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Abstract

Background: The molecular heterogeneity of autoimmune and inflammatory diseases has been one of the main
obstacles to the development of safe and specific therapeutic options. Here, we evaluated the diagnostic and
clinical value of a robust, inexpensive, immunoassay detecting the circulating soluble form of the monocyte-specific
surface receptor sialic acid binding Ig-like lectin 1 (sSIGLEC-1).

Methods: We developed an immunoassay to measure sSIGLEC-1 in small volumes of plasma/serum from systemic
lupus erythematosus (SLE) patients (n =75) and healthy donors (n = 504). Samples from systemic sclerosis patients
(n=99) were studied as an autoimmune control. We investigated the correlation between sSIGLEC-1 and both
monocyte surface SIGLEC-1 and type | interferon-regulated gene (IRG) expression. Associations of sSIGLEC-1 with
clinical features were evaluated in an independent cohort of SLE patients (n = 656).

Results: Plasma concentrations of sSIGLEC-1 strongly correlated with expression of SIGLEC-1 on the surface of blood
monocytes and with IRG expression in SLE patients. We found ancestry-related differences in sSIGLEC-1 concentrations in
SLE patients, with patients of non-European ancestry showing higher levels compared to patients of European ancestry.
Higher sSIGLEC-1 concentrations were associated with lower serum complement component 3 and increased frequency
of renal complications in European patients, but not with the SLE Disease Activity Index clinical score.

Conclusions: Our sSIGLEC-1 immunoassay provides a specific and easily assayed marker for monocyte-macrophage
activation, and interferonopathy in SLE and other diseases. Further studies can extend its clinical associations and its
potential use to stratify patients and as a secondary endpoint in clinical trials.
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Background

The type I interferon (IFN) pathway was identified as a
central feature of the autoimmune disease systemic lupus
erythematosus (SLE) when IFN-« was first detected at high
levels in patients’ sera [1]. Since this initial observation, the
development of SLE-like clinical manifestations in patients
treated with IFN-a for different malignancies pointed to
the involvement of IFN-a in the aetiology of the disease
[2]. Furthermore, naturally occurring anti-IFN-a antibodies
in SLE patients have been shown to be associated with
milder forms of the disease [3]. The identification of a
constitutive IFN transcriptional signature comprising
hundreds of IFN-regulated genes (IRGs) in peripheral
blood from a subset of SLE patients [4, 5] suggested
that the IFN signature could be used as a clinical bio-
marker to stratify patients with autoimmune and inflam-
matory diseases in which type I IFNs are known to play a
pathogenic role, referred to as the interferonopathies.
Nevertheless, the precise link between the IEN signature
and molecular subtypes of disease or with broader disease
severity scores has been put into question [6]. With the
development of more sophisticated high-throughput gen-
omic tools, it has become apparent that the IFN signature
is a complex composite marker, which can be further
stratified into several distinct signatures that are better
predictors of disease subtype [7]. Longitudinal analyses
have revealed that the IFN signature is highly variable over
time as a result of alterations in blood composition
caused by therapy or progression of the disease [7, 8].
This is particularly relevant to IFN-driven diseases, as
IFN-a is known to significantly alter the relative distri-
bution of immune cell types in blood, which can se-
verely compromise the diagnostic potential of the
whole blood IFN signature [8] and lead to the observed
lack of correlation between the signature and disease
activity over time [9, 10].

These findings have led to the investigation of other
potential cell-type specific biomarkers that could be better
predictors of disease severity or clinical subtypes. One such
IFN-regulated marker that has shown promise for the
stratification of SLE patients is sialic acid binding Ig-like
lectin 1 (SIGLEC-1) [11-13]. SIGLEC-1 is a cell-adhesion
molecule involved in the initial contacts with sialylated
pathogens and mediates phagocytosis and endocytosis of
pathogens, thereby promoting efficient immune responses
to limit infection [14]. Unlike the canonical IFN tran-
scriptional signature, which is a composite of many
genes expressed at different levels in different immune
cells, SIGLEC-1 is expressed exclusively in cells of the
myeloid lineage, namely tissue-resident macrophages
and monocyte-derived dendritic cells [15, 16]. In blood,
expression of surface SIGLEC-1 is restricted to CD14"
monocytes, and has been previously reported to be
increased in several other autoimmune diseases, including
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rheumatoid arthritis [17], systemic sclerosis (SSc) [18] and
primary biliary cirrhosis [19]. In addition, a recent study
has shown that increased SIGLEC-1 expression on the
surface of monocytes was a predictor of congenital
heart block during pregnancy in children from Ro/SS-A
autoantibody-positive mothers [20].

