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Abstract

Background

N-glycolylneuraminic acid (Neu5Gc) is a non-human red-meat-derived sialic acid immuno-

genic to humans. Neu5Gc can be metabolically incorporated into glycan chains on human

endothelial and epithelial surfaces. This represents the first example of a “xeno-autoanti-

gen”, against which circulating human “xeno-autoantibodies” can react. The resulting inflam-

mation (“xenosialitis”) has been demonstrated in human-like Neu5Gc-deficient mice and

contributed to carcinoma progression via antibody-mediated inflammation. Anti-Neu5Gc

antibodies have potential as biomarkers for diseases associated with red meat consumption

such as carcinomas, atherosclerosis, and type 2 diabetes.

Methods

ELISA assays measured antibodies against Neu5Gc or Neu5Gc-glycans in plasma or

serum samples from the Nurses’ Health Studies, the Health Professionals Follow-up Study,
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and the European Prospective Investigation into Cancer and Nutrition, including inter-assay

reproducibility, stability with delayed sample processing, and within-person reproducibility

over 1–3 years in archived samples. We also assessed associations between antibody lev-

els and coronary artery disease risk (CAD) or red meat intake. A glycan microarray was

used to detected antibodies against multiple Neu5Gc-glycan epitopes. A nested case-con-

trol study design assessed the association between total anti-Neu5Gc antibodies detected

in the glycan array assay and the risk of colorectal cancer (CRC).

Results

ELISA assays showed a wide range of anti-Neu5Gc responses and good inter-assay repro-

ducibility, stability with delayed sample processing, and within-person reproducibility over

time, but these antibody levels did not correlate with CAD risk or red meat intake. Antibodies

against Neu5Gc alone or against individual Neu5Gc-bearing epitopes were also not associ-

ated with colorectal cancer (CRC) risk. However, a sialoglycan microarray study demon-

strated positive association with CRC risk when the total antibody responses against all

Neu5Gc-glycans were combined. Individuals in the top quartile of total anti-Neu5Gc IgG

antibody concentrations had nearly three times the risk compared to those in the bottom

quartile (Multivariate Odds Ratio comparing top to bottom quartile: 2.98, 95% CI: 0.80, 11.1;

P for trend = 0.02).

Conclusions

Further work harnessing the utility of these anti-Neu5Gc antibodies as biomarkers in red

meat-associated diseases must consider diversity in individual antibody profiles against dif-

ferent Neu5Gc-bearing glycans. Traditional ELISA assays for antibodies directed against

Neu5Gc alone, or against specific Neu5Gc-glycans may not be adequate to define risk

associations. Our finding of a positive association of total anti-Neu5Gc antibodies with CRC

risk also warrants confirmation in larger prospective studies.

Introduction

Altered cell surface glycosylation is common feature in human cancers [1,2]. Expression of

such tumor-associated glycan antigens results in altered cell phenotypes, and can sometimes

elicit an antibody response [3–6]. One such alteration involves expression of N-glycolylneura-

minic acid (Neu5Gc), a common mammalian cell surface sialic acid once thought to be an

oncofetal antigen in humans [7] that was associated with “Hanganitzu-Deicher” antibodies

(which agglutinated animal red cells) and occurred only in cancer and certain other diseases

[8]. However, this “H-D” antigen is now known to be defined by the non-human sialic acid

Neu5Gc, which enters into the human body and is displayed on endothelial and epithelial cell

surfaces via metabolic incorporation from dietary sources, which are principally “red meats”,

such as beef, pork and lamb [9].

