sequences are learned23,24,31.

One limitation of our model is that we assume that dopamine signals exclusively reward. As such, it would 
only update synaptic weights during reward delivery. However, dopamine has also been associated with spatial 
novelty in the hippocampus and has been shown to correlate with exploratory behaviour41–46. In fact, the role of 
dopamine as a reward signal in the hippocampus has been challenged because of the sparsity of the projections 
from VTA44,47. Nevertheless, more recent research points towards a role for dopamine in reinforcing spatial rep-
resentations in the hippocampus41 and goal-directed navigation47,48.

We approximate dopamine as a stable reward signal that is available globally at the synapses with every reward 
delivery. However, dopaminergic neurons exhibit different modes of firing, with phasic firing coding for reward 
prediction error. As such, dopamine is released only when the reward is unexpected1–3. If the animal was able to 
predict the reward delivery correctly, then VTA dopaminergic neurons would not increase their firing rate.

In our work, we compared sn-Plast to other plasticity rules. In particular, we explored: i) a dynamic reward 
signal, which carries information about the history of the past trials, and ii) a negative feedback signal, which is 
released selectively when the agent enters a previously rewarded location. Although clearly different, these signals 
are reminiscent of a prediction error. The dynamic reward signal favours synaptic updates that are “surprising” 
and it can be both positive and negative in sign. The negative feedback signal is completely symmetric and oppo-
site in sign to the reward signal, as such, it constitutes a limit case of the reward prediction error (the prediction 
error can only be larger or equal to the negative feedback signal). We showed that sn-Plast outperforms both plas-
ticity rules. This is because cholinergic depression acts as a more general and separate mechanism from dopamin-
ergic potentiation (i.e. it acts on synapses immediately, not through an eligibility trace, and acts indiscriminately 
on all unrewarding synapses). We could speculate that, for analogous reasons, sn-Plast would similarly outperfom 
a prediction error signal.

Frémaux et al. proposed a spiking implementation of the prediction error in a similar reward-driven network 
model32. The agents were able to perform very complex tasks but, unfortunately, the authors did not investigate 
changing environments. Although we imagine that sn-Plast would outperform a prediction error-based learning 
rule, it could be interesting to substitute the reward signal in sn-Plast with a prediction error. Cholinergic depres-
sion might interact with the prediction error dynamics, probably affecting both exploration and performance. 
Interestingly, in Frémaux et al.32 no backpropagation of the prediction error was observed. This suggests that the 
dynamics of the prediction error in this specific framework might be different or unexpected.

Acetylcholine.  Acetylcholine is known to play an important role in learning and memory49–51. In the hip-
pocampus, acetylcholine has been reported to facilitate both long term potentiation52–62 and long-term depres-
sion63–67, depending on a number of variables, such as plasticity induction protocols, acetylcholine concentrations 
and type of cholinergic receptors28. In our previous work22, we found that cholinergic modulation of hippocam-
pal STDP resulted in a symmetrical negative learning window and used this data as a starting point for our 
investigation.

Acetylcholine has been studied in relation to behavioural tasks50,68,69. Microdialysis studies have reported 
an increase in cholinergic release in the hippocampus during engagement in spatial learning tasks6,8,10–14 and a 
reduction during consummatory behaviour4,34. Adding this dynamic to our neuromodulated network allowed 
us to study the possible effects of acetylcholine on navigation and decision-making22. Acetylcholine has been 
postulated to signal novelty and saliency6,7,9, and was reported to enhance exploratory behaviours like rearing8,70. 
For this reason, we largely focused on characterizing the effect of acetylcholine on exploration. In our model, ace-
tylcholine indeed increases exploration over the action space, but this does not necessarily translate into increased 
exploration over the entire physical environment. In addition to exploration, the effect of acetylcholine on spatial 
learning has also been connected to paradigm shifts and reversal learning71–73, which in turn has been shown to 
depend on long-term depression in hippocampal synapses74. This is in agreement with our observation that ace-
tylcholine is useful in dynamic scenarios where unlearning previously learned actions is advantageous.
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Acetylcholine has been hypothesized to modulate learning in other computational theories before75–77. It was 
put forward as a signal for uncertainty in probabilistic environments76 and a switch signal for the encoding of new 
information, as opposed to the consolidation of memories75,77. Finding a clear correspondence between these 
theories and the model we present here is not trivial. However, our results are consistent with previous work, in 
that they suggest a functional role for acetylcholine in learning which is: i) complementary to dopamine, and ii) 
relevant to dynamical, changing environments.