These data support the use of SIGLEC-1 as a potential
cell-type specific biomarker for the stratification of patients
with an overt type I IFN response. However, assay of sur-
face SIGLEC-1 requires intact cells and flow cytometry,
features that are not conducive for the development of a
high-throughput, inexpensive biomarker assay, ideally de-
tectable in plasma/serum. Here we show that a circulating
form of SIGLEC-1 can be detected in serum/plasma, and
develop a robust and inexpensive immunoassay to measure
its concentration. Furthermore, we provide evidence that
the concentration of soluble SIGLEC-1 (sSIGLEC-1) is
associated with the patient’s ancestry and with renal
involvement in SLE patients. Therefore, sSSIGLEC-1 is a
new circulating plasma/serum biomarker of type I IFN
activity in systemic autoimmune, inflammatory and
infectious diseases that can be used accurately and
conveniently in large numbers of samples, and could be
used in clinical trials of drugs modulating the IEN signal-
ling pathway for patient stratification and as a secondary
endpoint.

Methods

Participants

Discovery cohort (cohort 1) study participants included
34 SLE patients (median age 39 years, range 20-72 years;
32/34 female) recruited from Guy’s and St Thomas’ NHS
Foundation Trust. All patients satisfied ACR SLE classifi-
cation criteria and were allocated a disease activity using
SLEDAI-2K at the time of sampling. Patients were
recruited from a clinic in which the severity of disease
was such that none of the patients was on high-dose
oral corticosteroids (> 15 mg/day) or B-cell depleting
therapy. Healthy volunteers matched for age and sex (n =
24; median age 43 years, range 25—60 years; 23/24 female)
were recruited from the Cambridge BioResource.

A replication cohort (cohort 2) of 41 SLE patients
(median age 52 years, range 21-82 years; 38/41 female)
and 490 healthy volunteers (median age 48 years, range
18-78 years; 320/490 female) was recruited from the
Cambridge BioResource. The SLE patients were recruited
specifically for this study outside their regular clinic visits,
and were otherwise well at the time of bleeding. No add-
itional disease information or ancestry data were available
for this cohort of patients.

To investigate the association between sSIGLEC-1 with
ancestry and clinical manifestations, a third independent
cohort (cohort 3) of SLE patients (n = 656; median age 45
years, range 15—82 years; 592/655 female, one unknown)
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was recruited from multiple collaborative centres in the
UK (St Thomas’s Hospital, Newcastle Hospital, City
Hospital Sunderland, City Hospital Birmingham, Royal
Hallamshire Hospital, Hammersmith Hospital, West
Middlesex Hospital and Basildon Hospital). Most patients
were of European (n=370), South East Asian (n = 134),
African/Afro-Caribbean (17 = 94) and Far East Asian (=
19) ancestries. Twenty-three patients were of other minor
ancestry groups (including Middle Eastern, Maori and Fiji
ancestry) and 16 had missing ancestry information. The
history of patients’ clinical manifestations since their
disease diagnosis up to the time of their visit is summarised
in Table 1.

A cohort of systemic sclerosis (SSc) patients (N =99),
stratified into patients with limited cutaneous SSc (N = 50)
or diffuse SSc (N =49), and a matching cohort of healthy
donors (N =50) were recruited from the Royal Free
Hospital, UCL, London. All patients had a definite diag-
nosis of SSc according to the 2013 ACR/EULAR SSc
classification criteria [21].

All samples and information were collected with written
and signed informed consent after approval from the
relevant research ethics committees (REC numbers 05/
Q0106/20, 07/H0718/49 and 08/H0308/153; and NHS
Health Research Authority, NRES Committee London-
Hampstead, HRA, REC number 6398, Investigating the
pathogenesis of systemic sclerosis).

Flow cytometry

SIGLEC-1 expression was measured in peripheral blood
mononuclear cells (PBMCs) from 34 SLE patients and
24 healthy donors from the discovery cohort. PBMCs
were thawed in a 37 °C water bath, resuspended in
X-VIVO 15 (Lonza) + 1% heat-inactivated, filtered, hu-
man AB serum (Sigma) and immunostained for 30 min
at room temperature. SIGLEC-1 expression on CD14"
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monocytes was determined using fluorochrome-
conjugated antibodies against CD14 (Clone MS5E2;
BioLegend) and SIGLEC-1 (Clone 7-239; BioLegend).
Immunostained samples were acquired using a BD LSR
Fortessa (BD Biosciences) flow cytometer, and data
were analysed using FlowJo (Tree Star). Dead cells were
excluded based on the eFluor780 Fixable Viability Dye
(eBiosciences).