Sialic acids including Neu5Gc are typically located at the outer termini of cell surface glycan

chains in vertebrates [10,11]. These nine-carbon monosaccharides have a remarkable potential

for diversity in structure, glycosidic linkage, underlying glycans, and a multitude of natural

modifications [10,11]. The C-5 position in N-acetylneuraminic acid (Neu5Ac, the most
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common sialic acid form), has an N-acetyl group. This 5-N-acetyl group on cytidine 5’-mono-

phosphate-Neu5Ac (CMP-Neu5Ac, the activated donor for sialyltransferases) can be hydrox-

ylated by cytidine 5’-monophosphate-Neu5Ac hydroxylase (CMAH), to produce CMP-

Neu5Gc [12–14]. While Neu5Ac and Neu5Gc are the two major sialic acid forms in most

mammals, Neu5Gc cannot be synthesized by humans [15,16], due to an Alu-Alu fusion-medi-

ated deletion of exon 6 in the CMAH gene, which resulted in highly truncated and inactive

CMAH enzyme [17]. However, human cells are capable of metabolically incorporating exoge-

nously provided Neu5Gc and presenting it on cell surface glycans as if it was synthesized in the

same cell [18]. In keeping with this unusual “Trojan horse” mechanism, consumption of

Neu5Gc-rich foods (mainly red meats), leads to metabolic incorporation of Neu5Gc on cell

surfaces of human tissues such as epithelia and endothelia [9], and more prominently into epi-

thelial cancers (carcinomas) [8] and atheromatous lesions [19].

Given that Neu5Gc is a “xeno-autoantigen”, it is not surprising that most humans tested to

date have circulating anti-Neu5Gc polyclonal antibodies (“xeno-autoantibodies”), the majority

of which are typically of the IgG isotype, and directed against a spectrum of Neu5Gc-contain-

ing glycans [20]. These antibodies first appear in infants at ~6 months of age, coinciding with

Neu5Gc introduction in the diet, and reach the adult levels by 1 year of age [21]. However,

these antibodies are likely not induced by dietary gut exposure, but rather via Neu5Gc scav-

enging by commensal bacteria, such as Haemophilus influenzae, that can metabolically incor-

porate and express the immunogenic Neu5Gc into their cell wall lipooligosaccharides, and

thus appear to immunize the host to generate anti-Neu5Gc IgM and IgG antibodies [21].

Anti-Neu5Gc antibody levels in some individuals can be as high as ~0.1–0.2% of total IgG

immunoglobulins, approaching levels of other major anti-glycan antibodies in normal human

sera, e.g. anti-ABO blood group and anti-α-Gal antibodies [20].

Metabolically incorporated Neu5Gc displayed on human cell surfaces can interact with cir-

culating anti-Neu5Gc antibodies and mediate chronic inflammation termed “xenosialitis”,

potentially relevant in the progression of diseases associated with chronic inflammation

including cancer, cardiovascular disease, and autoimmunity [22]. Notably, the primary dietary

source of Neu5Gc is red meat (muscle of mammalian origin), a known risk factor also for

diseases associated with chronic inflammation such as carcinomas (particularly colorectal can-

cer), coronary heart disease, stroke, metabolic syndrome and type 2 diabetes [23–36]. Addi-

tionally, growing evidence indicates that high red meat intake is associated with increased all-

cause mortality [37–40].

There are many suggested mechanisms of the red meat-associated disease risk, including

mutagens resulting from high temperature cooking [41], preservatives in processed meats

[42], heme iron [40,43], trimethylamine-N-oxide (TMAO) stemming from gut microbiota

metabolism of L-carnitine in red meat [44] and more recently recognized viruses in certain

red meats [45]. However, as reviewed elsewhere [46], experimental and observational studies

addressing most of these theories are inconclusive. Furthermore, other than the viral theory,

and the heme theory (possibly for CRC only) most of the suggested mechanisms are not even

specific to red meat, e.g., cooking derived mutagens and preservatives are also associated with

poultry and fish, and the major dietary source of TMAO is not red meat. Also unexplained is

the human-specificity of the risk, with other habitual carnivores being apparently unaffected.

Finally, most of the proposed carcinogenic mechanisms may not be applicable to the increased

risk of atherosclerosis and type 2 diabetes associated with red meat consumption.

Chronic inflammation is also associated with red meat intake [47], and is a common mech-

anism for progression of major diseases associated with red meat intake, such as carcinomas

[48,49], atherosclerosis [50], and type 2 diabetes [51]. While other mechanisms for chronic

inflammation in such diseases are known, Neu5Gc-induced xenosialitis could be one of the
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missing connections between red meat intake and inflammation-associated disease risk [52].

