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This paper presents an algorithm based on the Bernstein form of polynomials for solving the
optimal power flow (OPF) problem in electrical power networks. The proposed algorithm
combines local and global optimization methods and is therefore referred to as a ‘hybrid’
Bernstein algorithm in the context of this work. The proposed algorithm is a branch-and-
bound (B&B) procedure wherein a local search method is used to obtain a good upper
bound on the global minimum at each branching node. Subsequently, the Bernstein form
of polynomials is used to obtain a lower bound on the global minimum. The performance
of the proposed algorithm is compared with the previously reported Bernstein algorithm
to demonstrate its efficacy in terms of the chosen performance metrics. Furthermore, the
proposed algorithm is tested by solving the OPF problem for several benchmark IEEE power
system examples and its performance is compared with generic global optimization solvers
such as BARON and COUENNE. The test results demonstrate that the algorithm HBBB
delivers satisfactory performance in terms of solution optimality.

Keywords: Bernstein polynomials; Global optimization; Power systems; Optimal power
flow; Network optimization; Nonconvex problems.

Nomenclature1

(A) Sets2

N Set of all buses.3

G Set of generator buses.4

L Set of all lines.5

N Set of natural numbers.6

R Set of real numbers.7

IR Set of compact intervals.8

S Set of all vertices of an array (bI(x)).9

S0 Subset of S comprising only index vertices of an array (bI(x)).10

(B) Parameters11

n Total number of system buses.12

PDk, QDk Active and reactive load demands at the kth bus.13
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Yik Line admittance of the transmission line in between buses i and k.14

ck0, ck1, ck2 Coefficients for the generator cost curve in $/h, $/MWh, and $/MW2h,15

16 respectively.17

Gik, Bik Conductance and susceptance of the line in between ith and kth bus.18

Pmin
Gk , P

max
Gk Limits on the active power generation capacity at the kth bus.19

Qmin
Gk , Q

max
Gk Limits on the reactive power generation capacity at the kth bus.20

V min
k , V max

k Limits on the absolute value of the voltage at the kth bus.21

Smax
ik Limit on the absolute value of the apparent power flow through22

the line connecting any two buses i and k such that (i, k) ∈ L.23

x An interval or box.24

w(x) Width of an interval x.25

m(x) Midpoint of an interval x.26

aI Coefficients of polynomial in the power form.27

BN
I Ith Bernstein basis polynomial of degree N .28

bI Bernstein coefficients.29

(bI(x)) Array of the Bernstein coefficients.30

B(x) Bernstein range enclosure.31

Bgi(x), Bhj(x) Bernstein range enclosures for an inequality and equality constraints.32

conv Convex hull.33

εt Termination tolerance.34

εzero Tolerance on the equality constraint satisfaction.35

Max Subdiv Maximum number of subdivisions for B&B scheme.36

Iter Count B&B iterations.37

LBD,UBD Lower and upper bounds.38

LIter Count List at the Iter Count iteration.39

t Computational time in seconds.40

(C) Variables41

Vdk, Vqk Real and imaginary values of the voltage phasor at the kth bus.42

PGk, QGk Active and reactive power generation at the kth bus.43

fk(PGk) A quadratic fuel cost function.44

Sik Apparent power flow on the line (i, k) ∈ L.45

l Total number of decision variables.46

f∗ Global minimum.47

x∗ Global minimizers.48

f localIter Count Upper bound at the Iter Count iteration.49

xlocalIter Count Upper bound solution at the Iter Count iteration.50

fglobalIter Count Lower bound at the Iter Count iteration.51

1. Introduction52

Numerical optimization algorithms play a vital role in ensuring the stable and reliable op-53

eration of modern electric power systems (Kundur (1994); Capitanescu (2016)). Among54

other applications, optimization algorithms are used in network expansion planning prob-55

lems and generator scheduling problems. The OPF problem is one such well studied56

problem in the power systems community. The OPF problem aims at optimizing net-57

work operations by finding optimal operating points for the electric generators in the58

system. It achieves this by minimizing the total power generation cost subject to cer-59

tain network constraints. Some of these constraints include generator active and reactive60
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power generation limits, bus voltage magnitudes, and network constraints. An excellent61

recent survey about the OPF problem can be found in Capitanescu (2016).62

The complexity involved in the OPF problem is mainly two-fold: (i) the size of real-63

world OPF problems for which a direct solution approach is prohibitive due to memory64

and computational time limitations and (ii) nonconvex problem structure resulting from65

highly nonlinear power balance equations, which demand good global optimization pro-66

cedures to determine the optimal operating points for the generators. In this work, we67

primarily focus on addressing (ii) with specific application to benchmark IEEE power68

system examples.69

Several deterministic solution approaches have been proposed for solving the OPF70

problem. Prominent among these are sequential linear and quadratic programming, La-71

grangian relaxation, and interior-point methods (see, for instance Phan and Kalagnanam72