Soluble SIGLEC-1 time-resolved fluorescence
immunoassay

Plasma/serum sSIGLEC-1 concentrations were measured
using a non-isotopic time-resolved fluorescence (TRF)
assay based on the dissociation-enhanced lanthanide fluor-
escent immunoassay technology (DELFIA; PerkinElmer).
Duplicate test plasma/serum samples diluted 1:10 in assay
buffer (PBS, 0.05% Tween-20, 10% FCS) were incubated
for 2 h at room temperature and then at 4 °C overnight in
96-well EIA/RIA plates (Corning) coated with 1 pg/ml
mouse monoclonal anti-human SIGLEC-1 capture anti-
body (AB18619; Abcam). Sample detection was performed
using a biotinylated sheep polyclonal detection antibody
(BAF5197; R&D Systems) diluted to a final concentration
of 200 ng/ml. Following incubation with the secondary
antibody, europium-labelled streptavidin (PerkinElmer)
was added and the concentration of antigen was measured
by the amount of disassociated europium that is fluores-
cent at 615 nm after excitation at 320 nm.

Quantification of test samples was obtained by fitting
the readings to a human recombinant SIGLEC-1 (R&D
Systems) serial dilution standard curve on each plate
(**>0.995). To maintain assay consistency, the recombin-
ant protein was aliquoted and stored at — 80 °C immediately
following reconstitution and a fresh aliquot from the same
lot was used for each assay.

Table 1 Summary of the history of clinical manifestation of the SLE patients in cohort 3

Phenotype EUR Non-EUR
N Affected patients, n (%) N Affected patients, n (%) OR* (95% Cl) P value®

Renal 320 75 (24.4%) 243 81 (33.3%) 1.60 (1.11-2.32) 0.01
Neurological 330 36 (10.9%) 244 42 (17.2%) 1.67 (1.05-2.74) 0.03
Haematological 366 185 (50.5%) 268 106 (39.6%) 0.65 (047-0.89) 0.007
dsDNA positivity 370 143 (38.6%) 270 83 (30.7%) 0.70 (0.51-0.98) 0.04
Admission rate® 351 140 (39.9%) 196 86 (43.9) 1.20 (0.84-1.71) 0.31
Biologics ever needed? 332 23 (6.9%) 239 12 (5.0%) 0.70 (0.34-1.43) 033

Summary of available clinical history for the 656 study participants from cohort 3 since their disease diagnosis and up to the time of their visit. Data

were stratified by study cohort

Cl confidence interval, EUR patients of European ancestry, non-EUR patients of non-European ancestry, SLE systemic lupus erythematosus

20dds ratio (OR) in non-European patients
bp values calculated using Pearson’s chi-squared test

“Admission defined as any patient requiring hospital admission specifically for SLE in the 5 years prior to and including the date of their clinic visit at which the

blood sample was taken
dpatients treated with biologic drugs at any time since their disease diagnosis
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The lower limit of detection of the assay was set as 2x
background levels in each plate and corresponded to an
average of 1.29 ng/ml across all plates. Samples with mea-
surements below the limit of detection (6/589) were set to
1.29 ng/ml. Assay specificity was confirmed using a bio-
tinylated sheep polyclonal isotype control (R&D Systems).
Technical variation was assessed in duplicate measure-
ments of all samples (average CV =5.0%). Samples with
CV >30% between duplicates (10/589) were excluded
from the analysis. To evaluate potential matrix effects, we
diluted a sample with high sSIGLEC-1 concentration with
assay medium and showed a linear titration between 1:2
and 1:16 dilutions (+* = 0.94).

IFN-a;;, single-molecule digital ELISA assay

Circulating levels of IFN-oy, were measured by Single-
Molecule Array (SIMOA) digital ELISA (Quanterix)
according to the manufacturer’s instructions. IFN-a detec-
tion was achieved using mouse anti-IFN-a monoclonal anti-
bodies: a neutralising antibody (clone MMHA—capture)
and an anti-IFN-a antibody raised against an IFN-ay, anti-
gen (clone 7 N41—detection). Cross-reactivity to the other
IFN-a subtypes was not assessed. Measurements were
performed in plasma samples, which had never been previ-
ously thawed, from the 41 SLE patients of cohort 2.

Type | IFN transcriptional signature in PBMCs

RNA from 34 SLE patients and 24 age and sex-matched
healthy donors in cohort 1 and from 41 SLE patients
and 41 age and sex-matched healthy donors in cohort 2
was extracted from freshly isolated PBMCs stored in
TRIZOL immediately after collection, using the Direct-zol
RNA Mini-Prep kit (Zymo Research) following the
manufacturer’s instructions. The RNA concentration
was measured by NanoDrop (Thermo Fisher Scientific),
and 50 ng of total RNA were hybridised with a custom
NanoString CodeSet (NanoString Technologies), contain-
ing 56 IRGs previously identified as discriminative of the
IFN signature [22]. Expression levels were assessed using
an nCounter Flex instrument (NanoString Technologies).
Data were processed using the nSolver Analysis Software
following normalisation to the geometric mean of positive
control spike-ins and the gene expression of eight house-
keeping genes.

Expression of 56 IRGs previously identified as discrim-
inative of the IFN signature [22] were assessed, with a cus-
tom NanoString CodeSet (NanoString Technologies), using
RNA from 34 SLE patients and 24 age and sex-matched
healthy donors in cohort 1 and from 41 SLE patients and
41 age and sex-matched healthy donors in cohort 2.