To assess potential use of anti-Neu5Gc antibodies in large-scale epidemiologic studies, we

measured plasma and serum levels in archived longitudinal human samples with well-docu-

mented dietary habits: the Nurses’ Health Study II (NHSII), the Health Professionals Follow-

up Study (HPFS), and the European Prospective Investigation into Cancer-Norfolk Cohort

(EPIC).

First, we used ELISA assays to evaluate human serum or plasma IgGs against simple syn-

thetic Neu5Gc-containing glycan targets and examined correlations of antibody levels against

the epitopes with disease risk. Second, we used an ELISA approach against a mixture of natural

Neu5Gc-containing epitopes to quantify laboratory variability, stability, and reproducibility of

anti-Neu5Gc IgGs over time in the NHS II and HPFS. Third, among women in the NHSII, we

also examined correlations between antibody measurements and reported red meat intake.

Fourth, we used a sialoglycan array covering >30 distinct Neu5Gc-sialoglycans and their

matched Neu5Ac-sialoglycans, to examine the association between anti-Neu5Gc IgG levels

and the risk of colorectal cancer among participants in the EPIC-Norfolk Cohort.

Materials & methods

Study populations and blood collection

a. NHS II and HPFS. The NHS II was established in 1989 among 116,429 female regis-

tered nurses, ages 25–42 years. All women completed an initial questionnaire and were fol-

lowed biennially by mailed questionnaire to update exposure status and disease diagnoses.

Data were collected on numerous risk factors including reproductive factors, medical history,

family history of cancer, and diet via food frequency questionnaire (see below; Dietary Assess-

ment, section a.). Between 1996 and 1999, 29,611 NHSII cohort members who were cancer-

free and between the ages of 32 and 52 years provided blood samples [53]. A subgroup of 304

women in NHSII provided two to three blood samples over a period of 1 to 3 years. For each

collection, women had their blood drawn into 10 ml tubes treated with sodium heparin (BD,

New Jersey, USA). The HPFS, a parallel cohort of older men, began in 1986 with recruitment

of 51,529 male health professionals age 40–75 years, 18,225 of whom donated blood samples

between 1993 and 1995 [54]. HPFS participants donated blood in 10 ml tubes treated with eth-

ylenediaminetetraacetic acid (EDTA) (BD, New Jersey, USA). Blood samples from all three

cohorts were shipped with an icepack, via overnight couriers, to the Brigham and Women’s

Hospital (BWH)/Harvard Cohorts Biorepository, where they were processed into plasma, red

blood cells, and buffy coat, and archived in liquid nitrogen freezers (�-130˚C) until aliquots

were assayed for anti-Neu5Gc IgG antibodies.

To determine the stability of biomarkers in archived blood specimens with delayed process-

ing due to overnight shipment, blood samples were also collected from 16 healthy community

volunteers (i.e., not NHS or HPFS participants). For each volunteer, half of the blood sample

was collected in EDTA tubes (three tubes), and the other half was collected in heparin tubes

(three tubes). The first of each type of anticoagulant tube was immediately centrifuged at 1530

x g for 20 min at 4˚C. After centrifugation, the plasma was removed and aliquots were placed

in cryotubes and stored in liquid nitrogen freezers (−130˚C). The second and third tubes were

shipped with an ice pack to the laboratory overnight and then processed and frozen at 24 h

and 48 h, respectively, after blood collection. These processing methods were designed to

mimic the collection procedures used for cohort participants. The study was approved by the

Committee on the Use of Human Subjects in Research at the Harvard T.H. Chan School of

Public Health and the Brigham and Women’s Hospital. All data and samples were fully anon-

ymized prior to access by authors for data analysis.
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b. EPIC-Norfolk. EPIC began as a multi-centered pan European cohort study examining

diet and lifestyle factors and their relation to cancer [55]. EPIC-Norfolk, one of the participat-

ing cohorts, is a cohort of men and women aged 40–79 years living in Norfolk UK and

recruited from participating general practitioner clinics between 1993 and 1998. A total of

25,639 participants completed a lifestyle questionnaire on recruitment and attended a clinic

where non-fasting blood samples were obtained by venipuncture into plain and citrate bottles.