Conclusion
In conclusion, we model here a role for dopamine as a behavioural reinforcer, and propose a new role for cholin-
ergic depression in learning from negative outcomes. Despite its simplicity, our feed-forward network captures 
the key characteristics of sequentially neuromodulated plasticity, allowing us to examine its potential role in 
reward-based navigation22. In addition, by allowing us to clearly examine its dynamics, it provides us with a useful 
tool to further investigate the relationship between synaptic and behavioural learning. The continuosly updated 
cholinergic depression allows learning from unsuccessful trials, unlearning of previously rewarded locations, 
and enhances exploration over the appropriate action space. As such, sn-Plast is an effective reward-modulated 
learning rule for navigation tasks.

Methods
The navigation model is based on a one-layer network32. The place cells in the input layer code for the position of 
the agent in the environment. They project to the output layer of action neurons. Each one of the action neurons 
represents a different direction. Lateral connectivity in this layer ensures that action neurons compete with each 
other in a winner-take-all scheme. Their activity is then used to determine the action (i.e. direction and velocity) 
to take at every instant.

Place cells.  Discrete model.  In the case of the radial maze, the state space is discrete and contains only one 
location: the centre of the maze. From there, the agent chooses to which of the eight possible arms to move. The 
network is therefore composed of a single place cell, active for the whole duration of the trial, simulated as a 
Poisson process with rate λ = 4000pc  Hz.

Continuous model.  The position of the agent at time t is described by the two-dimensional vector of its Cartesian 
coordinates, x(t). There are N place cells, spread over the entire environment at a horizontal and vertical distance 
of σ from one another. The spiking activity of place cell i is modelled as an inhomogeneous Poisson process, with 
rate λ tx( ( ))i

pc  defined as follows:


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The firing rate λ i
pc is a function of the distance of the agent from the place cell centre xi. It is at its maximum, 

λ = 400pc  Hz, when the agent is located exactly in xi and it decreases as it moves away. This mechanism simulates 
a place field in a 2D environment, which allows for an accurate representation of the position of the agent in the 
environment. In both models the firing rates of the place cells are taken to be very high, this is just to speed up 
computational times while preserving navigation accuracy.

Open field: The open field is modelled as a square of side length of 4 a.u. The initial position of the agent in 
each trial is the centre of the open field, which corresponds to the origin of the Cartesian plane.When obstacles are 
added, they are modelled as two rectangular bars of sides sxobs = 0.4 a.u. and syobs = 0.8 a.u. centred on the x axis at 
x1 = −1.2 a.u. and x2 = 1.2 a.u. In the open field, there are N = 121 place cells at distance σ = 0.4 from one another.

T-maze - continuous model: The T-maze is cropped out from the open field plane. It is composed by a stem 
of length lstem = 3.2 a.u. and width wdstem = 0.6 a.u., and two arms, each having length larm = 1.7 a.u. and width 
wdarm = 0.8 a.u. The agent starts every trial from the bottom of the stem: (xstart, ystart) = (0, −2) a.u. In the T-maze, 
there are N = 441 place cells at distance σ = 0.2 from one another.