A quantitative metric of the IFN signature was generated
using principal component analysis by projection of the
expression of the 56 IRGs onto the first principal com-
ponent (PC1), which was found to explain 86.3% of the
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variance of this dataset. A complete list of the 56 IRGs
and respective NanoString probe sequences is presented
in Additional file 1.

Statistical analyses

Statistical analyses were performed using Prism software
(GraphPad) and R software (https://www.r-project.org).
Given that most phenotypes showed moderate to strong
right skew that violated the assumption of normality, the
phenotypes were log-transformed before statistical testing
and all reported values refer to the geometric mean of the
respective measurements.

Cohorts 1 and 2

The association of sSIGLEC-1 and measured immune
parameters in cohorts 1 and 2 was performed using two-
tailed non-parametric Mann—Whitney tests. Correlation
analyses were performed using linear regression on the
log-transformed data.

Cohort 3

All statistical analyses with the clinical data available for
the 656 patients from cohort 3 were performed using R
software. Association between ancestry and sSIGLEC-1
concentration was assessed using a two-tailed Student’s
t test. The odds ratio (OR) of each clinical parameter
(history of admission within 5 years; ever having suf-
fered with renal, haematological or neurological disease;
requiring biological therapy or active corticosteroid use to
control disease) in European and non-European patients
was assessed by Pearson’s chi-squared test.

Patients were divided into groups based on sSIGLEC-1
serum level centiles (< 50th centile, 51st—74th centile,
75th—95th centile and > 95th centile). Association of
each group and clinical parameters was performed
using a logistical regression model. Patients of European
and non-European ancestry were analysed separately as
ethnicity was a major confounding factor.

Association of the sSIGLEC-1 concentration with other
serological parameters of disease (levels of C3 and C4
measured within 3 months of the visit at the patient’s local
centre/hospital, anti-dsDNA antibody titres and C-reactive
protein) and the estimated glomerular filtration rate
(eGFR) were assessed using linear regression on the
log-transformed data. Association of sSIGLEC-1 concen-
tration and renal disease activity was also determined,
based on the clinical notes documentation, at the time of
the sample collection and the last documented episode
of active nephritis. Comparison of the different disease
activity groups was done using two-tailed Student’s ¢
tests comparing the mean sSIGLEC-1 concentration of
each group to the control group of patients who never
developed renal complications.
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Results

Soluble SIGLEC-1 assay development

To investigate whether we could detect SIGLEC-1
expression levels in peripheral blood, we developed an
immunoassay based on TRF to measure the concentrations
of the circulating form of the receptor, which we refer to as
sSIGLEC-1. Although SIGLECI is predicted to encode a
soluble protein isoform, it has not been previously
shown that such a soluble protein can be detected in
plasma/serum.

We found that sSIGLEC-1 was detected in the circula-
tion, with concentrations ranging from 1.29 to 276.1 ng/ml
in plasma/serum samples from healthy donors and SLE
patients. Technical variation of the assay was found to be
very low, as assessed by two independent measurements of
the same plasma sample from 23 healthy donors performed
308 days apart (median CV = 4.8%, r* = 0.91; Fig. 1a), indi-
cating minimal inter-assay variability. Similarly, biological
SSIGLEC-1 levels were found to be very stable (CV =
11.8%, r* = 0.67; Fig. 1b) in 19 healthy donors bled at two
separate visits (median time between visit 378 days, range
239-519 days), with only two donors showing physiological
differences (CV >20%) between visits, likely due to viral
infections [22]. Of note, one donor showed high concentra-
tions of sSIGLEC-1 on the first visit (28.3 ng/ml), which
were maintained 343 days after the initial measurement
(23.4 ng/ml; Fig. 1b), suggesting that, in addition to viral
and possibly non-viral infections, genetic factors regulate
the sSIGLEC-1 levels.

To expand the applicability of the sSIGLEC-1 immuno-
assay, we also developed an electrochemical luminescence-
based (ECL) assay on the Meso Scale Discovery (MSD) plat-
form, using the same detection antibodies and experimental
protocol. The assay working range was found to be
0.5-1000 ng/ml, with an approximate 92% recovery of
recombinant SIGLEC-1 protein spiked into serum samples.
Stability of the assay over time was assessed using three
pools of serum samples with increasing sSIGLEC-1 con-
centrations that were measured over six different assays
run over a 2-day period. Assay stability was consistent with
the TRF assay, with CVs of 7.7%, 5.6% and 8.5% for the
low, medium and high QC pools, respectively (Fig. 1c).
Furthermore, we found a very high concordance between
the TRF and ECL assays (r* = 0.78; Fig. 1d), as assessed by
measuring a subset of 41 SLE patients on both platforms,
using two independent serum aliquots.