(2014); Momoh, El-Hawary, and Adapa (1999a); Momoh, El-Hawary, and Adapa (1999b);73

Gopalakrishnan et al. (2012)). However, as noted above, the OPF problem is nonconvex74

in nature with multiple equilibrium points (cf. Bukhsh et al. (2013)). Consequently, the75

aforementioned solution approaches, which typically rely on a ‘convexity’ assumption76

of the optimization problem, may fail to find the good optimal solution in practice. In77

addition to the aforementioned solution approaches, semidefinite programming (SDP)78

relaxation is another popular method which is widely used for solving the OPF problem79

(Bai et al. (2008)). However, the exactness of the SDP relaxation can only be guaran-80

teed for radial networks (see, for instance, Kocuk, Dey, and Xu. A. Sun (2016)). Other81

research directions in the context of the OPF problem are based on the development82

of convex envelopes (Zhijun, Hou, and Chen (2015)) and decomposition based global83

optimization methods (Li and Li (2016)).84

Similarly, in the past decade, a number of non-deterministic solution approaches have85

also been investigated for solving OPF problems. A few examples of such approaches are86

ant colony optimization (Soares et al. (2011)), genetic algorithm (Todorovski and Rajicic87

(2006)), differential evolution (A. A. Abou El Ela, Abido, and Spea (2010); Shaheen,88

El-Sehiemy, and Farrag (2016)), particle swarm optimization (Abido (2002); Vaisakh89

and Srinivas (2011); Mohamed et al. (2017)), simulated annealing (Roa-Sepulveda and90

Pavez-Lazo (2003)), bacterial foraging algorithm (Edward et al. (2013)), and imperialist91

competitive algorithm (Ghasemi et al. (2014a); Ghasemi et al. (2014b); Ghasemi et al.92

(2015)). A detailed survey of deterministic and non-deterministic solution approaches for93

solving the OPF problem can be found in Frank, Steponavice, and Rebennack (2012a)94

and Frank, Steponavice, and Rebennack (2012b).95

We note that the last two decades have witnessed the emergence of interval form based96

B&B has emerged as a promising framework to solve nonconvex optimization problems97

(Vaidyanathan and M. El-Halwagi (1996); Hansen and Walster (2005)). This is evident98

from the seminal work on αBB relaxation by Adjiman, Androulakis, and Floudas (1998)99

which had yielded B&B implementations, such as BARON (Tawarmalani and Sahinidis100

2005) and COUENNE (Belotti et al. 2009). The impressive performances of BARON101

and COUENNE on a wide variety of optimization problems has been well documented.102

In recent times, various modifications of the aforementioned B&B implementations have103

also been reported in the literature (see, work reported by Grimstad and Sandnes (2016),104

Gerard, Kppe, and Louveaux (2017), Castro (2017), and references therein). This has mo-105

tivated us to investigate an alternative interval form based Bernstein global optimization106

algorithm to solve the polynomial OPF problem.107

This work explores the well-known Bernstein form of polynomials (Ratschek and Rokne108

(1988)), and uses several attractive ‘geometrical’ properties associated with the Bernstein109

form (refer to Section 3.1). Optimization procedures based on the Bernstein form, also110

called Bernstein global optimization algorithms, have shown good promise in solving hard111

(nonconvex) nonlinear programming (NLP) and mixed-integer nonlinear programming112
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(MINLP) problems (see, for instance, Nataraj and Arounassalame (2011); Patil, Nataraj,113

and Bhartiya (2012)). Recently, a Bernstein global optimization algorithm was also pro-114

posed to solve the OPF problem for small power networks (see Patil et al. (2016)). As115

such, we believe that further investigations in the context of the OPF problem using the116

Bernstein global optimization approach seems to be a promising research direction.117

In this work, we propose a hybrid1 branch-and-bound (B&B) algorithmic scheme.118

Specifically, we use the Bernstein polynomial form in conjunction with a local NLP solv-119

ing technique to form a new hybrid Bernstein global optimization algorithm(hereinafter120

referred to as algorithm HBBB). The algorithm HBBB uses an iterative subdivision pro-121

cedure in a B&B scheme, wherein a series of upper and lower bounding subproblems122

are solved at each node of the B&B tree. We obtain the upper bound using MATLAB’s123