After overnight storage in a dark box in a refrigerator at 4–7˚C, they were spun at 2,100 x g for

15 min at 4˚C, and serum samples were obtained [56]. After processing, samples were stored

in freezers at –80˚C until laboratory analysis. The EPIC-Norfolk study was approved by the

Norfolk and Norfolk Research Ethics Committee. All participants gave signed informed con-

sent for their data and samples to be used in research. All data and samples were fully anon-

ymized prior to access by authors for data analysis.

Dietary assessment

a. NHS II. Every four years since 1991, NHS II participants have filled out a semi-quanti-

tative food frequency questionnaire (FFQ) which included over 130 food items. Participants

were asked how frequently they have consumed each food item over the previous year by

selecting from nine possible responses ranging from less than once per month to six or more

times per day. We calculated total red meat consumption in servings per day as the sum of

intakes of individual food items, including unprocessed red meat (beef, pork, or lamb as a

sandwich, pork as a main dish, beef or lamb as a main dish, and hamburger) and processed

red meat (hot dogs, bacon, and other processed meat such as sausage, salami, bologna). The

reproducibility and validity of food frequency questionnaires for measuring diet in the NHS

and HPFS cohorts including red meat intake has been documented previously [57–59]. For

example, the correlation coefficients for intake of individual red meat items comparing diet

records with the FFQ were mostly higher than 0.5 after correction for attenuation due to

within person variation between diet records [60].

b. EPIC-Norfolk. Within the EPIC-Norfolk cohort, dietary intake was estimated using a

7-day food diary, a structured booklet enabling study participants to record food eaten at dif-

ferent times of the day over a period of one week. Photographs of dishes were included in the

diary to help participants estimate the size of portions being consumed [61]. All participants

attending the EPIC clinic for venipuncture were also given detailed instructions on how to

complete the diary. They were asked to recall the previous day’s intake which was recorded by

the interviewer in the diary. The remaining 6 days were completed by the participant at home,

and the booklet was returned by post. Food and nutrient intake was calculated using DINER, a

bespoke data entry and analysis system [62–64].

Assays for circulating Anti-Neu5Gc antibodies using different target

antigens in ELISA assays

a. EPIC-Norfolk cohort samples assayed using Neu5Gcα2-polyacrylamide as the ELISA

target. Human serum anti-Neu5Gc IgGs were detected by ELISA as described previously

[65]. Briefly, microtiter plates were coated in triplicates with Neu5Acα2-polyacrylamide

(PAA) or Neu5Gcα2-PAA (GlycoTech) at 500 ng/well in 50 mM of sodium carbonate-bicar-

bonate buffer (pH 9.5) at 4˚C for overnight. Plates were washed with Tris-buffered saline

(TBS) and blocked with Tris-buffered saline with 0.1% Tween 20 (TBST) for 2 hours at room

temperature (RT). Dilutions of human serum (1/50 in TBST) were added in triplicates to the

wells and incubated for 4 hours at RT. Wells were washed with TBS, and then horseradish per-

oxidase (HRP)-conjugated goat anti-human IgG (Jackson ImmunoResearch Laboratories)

Antibodies against glycans with red meat-derived sialic acid Neu5Gc as disease risk markers
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diluted in TBST (1:5000) added to the wells for 1.5 hours at RT. Samples in wells were devel-

oped with a buffer containing HRP substrate O-phenylenediamine and measured at OD490 nm

on a SpectraMax 250 (Molecular Devices). Anti-Neu5Gcα2-PAA IgG values were obtained

after subtraction of the values obtained with Neu5Acα2-PAA, thus negating any non-specific

binding to Neu5Ac or PAA. Data normalized OD490 nm levels were quantified into μg/ml

using standard dilution curves of purified human IgG (Jackson ImmunoResearch Laborato-

ries) per experimental day.

b. EPIC-Norfolk cohort samples assayed with Neu5Gcα2–6Galβ1–4Glcβ-human serum

albumin (Neu5Gcα2–6Lacβ-HSA) as the ELISA target. The samples that were tested in the

above assay were used also for this ELISA target. Briefly, microtiter plates were coated with

Neu5Gcα2–6Galβ1–4Glcβ- attached to human serum albumin (Neu5Gcα2–6Lacβ-HSA) [66]

at 1 μg/well in 50 mM sodium carbonate-bicarbonate buffer (pH 9.5) at 4˚C for overnight.