Soluble SIGLEC-1 levels are correlated with the surface
SIGLEC-1 expression on CD14* monocytes

Currently, the surface expression of SIGLEC-1 on mono-
cytes has been suggested as a sensitive cell-type specific
biomarker for SLE in blood [13]. To investigate the rela-
tionship between surface and soluble SIGLEC-1 levels,
we immunophenotyped the expression of this protein on
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the surface of CD14" monocytes in PBMCs collected
from a discovery cohort (cohort 1) of 34 SLE patients
and 24 matched healthy donors (Fig. 2a). Consistent
with previous findings [12, 13], we found that the sur-
face expression of SIGLEC-1 was increased in CD14"
monocytes from SLE patients compared to healthy
controls (P=1.4x10"% Fig. 2b). However, we found
bimodal expression of the surface SIGLEC-1 among SLE
patients, with 10 subjects (10/34, 29%; Fig. 2b) presenting
low levels of protein expression, similar to the ranges
observed in healthy donors, and the rest presenting
much higher levels, rarely observed in healthy volunteers
(Fig. 2a, b).

We found a strong correlation between the surface
expression of SIGLEC-1 on monocytes and the concen-
tration of sSSIGLEC-1 in plasma samples from the same
donors, particularly among SLE patients (+*=0.73, P =
7.9 x 107 % Fig. 2c). The distribution of sSIGLEC-1 levels
recapitulated the same bimodal distribution of the surface
SIGLEC-1 expression on SLE patients, ranging from
‘low normal’ physiological levels observed in healthy
donors to the very high levels observed in a subset of
patients (Fig. 2c).

Association of sSIGLEC-1 with the IFN transcriptional
signature and SLE Disease Activity Index

To assess whether sSIGLEC-1 was associated with the
IEN signature, we measured the transcription of 56 IRGs
previously found to recapitulate the IFN signature [22].
We found that sSIGLEC-1 levels were significantly cor-
related with the IFN transcriptional signature in PBMCs
from SLE patients (+* = 0.67, P=2.9 x 10~ °; Fig. 3a). The
correlation was also observed in healthy donors (+* = 0.34,
P=2.8x 10> Fig. 3a), albeit to a lower extent. These find-
ings were replicated in an independent cohort (cohort 2)
of 41 SLE patients (=046, P=12x10"% Fig. 3b),
confirming that sSIGLEC-1 is a marker of the peripheral
IEN signature. The lower correlation in the replication
cohort is consistent with a lower overall disease severity—
and concomitant lower sSIGLEC-1 levels—of the patients
in the replication cohort, who were recruited outside their
regular clinic visits.

Recently, a single-molecule digital ELISA assay has
been shown to detect IFN-a at femtomolar levels in the
circulation even from healthy individuals [23]. Consistent
with its potent biological activity, over a third of the SLE pa-
tients showed very low IFN-ay;, concentrations (< 10 fg/ml;
Fig. 3c), which were close to the reported limit of detection.
In our hands, the assay showed good reproducibility (CV =
4.1% between replicates), indicating that it is sensitive to
detect even low concentrations of IFN-a,,. We found a
significant correlation between the concentrations of
IEN-ay;, in plasma and sSIGLEC-1 (r*=0.27, P=5.1 x
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Fig. 1 sSIGLEC-1 stability and assay performance. a Data depict the inter-assay (technical) variation of the time-resolved fluorescence (TRF)
SSIGLEC-1 immunoassay. Data were obtained from the measurement of the same plasma sample from 23 healthy donors on two independent
assays, performed 308 days apart. b Data depict the intra-individual (biological) variation of sSIGLEC-1 concentration between two visits of the
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10~ % Fig. 3c) as well as the IFN signature (+* = 0.34, P=
5.6 x 10 % see Additional file 2), although both were
less pronounced than the observed correlation between
sSIGLEC-1 and the IFN transcriptional signature.

In our sample of 34 SLE patients from the discovery
cohort, sSIGLEC-1 concentrations and the SLE Disease
Activity Index (SLEDAI) were not correlated (+*=0.10,
P =0.07; Fig. 3d). This result is consistent with previous
evidence showing a lack of association of other com-
mon serological disease markers, including various
intra-nuclear autoantibodies, elevated B-cell activating
factor of the tumour necrosis factor family (BAFF)

levels and hypocomplementaemia, as well as the whole
blood IFN signature, with disease activity scores such
as the SLEDAI [6].