Action neurons.  Neuron model.  Place cells constitute the input to the network, and they all project to all 
action neurons with weights wfeed. These feed-forward weights are initialized to win and bounded between wmin 
and wmax (see Table 3 for specific values). The feedforward weights should be initialized roughly halfway between 
the minimum and the maximum value, so that both cholinergic depression and dopaminergic potentiation can 
have an effect on the action choice. Action neurons are also connected with each other through synaptic weights 
wlat. The neurons are modelled as SRM0

33, the membrane potential of neuron j is therefore given by:

Radial arm T-maze Open Field

wmin 1 1 1

wmax 5 5 3

win 2 3 2

ηACh 0.001 0.1 0.002

ηDA 0.01 0.3 0.01

Table 3.  Parameter values.
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pc and Fk
a are sets containing respectively ti and tk, the arrival times of all spikes fired 

by place cell i and action neuron k. Spiking behaviour is stochastic and follows an inhomogeneous Poisson pro-
cess with parameter λj(uj(t)), which depends on the membrane potential at time t. In particular,

λ λ
θ

=





−

Δ






u t
u t

u
( ( )) exp

( )
,

(3)
j j

j
0

where λ0 is the maximum firing rate, Δu regulates randomness of the spiking behaviour and θ = 16 mV is the 
spiking threshold. For simplicity, the resting potential is set to 0. The biologically realistic value of the membrane 
potential can be retrieved through a translation and does not affect the dynamics of the network33.

Discrete model.  In the radial maze, there are only eight possible actions to take from the initial position. There 
are N = 8 neurons, each coding for a different arm. These neurons are connected through inhibitory synapses: 
wlat = −250. This connectivity scheme ensures that, given enough time, one neuron will inhibit all others and be 
substantially more active. Other parameters were set to: λ0 = 100 Hz, Δu = 0.5 mV.

Continuous model.  Action neurons represent different directions in the Cartesian plane. Specifically, each action 
neuron j represents direction aj, where aj = a0(sin(θj), cos(θj)), with θ = π

j
j
N

2 , N = 40 and a0 = 0.08. The lateral 
connectivity between action neuron k and action neuron j is defined as follows

= +−
+w w

N
w f j k

Z
( , ), (4)jk

lat

where Z is a normalizing factor, w– = −300, w + = 100 and f is a lateral connectivity function, which is symmetric, 
positive and increases monotonically with the similarity of the actions. In particular, δ= − ψ θ θ−f j k e( , ) (1 )jk

cos( )j k , 
with ψ = 20. Neurons therefore excite each other when they have a similar tuning, and depress otherwise. This 
ensure that only a few similarly tuned action neurons are active at any given time, making the trajectory of the 
agent smooth and consistent. Other parameters were set to: λ0 = 60 Hz, Δu = 2 mV.

Action selection.  The action selection process determines the decision to take, based on the firing rates of 
the action neurons. The activity of action neuron j is approximated by filtering spike train Yj with kernel γ:

ρ γ=t Y t( ) ( )( ), (5)j j

where δ= ∑ −∈Y t t( )j t F jj j
a  and γ = Θ

τ ν
−
−

τγ νγ

γ γ

− −

t t( ) ( )e e
t t

, with τγ = 50 ms and νγ = 20 ms.

Discrete model.  Decisions in the discrete case are taken only at the end of the trial. When a time limit Tmax = 5 s 
has been reached, the action neuron with maximum firing rate is selected. In the unlikely case two neurons 
exhibit exactly the same firing rate at the end of trial, the winning neuron is chosen at random. The agent then 
enters the arm associated with the winning neuron. All activity is reset before the onset of the next trial.

Continuous model.  In the continuous case, actions are taken continuously, at every timestep t. The action selec-
tion process thus determines a(t), the action to take at time t. If each action neuron j represents direction aj and 
has an estimated firing rate ρj(t), then the action a(t) is the average of all the directions encoded, weighted by their 
respective firing rates

∑ρ=t
N

ta a( ) 1 ( ) ,
(6)j

j j

where N = 40 is the total number of action neurons. This decision making mechanism allows the agent to move in 
any direction, making the action space effectively continuous. A large number of action neurons allows for higher 
the accuracy of the navigation and action selection.

Navigation details.  Continuous model.  Once action a(t) has been determined, the update for the position 
of the agent is

Δ =





+ .
⋅

t t
d t

x a x
u x

( ) ( ), if (t 1) within the boundaries
( ( )) otherwise (7)

The agent therefore normally moves with instantaneous velocity a(t). When the agent tries to surpass the lim-
its of the field, it is instantly bounced back by a distance d = 0.01. The unit vector u(x(t)) points in the direction 
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opposite to the boundary. To avoid large boundary effects, the feed-forward weights between place cells on the 
boundaries and action neurons that code for a direction aj outside of the field are set to zero.