‘fmincon’ as a local NLP solver and the lower bound using the minimum Bernstein coef-124

ficient value (see Theorem 3.1). Furthermore, we follow the principle of interval analysis,125

wherein iterative subdivisions are performed at each step of a B&B scheme. This en-126

ables the B&B scheme to converge the upper and lower bounds within a user-specified127

accuracy. The overall schematic of the proposed approach is depicted in Figure 1.128

We first show with a simple nonlinear optimization problem the effectiveness of the129

algorithm HBBB over the previously reported Bernstein algorithm in (Nataraj and130

Arounassalame (2011)), and the state-of-the-art BARON solver. The performance com-131

parison is made on the basis of the number of boxes processed, and the computational132

time required to locate the correct global solution. Subsequently, we assess the scalability133

and performance of the algorithm HBBB over the OPF problem for the several bench-134

mark IEEE power system network examples. The performance of the proposed algorithm135

HBBB is compared with the generic global optimization solvers BARON (Tawarmalani136

and Sahinidis (2005)) and COUENNE (Belotti et al. (2009)).137

Figure 1. The hybrid Bernstein B&B scheme illustrating the lower (L) and upper (U) bounding processes followed
by subdivision. P represents the original (nonconvex) problem, whose global minimum is to be sought and R is
the convex relaxation obtained (in our case using the Bernstein polynomial form).

1The word hybrid in this context means that our algorithm is a combination of local and global optimization
methods. To the best of the authors’ knowledge, this is the first work which explores the use of local solving

techniques for the early pruning of nodes in a B&B tree in the context of Bernstein global optimization algorithms.
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The remainder of this paper is organized as follow. The classical OPF formulation for138

the power network first is first introduced in Section 2. Next, the Bernstein polynomial139

form is briefly introduced in Section 3. This is followed by a description of our proposed140

algorithm HBBB in Section 4. The results from numerical studies performed with our141

algorithm HBBB on some benchmark IEEE power system network examples are reported142

in Section 5. The results of the numerical studies are also compared with those obtained143

using well established global optimization solvers in Section 5. Finally, some concluding144

remarks and directions for future research are given in Section 6.145

2. Optimal power flow problem146

In this section, we briefly present the classical OPF formulation along the lines of Molzahn147

et al. (2013) which is in terms of the rectangular power and voltage co-ordinates. The148

objective of the OPF problem is to minimize the cost of real power generation. The149

problem is subject to constraints such as the power balance, satisfaction of bus voltage150

limits, active and reactive power generation limits, and line-flow limits.151

Consider an n-bus power system, where N = {1, 2, . . . , n} represents the set of all152

buses; G represents the set of generator buses and L represents the set of all lines. Let153

PDk and QDk represent the active and reactive power demands respectively at each bus154

k ∈ N . Let Vk = Vdk + jVqk represent the voltage phasor in rectangular coordinates at155

each bus k ∈ N . Let PGk and QGk represent the active and reactive power generations156

respectively at each generator bus k ∈ G. Let Sik represent the apparent power flow and157

Yik = Gik + jBik denote the line admittance of the line (i, k) ∈ L respectively.158

The quadratic fuel cost function associated with each generator k ∈ G representing a159

$/h operating cost is given below.160

fk (PGk) = ck2P
2
Gk + ck1PGk + ck0 ∀k ∈ G (1)

Then, the classical OPF optimization problem can be stated as follows:

min
PGk,QGk,Vdk,Vqk

f =
∑
k∈G

fk (PGk) (2)

subject to

PGk − PDk = Vdk

n∑
i=1

(GikVdi −BikVqi) + Vqk

n∑
i=1

(BikVdi +GikVqi) ∀k ∈ N (3)

QGk −QDk = Vdk

n∑
i=1

(−BikVdi −GikVqi) + Vqk

n∑
i=1

(GikVdi −BikVqi) ∀k ∈ N (4)

Pmin
Gk 6 PGk 6 Pmax

Gk ∀k ∈ G (5)

Qmin
Gk 6 QGk 6 Qmax

Gk ∀k ∈ G (6)(
V min
k

)2
6 V 2

dk + V 2
qk 6 (V max

k )2 ∀k ∈ N (7)

Pki = Gik
(
V 2
dk + V 2

qk

)
−Gik (VdkVdi + VqkVqi) +Bik (VdiVqk − VdkVqi) ∀k ∈ N

(8)