Increased sSIGLEC-1 concentration is associated with
renal involvement

Having assessed that sSIGLEC-1 is an IFN-regulated
marker that can be detected in the circulation, we next
investigated its potential as a clinical biomarker in SLE.
Similarly to surface SIGLEC-1 expression, sSIGLEC-1
concentrations were markedly increased in SLE patients
(104 ng/ml, 95% CI 8.8-12.2) compared to healthy
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Scatter plot depicts the frequency (geometric mean = 95% Cl) of SIGLEC-1 expression on the surface of CD14" monocytes in a discovery cohort
(cohort 1) of healthy donors (N = 24; black squares) and SLE patients (N = 34; red triangles). P value was calculated using a two-tailed non-
parametric Mann-Whitney test. ¢ Correlation between SIGLEC-1 mean fluorescence intensity (MFI) on CD14" monocytes obtained by flow
cytometry and the corresponding sSIGLEC-1 concentration in the healthy control and SLE patient groups. P value was calculated by linear
regression. lllustrative SIGLEC-1 low normal, normal, high and very high SLE patients shown in (a) are highlighted in (b) and (c). SIGLEC-1 sialic
acid binding Ig-like lectin 1, sSIGLEC-1 soluble SIGLEC-1, SLE systemic lupus erythematosus
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controls (5.78 ng/ml, 95% CI 55-6.0, P=9.6 x 10" '%
Fig. 4a) in the combined discovery and replication co-
horts of 75 SLE patients and 504 healthy donors. In
addition to SLE, we also assessed sSIGLEC-1 concentra-
tions in a cohort of SSc patients (n=50 presenting
with limited cutaneous and 49 with diffuse cutaneous
SSc), another systemic autoimmune disease where type I
IFN and overt monocyte/macrophage activation have been
suggested to play an important aetiological role [18, 24].
Consistent with previous data showing an increased ex-
pression of SIGLEC-1 on the surface of CD14" monocytes
in SSc patients [18], we found evidence for an increased
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concentration of sSSIGLEC-1 in serum samples from SSc
(8.49 ng/ml, 95% CI 8.5-10.5) compared to matched
healthy controls (7.07, 95% CI 6.7-8.6, P= 8.3 x 10~ %; Fig,
4b). The distribution of sSSIGLEC-1 in SSc was similar to
the SLE patients and the increased concentrations were
maintained in both patients with limited cutaneous SSc
or diffuse SSc (P=0.02 and P =0.05, respectively; Fig.
4b).

To assess the potential clinical application of sSSIGLEC-1,
we measured sSIGLEC-1 levels in serum from 656 SLE
patients with available clinical information (cohort 3). We
observed that the concentrations of sSIGLEC-1 were
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significantly higher in non-European patients (15.7 ng/ml,
95% CI 13.52-17.92) compared to those of European
ancestry (12.1 ng/ml, 95% CI 11.25-12.94, P=2.7 x 10",
Fig. 4c). Soluble SIGLEC-1 levels were similarly elevated
among the different non-European populations (Fig. 4d),
and were therefore combined into a single group to increase
statistical power. Increased disease severity—and particularly
incidence of renal disease—has been documented in patients
of non-European ancestry [25-27]. In agreement with this
observation, in our study, non-European SLE patients pre-
sented with an increased history of renal complications
(Table 1), thus suggesting that the increased sSIGLEC-1
concentrations reflected the increased disease severity in
non-European patients.

In addition to the ancestry-related changes, we found
that sSIGLEC-1 levels were associated with lower levels
of serum complement component 3 (C3) (P=5.0 x 10”3,
Fig. 4e), but not with other common serological markers
of SLE such as C-reactive protein or anti-nuclear auto-
antibody levels (see Additional file 3). This association was
observed in both European and non-European patients
and remained present even when adjusting for the pres-
ence of nephritis. Furthermore, we found that increased
sSIGLEC-1 concentrations were associated with a history
of renal disease in the combined patient population
(P=0.01; Table 2). Although the number of patients
with active nephritis was limited in our study, we
found that sSIGLEC-1 concentrations were strongly
associated with duration of renal disease, with significantly
higher levels observed in patients with active renal disease,
and gradually declining with time (Fig. 5a), likely reflecting
improved disease management since the last episode of
active nephritis. The risk of renal complications/nephritis
in patients with very high concentrations of sSIGLEC-1
was much more pronounced in European patients (OR =
1.65) compared to non-European patients (OR =1.16;
Table 2), and was maintained after adjusting for the

Table 2 Association of sSIGLEC-1 with clinical parameters of SLE
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association of sSIGLEC-1 with low C3 and C4 levels,
which are predictors for renal disease (OR =1.96, 95% CI
1.10-3.45; P =0.021). Since sSIGLEC-1 could be physiolo-
gically excreted through the kidney, we also investigated
whether increased sSIGLEC-1 concentrations could be as-
sociated with decreased kidney function in patients with
renal disease. We found no evidence for an association be-
tween kidney function, as measured by the patients’ esti-
mated glomerular filtration rate (eGFR), and sSIGLEC-1
concentration (Fig. 5b). The association of sSIGLEC-1 and
renal nephritis was maintained after adjusting for the ef-
fect of eGFR (OR=149, 95% CI 1.02-2.17; P=0.04).
These data suggest that decreased renal function in pa-
tients with renal nephritis does not fully explain the associ-
ation with increased sSIGLEC-1 concentrations observed
in this study.