The agent is free to explore the environment for a maximum duration of Tmax. If it finds the reward at a time 
trew < Tmax, the trial is terminated earlier, precisely at time t = Trew + 300 ms. The extra time mimics consummatory 
behavior, navigation is thus paused during this interval (i.e. place cells activity is set to zero). The effect of the 
inter-trial interval is modelled by resetting all activity.

T-maze - continuous model: When used in the task, the reward is located in the right arm of the maze. 
Specifically, we consider the reward to be found whenever the agent crosses the vertical line xr = 1 a.u. The maxi-
mum duration of a trial is Tmax = 5 s, but the trial ends whenever the agent enters one of the arms (whenever the 
agent crosses either the vertical line xr = 1 or the vertical line xl = −1). When in the stem, the available actions are 
restricted only to upwards movements (angle between ,

4
3
4

θ ∈ 





π π ). When in the top part of the maze, only hori-

zontal movements are allowed (angle between ∪θ ∈ 
−






− 


π π π π, ,
4 4

3
4

5
4

).
Open field - continuous model: For the first 20 trials, the reward can be found in the circular goal area cen-

tred in c1 = (1.5, 1.5) with radius r1 = 0.3. In trials 21 to 40, the goal area moves to centre c2 = (−1.5, −1.5), but 
maintains the same shape and size. If the open field has obstacles, the agent is not allowed to cross them and is 
therefore pushed back, similarly to what happens with the walls. In this case, the goal area is initially centred in 
c1 = (0, 1.5), and then moved to c2 = (0, −1.5). The maximum duration of a trial is Tmax = 15 s. This maximum 
duration of a trial Tmax was chosen so that the agent could discover the reward in the first few trials (Fig. 2A), its 
value is not intended to have behavioural or biological meaning.

Sequentially neuromodulated plasticity (sn-Plast).  The synaptic weights between place cells and 
action neurons play a fundamental role in defining a policy for the agent. Plasticity is essential for the agent to 
learn to navigate the open field and is implemented in a way that follows the experimental results presented in 
Brzosko et al. 2015 and 2017. The synaptic changes combine the modified STDP rule (Fig. 3) and an eligibility 
trace that allows for delayed updates.

In particular, the total weight update is:

(( ) )w t A W t t t( ) ( ) ( ),
(8)

ji
t F t F

j i
i i

pc
j j

a
¯ ¯

¯ ¯
∑ ∑η ψΔ = −

∈ ∈

where η is the learning rate, A emulates the effect of the different neuromodulators, W is the STDP window and ψ 
is the eligibility trace. Fi

pc and Fj
a are sets containing respectively ti and tj, the arrival times of all spikes fired by 

place cell i and action neuron j.
The basic STDP window is

= τ−
| |

W x e( ) , (9)
x

with τ = 10 ms. This function is always symmetric and positive, but the sign of the final weight change is deter-
mined by the neuromodulators at the synapse:

=







− − +
− −
+ ± .

A
1 DA, ACh

0 DA, ACh
1 DA, ACh (10)

Dopamine is assumed to be released simultaneously in all synapses whenever a reward is delivered. All weight 
changes are gated by neuromodulation (A = 0 when all neuromodulators are absent). The learning rate η also 
depends on neuromodulators (see Table 3 for specific values):

η
η

η
=










− +

− −
+ ± .

DA, ACh
0 DA, ACh

DA, ACh (11)

ACh

DA

The weight change due to STDP is convoluted with an eligibility trace ψ, modelled as an exponential decay

t e t( ) ( ), (12)
t
eψ = Θα τ−

with τe = 2 s and α = +
−{1 DA

0 DA
.

The eligibility trace keeps track of the active synapses and allows for a delayed update of the synaptic strength. 
The timescale of the eligibility trace τe determines the length of the rewarding path learned: a shorter timescale 
favours shorter paths. Variable α in the exponent acts as a flag and ensures that the eligibility trace is active with 
dopamine only (α = 1).