Qki = Bik
(
V 2
dk + V 2

qk

)
−Gik (VdiVqk − VdkVqi)−Bik (VdkVdi + VqkVqi) ∀k ∈ N

(9)√
P 2
ki +Q2

ki 6 Smax
ki ∀ (i, k) ∈ L (10)
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The objective function (2) is the minimization of the total operating cost of the system.161

Equations (3) and (4) are the real and reactive power balance constraints at each bus162

k. Equations (3) and (4) are formulated considering the Kirchoff’s laws of power flow163

through branches attached to buses. Active and reactive power generation capability164

margins are considered in (5) and (6) respectively. Equations (7) and (10) represent the165

voltage security margins and the line apparent power flow capacities respectively.166

Remark 1 We note that the constraints (3)-(4) possess multilinear terms in the real and167

imaginary voltage components. Hence, the OPF problem turns out to be a nonconvex168

nonlinear programming (NLP) problem, albeit polynomial in nature (i.e., (2)-(4) are169

always polynomials in the power form shown in (11)).170

3. The Bernstein polynomial approach171

In this section, we introduce some notions related to interval analysis and the theory172

pertaining to the Bernstein form of polynomials presented in Patil, Nataraj, and Bhartiya173

(2012). Interested readers may also refer to Ratschek and Rokne (1988) and Moore,174

Kearfott, and Cloud (2009) for more details about this topic.175

3.1 Bernstein form176

Let l ∈ N be the number of variables and x = (x1, x2, ..., xl) ∈ Rl. A multi-index I is de-177

fined as I = (i1, i2, ..., il) ∈ Nl and the multi-power xI is defined as xI = (xi11 , x
i2
2 , ..., x

il
l ).178

Another multi-index N is defined as N = (n1, n2, ..., nl). Inequalities I ≤ N for multi-179

indices are meant component-wise. With I = (i1, ..., ir−1, ir, ir+1, ..., il), we associate the180

index Ir,k given by Ir,k = (i1, ..., ir−1, ir+k, ir+1, ..., il), where 0 ≤ ir+k ≤ nr. Also we181

write
(
N
I

)
for

(
n1

i1

)
· · ·
(
nl

il

)
and (N/I) for (n1/i1, n2/i2, ..., nl/il) provided that 0 < ik,182

k = 1, 2, . . . , l.183

A real, bounded and closed interval x is defined as follows:

x = [x, x] := [inf x, sup x] ∈ IR,

where IR denotes the set of compact intervals. Let w(x) denote the width of x, that184

is w(x) := x − x, and m(x) denote the midpoint of x, that is m(x) := (x + x)/2. For185

an l-dimensional interval vector or box x = (x1,x2, . . . ,xl) ∈ IRl, the width of x is186

w(x) := max(w(x1), w(x2), . . . , w(xl)).187

We can write an l-variate polynomial p in the power form as shown below.188

p(x) =
∑
I≤N

aIx
I , x ∈ Rl, (11)

with N being the degree of p. We expand a given multivariate polynomial p into Bernstein189

polynomials to obtain the bounds for its range over an l-dimensional box x. The Ith
190

Bernstein basis polynomial of degree N is defined as follows:191

BN
I (x) = Bn1

i1
(x1) · · ·Bnl

il
(xl), x ∈ Rl, (12)
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where for ij = 0, 1, ..., nj , j = 1, 2, . . . , l192

B
nj

ij
(xj) =

(
nj
ij

)
(xj − xj)ij (xj − xj)nj−ij

(xj − xj)nj
. (13)

The Bernstein coefficients bI(x) of p over the box x are given by the following equation:193

bI (x) =
∑
J≤I

(
I
J

)
(
N
J

)w(x)J
∑
K≤J

(
K
J

)
(inf x)K−JaK , I ≤ N . (14)

The Bernstein form of a multivariate polynomial p is defined by194

p (x) =
∑
I≤N

bI (x)BN
I (x) . (15)

The Bernstein coefficients are collected in an array (bI(x))I∈S , where S = {I : I ≤ N}.195

We denote S0 as a special subset of the index set S comprising indices of the vertices of196

this array, i.e.197

S0 := {0, n1} × {0, n2} × · · · × {0, nl}.