In addition to the association of sSIGLEC-1 with renal
complications, we also observed a similar trend towards
increased risk of haematological complications in patients
with high concentrations of sSIGLEC-1, although not
reaching statistical significance in our analysis (OR = 1.35,
P =0.09; Table 2). Further supporting the potential use of
sSIGLEC-1 as a biomarker of disease severity, a higher
frequency of patients with high levels of sSSIGLEC-1 had a
history of treatment with biologics (OR =1.20, P=0.04 in
the combined population; Table 2), usually associated with
patients with poor disease management who have not
responded to standard treatment options. This remained
the case even when we adjusted for history of renal com-
plication as a confounding factor for biologics use.

Discussion

Recent advances in medical research have led to the
development of a breadth of novel treatment options.
The characterisation of biomarkers that identify the
exact pathophysiological mechanism underpinning the
clinical manifestations in each patient has thus become a

Clinical parameter ~ Combined EUR Non-EUR
N (total)  OR? (95% Cl) Pvalue® N (total)  OR® (95% @) Pvalue® N (total)  OR® (95% Cl) P value®

Renal (nephritis) 156 3(1.10-215) 001 75 5(109-252) 002 81 116 (060-2.25) 067
Haematological 291 5(095-192) 009 185 4 (0.80-220) 025 106 8(072-225 04
Biologics® 35 0(101-142) 004 23 8(090-1.18)  0.19 12 095 (0.70-123) 071
Neurological 78 1(076-134) 095 36 087 (063-1.18) 037 42 083 (039-1.76) 064
Admission 226 8(081-1.71) 039 140 145 (090-237) 0.3 86 060 (030-121) 016
Corticosteroid use 302 098 (069-141) 096 174 096 (057-157) 086 128 088 (049-156) 035

Association of sSIGLEC-1 concentration with clinical parameters recorded from SLE patients occurring since their disease diagnosis and up to the time of their visit
Cl confidence interval, EUR patients of European ancestry, non-EUR patients of non-European ancestry, SLE systemic lupus erythematosus, sSIGLEC-1 soluble sialic

acid binding Ig-like lectin 1

#0dds ratio (OR) calculated on the group of patients with sSIGLEC levels > 95th percentile
bP values were calculated in each group using a logistical regression model, where the SLE patients were divided into groups based on sSIGLECT serum level

centiles (< 50th centile, 51st-74th centile, 75th-95th centile and > 95th centile)
Patients treated with biologic drugs at the time of visit
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soluble sialic acid binding Ig-like lectin 1

priority to allow the advent of a truly personalised medi- advantages of our immunoassay. Moreover, measuring
cine approach to human complex diseases. In systemic all 16 different IFN-a subtypes currently requires access
autoimmune and inflammatory diseases, chronic IFN  to naturally occurring high-affinity anti-IFN-a antibodies
signalling has been shown to be directly involved in the that are not readily available [23], which in combination
pathogenesis of the diseases, most notably in SLE [28].  with the much lower sample requirement compared to the
This observation has led to the development of thera- SIMOA assay makes the sSIGLEC-1 assay ideally suited
peutic strategies to target IFN-a, which are currently being  for high-throughput screening, including the retrospective
tested in the clinic [29, 30]. There is therefore an urgent testing of samples collected from completed clinical studies
need to develop robust and sensitive biomarkers to iden-  or cohorts for flares of IFN signalling and/or response to
tify patients with an active IFN response who would be treatment of large cohorts and retrospective studies.
more likely to benefit from anti-IFN-a therapy. Recently, a study has reported that plasma concentrations
In the present study, we show that a circulating form  of presepsin (PSEP), a product of CD14" monocyte cleavage,
of the surface-bound SIGLEC-1 receptor can be detected is increased in patients with SLE and other autoimmune
in human plasma/serum, and developed a sensitive and inflammatory diseases [31]. Although the study was
immunoassay to measure the circulating concentrations  limited to a small sample size and available clinical data, the
of sSIGLEC-1. To our knowledge we are the first to  wide spread of PSEP levels measured in SLE patients and
detect the presence of a soluble SIGLEC-1 isoform in the suggested association with disease activity are consistent
humans. Our current data do not allow us to determine  with our data and support a role for activated monocyte/
the origin of sSIGLEC-1, and further work is needed to  macrophages in the aetiology of SLE and other related auto-
assess whether the soluble isoform is generated through  immune diseases. Further work will be required to investi-
alternative splicing or by proteolytic shedding of the gate the relation between sSIGLEC-1 and PSEP, and the
membrane-bound receptor. A key feature of this bioassay is  putative diagnostic and/or prognostic value of using a
the limited sample requirements, making it amenable—as combination of biomarkers associated with exacerbated
compared to a flow cytometric assay of surface SIGLEC-1—  monocyte activation for the clinical stratification of
to screen large numbers of samples. We therefore propose  patients with a systemic activation of the innate immune
that quantification of sSIGLEC-1 using our immunoassay is  system.
an alternative to flow cytometric endpoints, or the classical Clinically, we identified marked ancestry-related differ-
IEN signature or its PCR-analysed surrogate [6], and ences in sSIGLEC-1 levels among SLE patients, which
will result in a more robust, simpler and less expensive  were consistent with the higher disease severity in patients
measure of SIGLEC-1 expression and the IFN signature. of non-European ancestry. In agreement with this hypoth-
Other plasma/serum IFN-regulated biomarkers have esis, SSIGLEC-1 levels were also associated with lower levels
been described in the literature, most notably IFN-a and  of C3, a classical serologic marker of the disease. Further-
IFN-y-inducible protein 10 (IP-10) [12]. However, the = more, our data provide evidence that high sSIGLEC-1 levels
protein stability, cell-type specificity and much higher  could be predictive of active renal and haematological com-
concentrations of sSIGLEC-1 are major practical plications, particularly in patients of European ancestry.
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These findings clearly underscore the importance of
large, well-characterised, clinical cohorts to estimate
the confounding effects of ancestry. In this study we
had access to very limited numbers of non-European
healthy controls, which prevented us from investigating
whether steady-state sSIGLEC-1 levels could also be
altered in populations of non-European ancestry. However,
the association of sSIGLEC-1 concentrations with overall
increased disease severity was consistently maintained in
both groups of patients. A possible explanation for the
more modest predictive capacity observed in non-European
patients is an increased disease heterogeneity, which could
reflect a reduced dependency on the type I IFN pathway for
disease severity and late-stage organ damage in this group
of patients. A limitation of this study was the number of
available patients with active disease manifestations—
namely, nephritis—which reduced the power to investi-
gate the predictive capacity of high sSIGLEC-1 levels
for the identification of patients with active disease.
Further work will now be required to validate these
findings in additional autoimmune and inflammatory
diseases associated with a chronic activation of the innate
immune system using large and clinically well-characterised
patient populations, as well as to extend the findings to
non-European cohorts.