Each plate was also coated with serial dilutions of purified human IgGs (Jackson ImmunoRe-

search Laboratories; 10–0.3 ng/well) in the same buffer. Wells were blocked for 2 hours at RT

with 1% ovalbumin (Grade V, Sigma, free of Neu5Gc) in PBS, followed by incubation with

serum samples diluted 1/100 in the same blocking solution for 2 hours at RT. The plates were

washed three times with PBS containing 0.1% Tween (PBST) by a plate washer (Molecular

Devices Microplate Skanwasher) and subsequently incubated for 1 hour at RT with 1/100

diluted (5 ng/μl) phycoerythrin-conjugated anti-human IgG (Jackson ImmunoResearch Labo-

ratories; R-Phycoerythrin AffiniPure goat anti-human IgG, Fcγ Fragment Specific #109-115-

098). After washing three times with PBST, wells were filled with 100 μl of PBS and samples

were read on a fluorescence plate scanner. Neu5Gc-specific antibody levels were defined by

subtracting the readings obtained with the Neu5Gcα2–6Lacβ-HSA target from the readings

obtained with the Neu5Acα2–6Lacβ-HSA HSA target. Fluorescence values were quantified

into μg/ml by comparisons with a standard dilution curve of purified human IgGs coated on

the same ELISA plate.

c. EPIC-Norfolk and NHS-II cohort samples assayed using naturally occurring Neu5Gc-

glycans in wild-type mouse sera as the ELISA target. Microtiter plate (Costar 9018) wells

were coated overnight at 4˚C with 1 μg/well of this Neu5Gc-rich wild-type mouse sera contain-

ing diverse Neu5Gc-sialoglycoproteins (as previously described in [49, 50] that lacked mouse-

anti-human reactivity in coating buffer (50 mM sodium carbonate-bicarbonate buffer, pH 9.5).

Serial dilutions of human IgG (10–0.3 ng/well) were also coated in the same plate for quantifica-

tion. Wells were blocked with PBS-Ova (PBS pH 7.4, 1% chicken ovalbumin) for 1 hour at RT.

During the blocking step, the human samples (plasma for the NHS-II samples and serum for

the EPIC-Norfolk samples) were diluted 1/100 in PBS-Ova containing 1:4000 Cmah-/- pooled

sera, in order to block non-Neu5Gc binding to the target, as previously described [67]. To eval-

uate specificity, another set of human samples were prepared as above but with the addition of 5

mM methyl-α-Neu5Gc (Neu5Gcα2Me) [20] for inhibition. Diluted human samples (100 μl

each) were added to wells in triplicate and incubated for 2 hours at RT. Wells were then washed

5 times with PBST (PBS pH 7.4, 0.05% Tween-20) by a microplate washer (Molecular Devices

Microplate Skanwasher) followed by detection with 100 μl/well HRP-conjugated goat anti-

human IgG (Bio-Rad #172–1050, 1:7000 dilution) in PBS for 1 hour at RT. After washing 5

times with PBST as above, the HRP substrate O-phenylenediamine was added and the signal

was developed for 20 minutes before the reaction was terminated with H2SO4. Absorbance was

measured at 490 nm on SpectraMax M3 (Molecular Devices). The signals from the second set

of human samples prepared with Neu5Gcα2Me were subtracted from the signals obtained by

the first set prepared without Neu5Gcα2Me. Absorbance was interpolated using the standard

curve generated by the human IgG wells. Thus, we measured antibody titers for both “total”

anti-Neu5Gc IgG and “inhibitable” anti-Neu5Gc IgG.
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d. Sialoglycan microarray assays using multiple specific Neu5Gc-glycans. The anti-