Theorem 3.1 (Range enclosure property) Let p be a polynomial of degree N , and let198

p(x) denote the range of p on a given box x ∈ IRl. Then,199

p(x) ⊆ B(x) :=
[
min (bI(x))I∈S ,max (bI(x))I∈S

]
. (16)

Proof : See Garloff (1993).200

Remark 2 The above theorem states that the minimum and maximum coefficients of the201

array (bI(x))I∈S provide lower and upper bounds for the range. This forms the Bernstein202

range enclosure defined by B(x) in (16).203

Lemma 3.2 (Convex hull property) Let (bI(x)) be an array of Bernstein coefficients for204

a polynomial p(x) on a given box x ∈ IRl. Then, the following property holds:205

conv (x, p(x)) ⊆ (I/N, bI(x) : I ∈ S) ,

where conv (x, p(x)) denotes the convex hull of p.206

Remark 3 The above lemma states that the range of p(x) is contained in the convex hull207

of the control points (I/N, (bI)). Figure 2 illustrates this fact, wherein the polynomial208

function is represented as p(x) and Bernstein coefficients are denoted as b0, b1, b2, b3, b4,209

and b5. The dotted lines in Figure 2 define the convex hull. Furthermore, this Bernstein210

range enclosure can be successively sharpened by the continuous domain subdivision211

procedure. This is illustrated in Figure 3.212
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Figure 2. A polynomial function p, its Bernstein coefficients and the convex hull over a box x = [0, 1].

Figure 3. Improvement in the range enclosure of p with a subdivision of the original box x = [0, 1].
(b10, b11, b12, b13, b14, b15), and (b20, b21, b22, b23, b24, b25) are the Bernstein coefficients over x1 = [0, 0.5] and
x2 = [0.5, 1], respectively.

The following properties follow immediately from Theorem 3.1.213

Lemma 3.3 Let B(x) be the Bernstein range enclosure for a polynomial p(x) on a214

given box x ∈ IRl. Then, the following properties hold215

(1) B(x) ≤ 0⇒ p(x) ≤ 0 for all x ∈ x.216

(2) B(x) > 0⇒ p(x) > 0 for all x ∈ x.217

(3) 0 /∈ B(x)⇒ p(x) 6= 0 for all x ∈ x.218

(4) B(x) ⊆ [−ε, ε]⇒ p(x) ∈ [−ε, ε] for all x ∈ x, where ε > 0.219

4. Hybrid Bernstein global optimization algorithm220

In this section, we outline the proposed algorithm HBBB to solve polynomial NLP prob-221

lems. We first briefly describe the algorithm. Subsequently, we demonstrate the strength222

of the algorithm HBBB over the previously reported Bernstein algorithm (Nataraj and223

Arounassalame (2011)) on a nonlinear optimization problem. Furthermore, with the op-224

timization problem, we also demonstrate the merits of the algorithm HBBB over the225

BARON solver. Finally, in Section 5, the algorithm HBBB is used to determine the op-226

timal solution (global minimum and minimizers) of the OPF problem (2)-(4) described227

in Section 2228

Briefly, the algorithm works as follows. At the outset, for the original problem, a229

8
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feasible solution (from the search box xIter Count) is computed using a local search230

method. The obtained minimum is called a feasible upper bound (UBD). Next, a valid231

lower bound (LBD) on the optimal objective function value is obtained using the232

minimum Bernstein coefficient value. After establishing the upper and lower bounds on233

the global minimum, we refine them. This is accomplished by successively subdividing234

the initial box xIter Count at the midpoint along the longest side, resulting in two smaller235

boxes (xIter Count,1, xIter Count,2). This procedure generates a nonincreasing sequence236

for the upper bound and a nondecreasing sequence for the lower bound. Within a finite237

number of subdivisions, the gap between UBD and LBD shrinks to the termination238

accuracy εt. Finally, the algorithm terminates with the current upper bounding solution239

as the global solution.240

241

Algorithm hybrid Bernstein: [f∗, x∗] = HBBB(f, g, h,x, εt, εzero,Max Subdiv)242

243

Inputs: The objective function (f) and constraints (g, h) in the power form, the244

initial search box x, parameter εt as the termination accuracy, tolerance parameter εzero245

to which the equality constraints are to be satisfied, and Max Subdiv as the maximum246

number of subdivisions to be performed to locate the global solution.247

248 Outputs: A global minimum f∗ and global minimizers x∗ over a box x.249

250

BEGIN Algorithm251

(1) {Initialization}252

Set Iter Count←− 0, Subdiv No←− 0, LBD ← −∞, UBD ←∞, xIter Count ← x,253

xcIter Count ← m(xIter Count), LIter Count ← {}.254

(2) {Upper bound computation}255

Solve OPF (2)-(4) over xIter Count using a local search method. We use xcIter Count as256

an initial point to start the optimization for a local NLP solver. Denote the obtained257

minimum as f localIter Count and minimzers as xlocalIter Count. If f localIter Count is feasible, and258

f localIter Count < UBD, then update UBD as UBD ← f localIter Count.259

(3) {Subdivision}260

Subdivide the current box xIter Count into two smaller subboxes261

(a) Subdiv No← Subdiv No+ 1.262

(b) Choose a coordinate direction λ parallel to which xIter Count,1 × · · · × xIter Count,l263

has an edge of maximum length, that is λ ∈ {i : w(x) := w(xi), i = 1, . . . , l}.264