There has been considerable interest in developing
drugs targeting the IFN-a signalling pathway to treat
conditions associated with chronic IFN signalling. Our
assay could also have utility in clinical trials; for example,
for the selection of patients who could benefit the most
from such inhibition of IFN-a. Conversely, IFN-a is also
one of the most used compounds in cytokine therapy.
However, its immunomodulatory properties may result in
various autoimmune manifestations, with reported inci-
dence of 4-19% in patients undergoing IFN-a therapy
[32]. We therefore hypothesise that these adverse events
may be avoided if the background IEN signature is known
and therapy is adjusted to avoid the excessive IFN signal-
ling known to be a factor in the promotion of secondary
autoimmunity in these patients. Moreover, it has been
recently suggested that the detection of an IFN signature
in peripheral blood is associated with poor response to
both B-cell depleting therapy (rituximab) and anti-IL-6R
treatment (tocilizumab) in rheumatoid arthritis patients
[33, 34]. These data suggest that sSIGLEC-1 could be
useful in prediction to therapeutic responses, and supports
a broader application of this assay in the context of patient
stratification for clinical trials.

Conclusions

In this study we report the development of a sensitive
immunoassay to detect circulating concentrations of sSI-
GLEC-1 in plasma/serum. Taken together, our findings
suggest that sSIGLEC-1 is a marker of monocyte and
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macrophage activation, which is critically implicated in the
progression of several autoimmune and inflammatory dis-
eases, such as SLE and SSc. In combination with additional
available IFN-regulated biomarkers, the sSIGLEC-1 bio-
assay could help improve our capacity to dissect the mo-
lecular and clinical heterogeneity of complex conditions
associated with an overt IFN response, and identify subsets
of common and rare autoimmune and inflammatory
diseases, collectively classified as interferonopathies. We
have also shown that increased sSIGLEC-1 concentrations
could, with further studies, have a clinical application in
predicting increased risk of developing renal complications,
one of the most severe clinical complications of SLE.
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Additional file 1: Table S1. Custom NanoString probe sequences used
to measure expression of the 56 IFN-regulated genes defining the tran-
scriptional IFN signature in this study and eight housekeeping genes
used to normalise expression levels between donors. (XLSX 13 kb)

Additional file 2: Figure S1. Concentration of IFN-ay,; is associated with
the IFN transcriptional signature. Data depict correlation between plasma
IFN-ay,, concentration and transcriptional IFN signature in 41 SLE patients
from cohort 2. (PDF 35 kb)

Additional file 3: Figure S2. Association of sSIGLEC-1 with serological
markers of SLE. a, b Data depict the association of sSIGLEC-T concentrations
with C-reactive protein (CRP) levels (a) and with disease-specific anti-nuclear
autoantibody (ANA) titres (b). P values were calculated by linear regres-
sion. (PDF 347 kb)
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