Neu5Gc IgG responses to 31 pairs of Neu5Ac and Neu5Gc-terminated glycans (S1 Table) were

generated as Relative Fluorescence Units (RFU). The sialoglycan pairs (see results for details)

were synthesized as previously described [68] and printed on Epoxide slides (Thermo Fisher

Scientific, Corning, Pittsburgh, PA) in 100 μM at 4 replicates each in an optimized print buffer

(300 mM phosphate buffer, pH 8.4). Printed glycan microarray slides were blocked with 0.05

M ethanolamine in Tris-HCl (0.1 M, pH 9.0), washed and dried. Slides were fitted in a multi-

well microarray hybridization cassette (AHC4X8S, ArrayIt, Sunnyvale, CA, USA) to divide

into 8 subarrays. The subarrays were blocked with ovalbumin (1% w/v) in PBS (pH 7.4) at RT

for 1 h, with gentle shaking. Subsequently, the blocking solution was removed and diluted

serum samples with 1/100 dilution were added to each subarray. After incubating the samples

at RT for 2 hours with gentle shaking, the slides were washed. Goat anti-human IgG-Cy3 at

1.5 μg/ml antibody (Jackson ImmunoResearch Laboratories) in PBS was added to the subar-

rays, incubated for 1 hour at RT, washed and dried. The microarray slides were then scanned

by Genepix 4000B microarray scanner (Molecular Devices Corp., Union City, CA, USA) and

data analysis was performed using Genepix Pro 7.0 analysis software (Molecular Devices

Corp., Union City, CA). Although each of the 31 pairs of Neu5Ac- and Neu5Gc-terminated

glycans generated an antibody response measured as a Relative Fluorescence Unit (RFU), the

sum total against all Neu5Gc-terminated glycans was also used for statistical analyses.

Case-control studies using EPIC samples

a. Coronary heart disease. EPIC plasma samples (citrate) were examined from 858 individuals

who were diagnosed with coronary artery disease (CAD) up to 8.5 years after they donated

blood and 1869 sex and age matched CAD-free controls. CAD cases with prevalent self-

reported heart attack or stroke at baseline and those with no available plasma (citrate) were

excluded leaving plasma samples on 835 cases for analysis.

b. Colorectal cancer. Another case-control study of EPIC-Norfolk cohort plasma samples

consisting of cancer cases from any site (except non-melanoma skin cancer), who were matched

to controls by sex, age at blood donation (within 5 years) and recruitment date (within 3

months) was also established. Cases were defined by ICD codes I20-I25 appearing on a death

certificate or on hospital discharge records. Participants who reported a history of cancer at

recruitment were not eligible as cases or controls. Of the 493 total cancer cases diagnosed up to

19.8 years after blood donation (mean 18.6 years), 71 colorectal cancer cases and matched con-

trols were included for this analysis. Samples from cases and controls were mixed and arranged

randomly in boxes for shipping such that the receiving laboratory was blind to case-status.

Statistical analyses

a. Anti-Neu5Gc IgG inter-assay reproducibility, stability and within-person reproduc-

ibility in NHS II and HPFS. The Results Section summarizes our three analyses to assess

anti-Neu5Gc IgG inter-assay reproducibility, stability with delayed sample processing, and

within-person reproducibility over 1–3 years in archived human plasma samples (Table 1) In

experiment #1, the split pilot study, we measured anti-Neu5Gc IgG antibodies in 18 blinded

duplicate plasma samples donated by participants in the NHS and HPFS and 3 quality control

(QC) pool plasma replicates. We noted a discontinuous distribution and categorized anti-

Neu5Gc IgG levels in four groups based on the observed overall distribution (cut-points were

at the 10th percentile, 75th percentile, and at 10 ng/dl). We assessed inter-assay reproducibility

among the split samples by calculating Spearman correlation coefficients, as well as by calculat-

ing the number of concordant vs. discordant pairs based on the categories described above

Antibodies against glycans with red meat-derived sialic acid Neu5Gc as disease risk markers