(c) Bisect xIter Count normal to direction λ, getting boxes xIter Count,1 and265

xIter Count,2, such that xIter Count = xIter Count,1 ∪ xIter Count,2.266

(4) {Lower bound computation}267

for k = 1, 2268

(a) Find the Bernstein coefficients and the corresponding Bernstein range enclosure269

of the objective function (f) over xIter Count,k as270

b0(xIter Count,k) and B0(xIter Count,k), respectively.271

(b) Set fglobalIter Count := minBo(xIter Count,k).272

(c) If fglobalIter Count > UBD, then go to substep (g).273

(d) for i = 1, 2, . . . ,m274

(i) Find the Bernstein coefficients and the corresponding Bernstein range enclosure275

of the inequality constraint polynomial (gi) over xIter Count,k as bgi(xIter Count,k)276

and Bgi(xIter Count,k), respectively.277

(ii) If Bgi(xIter Count,k) > 0, then go to substep (g).278

(iii) If Bgi(xIter Count,k) ≤ 0, then go to substep (e)279

(e) for j = 1, 2, . . . , n280

9
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(i) Find the Bernstein coefficients and the corresponding Bernstein range enclosure281

of the equality constraint polynomial (hj) over xIter Count,k as bhj(xIter Count,k)282

and Bhj(xIter Count,k), respectively.283

(ii) If 0 /∈ Bhj(xIter Count,k) then go to substep (g).284

(iii) If Bhj(xIter Count,k) ⊆ [−εzero, εzero] then go to substep (f).285

(f) Enter (xIter Count,k, f
global
Iter Count) into the list LIter Count such that the second mem-286

bers of all the items of the list do not decrease.287

(g) end (of k−loop).288

(5) {Update iteration counter and lower bound}289

(a) Set Iter Count← Iter Count+ 1.290

(b) Update LBD to the minimum of the second entries over all the items in LIter Count.291

Similarly, fetch the first entry corresponding to this minimum and denote it as292

xIter Count. Also compute xcIter Count as xcIter Count ← m (xIter Count).293

(6) {Termination condition}294

If Subdiv No < Max Subdiv or UBD − LBD > εt, then go to step 2. Else go to295

step 7.296

(7) {Compute global solution}297

Return the global minimum and global minimizers as f∗ ← UBD, and x∗ ←298

xlocalIter Count, respectively.299

END Algorithm300

Remark 4 The algorithm HBBB follows a classical subdivision procedure for the orig-301

inal box x. As such, the feasible region for x shrinks with each iteration. Furthermore,302

the objective function value is a function of x. Hence, the sequence of upper and lower303

bounds converge in the limit within a finite number of iterations (cf. Ratschek and Rokne304

(1988)).305

Remark 5 The subdivision of x aids in raising the lower bound (computed using the306

Bernstein form) of the objective function value (cf. Patil, Nataraj, and Bhartiya (2012)),307

thereby speeding up the convergence of the algorithm HBBB.308

Theorem 4.1 The algorithm HBBB based on the upper and lower bounding schemes309

converges to the global optimal solution.310

Proof : The algorithm HBBB is both bound consistent (see Remark 4), and bound311

improving (see Remark 5). Hence, it is also convergent (Tawarmalani and Sahinidis312

(2002), Li and Sun (2010)).313

314

Demonstrative Example: The strength of the algorithm HBBB is now demon-315

strated with a nonlinear optimization problem adapted from (Lebbah, Michel, and316

Rueher (2007)). We first demonstrate the strength of the algorithm HBBB with the317

previously reported Bernstein algorithm from Nataraj and Arounassalame (2011) in318

terms of the number of subdivisions and the computational time. Subsequently, we also319

demonstrate the merit of the algorithm HBBB in terms of the solution optimality when320

compared with the BARON solver.321

Consider the following nonlinear optimization problem:322

min
x,y

f = x

subject to y − x2 ≥ 0

y − x2(x− 2) + 10−5 ≤ 0

x ∈ x = [−10, 10], y ∈ y = [−10, 10]


(P)

10
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Figure 4. Geometrical representation of an optimization problem (P) (Lebbah, Michel, and Rueher (2007)).