When no interaction with acetylcholine was assumed (−ACh), the weights were potentiated only at the end of 
the trial, in the case that the agent found the reward (A = 1, α = 1). They were left unchanged otherwise (A = 0). If 
acetylcholine was present throughout the task (+ACh), the weights were updated online (A = −1, α = 0). When 
no reward was found before the end of the trial, weights were depressed. Otherwise, they were potentiated retro-
actively (A = 1, α = 1).
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Dopamine-modulated standard asymmetric STDP curve.  We also compared our symmetric learning 
windows to standard asymmetric STDP curves. The total weight update with this rule is

(( ) )w t B W t t t( ) ( ) ( ),
(13)

ji
t F t F

j i2
i i

pc
j j

a
¯ ¯

¯ ¯
∑ ∑η ψΔ = −

∈ ∈

where η = 0.01 is the learning rate, W2 is the STDP window (equation 14) and ψ is the eligibility trace (equa-
tion 12). B gates all synaptic changes until the end of the trial: = {B 1 at the end of the trial

0 during exploration
. Fi

pc and Fj
a are sets 

containing ti and tj respectively, the arrival times of all spikes fired by place cell i and action neuron j. The spike 
timing plasticity rule was implemented as follows:

=
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s
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The integral of the learning window determines if the agent learns, unlearns or does not learn. We therefore 
considered four different parameter sets: (i) positive integral (Apre–post = 1, Apost–pre = −0.5); (ii) negative integral 
(Apre–post = 0.5, Apost–pre = −1); zero integral with either (iii) positive Apre–post (standard STDP window; Apre–post = 0.5, 
Apost–pre = −0.5) or (iv) negative Apost–pre (inverted STDP window; Apre–post = −0.5, Apost–pre = 0.5). The time constant 
was identical for the two sides of the window and was taken to be τ = 10 ms. We ran 1000 simulations for each 
parameter set.

Dynamic reward signal.  We compared sn-Plast to a learning rule gated by a dynamic reward signal. This 
learning rule is similar to the one used in the control simulations (−ACh), but the weight change here is scaled by 
the dynamic reward signal tr R tr R tr( ) ( ) ( )ρ = − . Here, R(tr) is the value of the reward received during trial tr 
and R tr( ) is the moving average reward. In our simulations, we assumed that R(tr) = 1 if the agent reaches the 
rewarding area before the end of the trial, R(tr) = 0 otherwise. The moving average reward is calculated as 
R tr R tr R tr( ) ( ) (1 ) ( 1)β β= + − − , with =R R(1) (1). In Fig. 6, we used β = 0.75. Here, β regulates the times-
cale of integration of the average reward. The higher β, the shorter the timescale. The weight update for simula-
tions with dynamic reward signal is:

¯ ¯
¯ ¯
∑ ∑η ρ ψΔ = −
∈ ∈

(( ) )w t B tr W t t t( ) ( ) ( ) ( ),
(15)
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t F t F

j i
i i
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j j
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where η = 0.01, tr is the current trial and B gates all synaptic changes until the end of the trial: 

=





B 1 at the end of the trial
0 during exploration

. The eligibility trace ψ (equation 12) is active only when the dynamic reward signal is 

delivered at the end of the trial:

α =



 .
1 at the end of the trial
0 during exploration (16)

Negative feedback signal.  We also compared our neuromodulated learning rule to a dopamine-modulated 
rule with negative feedback. In this set of simulations, we assumed that whenever the agent reaches the location 
of an omitted reward it receives a negative feedback that inverts the sign of the learning window induced by dopa-
mine. The weight update for simulations with negative feedback is:

(( ) )w t A W t t t( ) ( ) ( ),
(17)

ji feedback
t F t F

j i
i i

pc
j j

a
¯ ¯

¯ ¯
∑ ∑η ψΔ = −
∈ ∈

where η = 0.01, Afeedback = 1 when the new reward is found, Afeedback = −1 if the agent navigates to the old reward 
location and Afeedback = 0 otherwise. The eligibility trace ψ (equation 12) is active only when the feedback signal is 
delivered at the end of the trial (equation 16).
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