Geometrically, this problem is shown in Figure 4. As pointed out by Lebbah, Michel,323

and Rueher (2007), the solution of the problem (P) lies in the neighborhood of the point324

x ≈ 3, y ≈ 9, with the global minimum as f∗ ≈ 3.325

We observed that both the classical Bernstein algorithm and HBBB algorithm con-326

verged to the correct global solution reported by the Lebbah, Michel, and Rueher (2007)327

for the problem (P). However, the algorithm HBBB was found to be superior in term of328

its performance during the global search process (cf. Table 1). The algorithm HBBB re-329

quired approximately 66% fewer subdivisions, thereby reducing the computational time330

required by approximately 30%.331

Table 1. Performance comparison of the previously reported Bernstein algorithm in Nataraj and Arounassalame
(2011) and the algorithm HBBB on the optimization problem (P).

Performance Bernstein algorithm HBBB
metrics (Nataraj and Arounassalame (2011))

Number of 294 100
subdivisions

Computational 2.53 1.78
time (seconds)

Furthermore, the problem (P) was solved using BARON with an optimality tolerance332

10−12 (i.e. in GAMS, set optca = 10E-12). BARON reported f∗ = 0 as the global min-333

imum, and x∗ = 0, y∗ = 0 as the global minimizers. This successfully demonstrates the334

merit of the algorithm HBBB when compared with BARON for this particular optimiza-335

tion problem.336

5. Numerical results337

In this section, we report results from solving the OPF problem for several benchmark338

IEEE power system models with our hybrid Bernstein algorithm (HBBB). The bench-339

mark IEEE power system models were adapted from Zimmerman, Murillo-Sanchez, and340

Thomas (2011). We analyze the results from two perspectives. First, the performance341

of algorithm HBBB for several test cases (3-, IEEE 9-, IEEE 14-, IEEE 30-, and IEEE342

39-bus systems) is compared with the performance of general purpose global optimiza-343

tion solvers like BARON (Tawarmalani and Sahinidis (2005)) and COUENNE (Belotti344

et al. (2009)). Subsequently, we study the computational time growth of the algorithm345

11
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HBBB. This was achieved by increasing the number of subdivisions (Max Subdiv) and346

tightening the termination accuracy (εt) in the algorithm HBBB.347

The algorithm HBBB was implemented in MATLAB (R2014a). All experiments were348

carried out on a desktop PC with an IntelrCore i7-5500U CPU processor running at 2.40349

GHz with a 8 GB RAM. The termination accuracy εt and equality constraint feasibility350

tolerance εzero were both specified as 10−3. For testing with BARON and COUENNE351

solvers, all test cases were modeled in General Algebraic Modeling System (GAMS), and352

solved using the NEOS server for optimization (NEOS server (2018)).353

Case I (Performance comparison with BARON and COUENNE solvers)354

Table 2 shows the OPF solutions obtained using the different solution approaches for sev-355

eral benchmark test cases (3-, IEEE 9-, IEEE 14-, IEEE 30-, and IEEE 39-bus systems).356

Table 2 shows the different test cases and their corresponding numbers of optimization357

decision variables, apart from the following two performance metrics - computational time358

in seconds and the optimal fuel cost in $/h. Specifically, we analyze the performance of the359

algorithm HBBB by setting the number of subdivisions to 25 and termination accuracy εt360

to 10−3. Figure 5 illustrates the comparison between the algorithm HBBB, BARON and361

COUENNE in terms of the computational time. It can be seen that algorithm HBBB was362

computationally slower compared with BARON for most test cases. However, algorithm363

HBBB performed exceptionally well for the IEEE 30-bus system test case wherein it was364

94% faster than BARON. For some test cases (IEEE 14-, IEEE 30-, and IEEE 39-bus365

systems), COUENNE was found to be the slowest. On an average, COUENNE was 96%366

and 83% slower than algorithm HBBB and BARON, respectively. Furthermore, we also367

found that the algorithm HBBB was competitive in terms of locating the correct optimal368

solution for all the test cases when compared with with BARON.369

Table 2. Comparison of the OPF cost (2) (f∗, in $/h) and computational time (t, in seconds) for benchmark
IEEE test cases under different solution approaches.

Test Number of Performance Solver/Algorithm
case decision variables metric BARON COUENNE HBBB†

3-bus 12 f∗ 5703.52 5703.52 5703.52
t 0.5 0.2 0.45

IEEE-9 24 f∗ 5296.68 5296.68 5296.68
bus t 0.2 7.72 7.62

IEEE-14 38 f∗ 8081.53 8081.53 8081.53
bus t 0.3 371.72 13.64

IEEE-30 72 f∗ 576.89 576.89 576.89
bus t 396.93 1021.01 24.41

IEEE-39 98 f∗ 41864.18 41864.18 41864.18
bus t 4.25 1026.83 48.75

12
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Figure 5. Computational time comparison for five test cases (3-, 9-, 14-, 30-, and 39-bus systems) solved using
BARON, COUENNE and algorithm HBBB.

Case II (Computational time growth study)370

In this case, we study the growth in computational time for algorithm HBBB with an371

increasing number of subdivisions (50, 100, 150) and tightened termination accuracy εt372

(10−8). Table 3 reports the results of our experiments. From Figure 6, it is observed373

that with an increase in the number of subdivisions, the computational time required374

increases almost linearly. However, no improvement in terms of optimality was observed375

when compared with the algorithm HBBB results reported in Case I. Furthermore, we376

also analyzed the degree to which the equality constraints in (3)-(4) are satisfied for the377

five OPF test cases considered in this work. This is particularly important as the power378

supply and demand need to be balanced in real-time. The results are shown in Table 4.379

We observed that at the optimal solution, the equality constraints are tightly satisfied380

for all the test cases considered in this study.381

Table 3. Comparison of the cost function (2) (f∗, in $/h) and computational time (t, in seconds) for bench-
mark IEEE test cases solved using the algorithm HBBB with increasing number of subdivisions and tightened
termination accuracy εt.

Test Performance Number of subdivisions (εt = 10−8)
instance metric 50 100 150

3-bus f∗ 5703.52 5703.52 5703.52
t 3.44 7.95 17.90

IEEE-9 f∗ 5296.68 5296.68 5296.68
bus t 8.25 24.6 56.01

IEEE-14 f∗ 8081.53 8081.53 8081.53
bus t 32.43 52.47 79.15

IEEE-30 f∗ 576.89 576.89 576.89
bus t 52.42 125.27 322.82

IEEE-39 f∗ 41864.18 41864.18 41864.18
bus t 109.20 277.86 455.17
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Figure 6. Computational time growth of the algorithm HBBB with increasing number of subdivisions (50, 100,
150) and tightened termination accuracy εt (10−8).

Table 4. Equality constraint satisfaction at the optimal solution for five benchmark IEEE test cases solved using
the algorithm HBBB under a tightened termination accuracy εt = 10−8.

Test Equality constraint

case Mean Max

3-bus 7.04×10−11 4.95×10−10

IEEE-9 bus 3.57×10−12 1.74×10−11

IEEE-14 bus 8.97×10−12 1.10×10−10

IEEE-30 bus 2.05×10−14 1.39×10−13

IEEE-39 bus 1.19×10−14 3.89×10−13

6. Conclusions382

In this work, we presented a new B&B scheme in the context of the OPF problem. Our383

scheme was based on the concept of sequential improvement in the upper and lower384

bounds of a B&B tree. The interesting feature of our approach was the use of the Bern-385

stein polynomial form in conjunction with a local search method (a ‘hybrid’ algorithm386

HBBB in our terminology). The efficacy of the algorithm HBBB was compared with387

the previously reported Bernstein algorithm using a nonlinear optimization instance.388

Furthermore, the same optimization instance was also used to demonstrate the merits389

of the algorithm HBBB over the BARON solver. Further, to ascertain the practicabil-390

ity of the algorithm HBBB, we tested it on several benchmark IEEE OPF instances391

and compared its performance with well established global optimization solvers such as392

BARON and COUENNE. In terms of computational time, the algorithm HBBB was393

slower than BARON except for one test instance (IEEE 30-bus system), where it per-394

formed exceptionally well. On the other hand, the algorithm HBBB was found to be395

faster than COUENNE for most test cases. We note that the algorithm HBBB was able396

to achieve the same optimality as BARON and COUENNE in terms of fuel cost for the397

OPF problem.398

The work reported in this paper can be extended in the following directions:399
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• The OPF problem in this work was restricted to small to medium-size power systems400

(to be precise, 3- to IEEE 39-bus). It is well-known that the size of OPF problem401

grows enormously with the size of the power system network. In such circumstances,402

distributed optimization algorithms hold a lot of promise. As such, we plan to extend403

the algorithm HBBB into a distributed framework.404

• The problem formulation in this work considered a traditional fossil fuel based power405

generation network. The inclusion of intermittent renewable energy sources makes the406

OPF problem more challenging. In this scenario, solving the OPF problem requires407

the adoption of robust optimization procedures with chance constraints. In future, we408

plan to extend the algorithm HBBB to solve such problems.409
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