PLOS ONE | https://doi.org/10.1371/journal.pone.0197464 June 18, 2018 7 / 27

https://doi.org/10.1371/journal.pone.0197464


and the associated Kappa statistic to measure agreement in classification. Assay reproducibility

over a 24–48 hours processing delay (n = 48 samples; 3 samples each from 16 individual

donors; experiment #2), and within-person reproducibility over 1–3 years (n = 94 samples; 2

samples each from 47 NHSII participants; experiment #3), were assessed using Spearman and

intra-class correlation coefficients (ICCs). The median time between the two blood samples

for the reproducibility study was 23 months with a range of 10 to 32 months [69]. No differ-

ences in were seen in heparin vs. EDTA plasma (data not shown); therefore, combined results

are presented.

b. Correlation between anti-Neu5Gc IgG antibodies and red meat consumption in NHS

II. To assess correlation between measured anti-Neu5Gc IgG antibodies and red meat con-

sumption, we selected a random sample of 338 women in NHSII (representing a wide variety

of red meat intake levels), who had provided blood samples and completed the 1999 food fre-

quency questionnaire (FFQ) [69]. We used the 1999 FFQ for this analysis because it was the

closest in time to collection of blood samples. Two individuals were missing data on at least

one red meat item and were excluded, leaving 338 women for the analysis. The median time

from blood draw until the completion of the 1999 FFQ was 8 months; the timing ranged from

blood draw 34 months prior to the FFQ to blood draw 6 months after the FFQ [69]. We evalu-

ated the association between anti-Neu5Gc IgG titers with usual adult red meat intake (0,<0.5,

0.5–<1, 1–<2, or 2+ servings per day). We calculated Spearman correlation coefficients and

fit a linear regression model to the data, with antibody levels as the dependent variable and cat-

egories of red meat intake as the independent variable. The software used for NHS pilot studies

and correlation with red meat intake was SAS 9.3 (Cary, NC).

c. Case-control studies (EPIC-Norfolk). Coronary artery disease.

Using data from EPIC-Norfolk conditional logistic regression was used to examine 835 cor-

onary artery disease cases and 1869 controls matched for age and sex as described above. Each

of the four analytes was divided into quintiles with quintile 1 (the lowest) used as the reference.

Models adjusting for just age and sex and for multiple variables were performed. Multivariable

models adjusted for age, sex, body mass index, total cholesterol (measured using an RA 1000

Technicon analyzer (Bayer Diagnostics, Basingstoke) from non-fasting blood samples taken

by venipuncture), systolic blood pressure (mean of two readings), smoking status (never, for-

mer, current) and diabetes mellitus (self-reported).

Colorectal cancer.

Similarly, we fitted conditional logistic regression models to estimate odds ratios and 95%

confidence intervals (CIs) for risk of colorectal cancer, associated with quartiles of total anti-

Table 1. Description of experiments for inter-assay reproducibility, stability with processing delays, and short-term within-person stability.

Experiment 1. Inter-assay reproducibility 2. Stability with processing delays 3. Short-term within-person reproducibility

Participants NHS & HPFS;

QC pools

Healthy volunteers NHS II

N 21 16 47

Sample Heparin & EDTA plasma Heparin & EDTA plasma Heparin plasma

Number of aliquots 2 3 2

Timing Split sample (1) Processed immediately

(2) Stored 24 h at 4˚C

(3) Stored 48 h at 4˚C

1–3 years

Storage conditions Liquid nitrogen

(below -130˚C)

for 1–2 years

Liquid nitrogen

(below -130˚C)

for 4–5 years

Liquid nitrogen

(below -130˚C)

for 13–14 years

NHS = Nurses’ Health Study; HPFS = Health Professionals Follow-up Study; QC = Quality Control

https://doi.org/10.1371/journal.pone.0197464.t001
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Neu5Gc IgG antibodies (the sum of RFU values of antibodies against all Neu5Gc-glycans on

the array), with quartile 1 (the lowest) used as the reference. Model 1 was unadjusted (i.e., just

adjusted for matching factors) while model 2 was adjusted for body mass index (quintiles),

height (quintiles), smoking status (never, former, current), physical activity (four categories

from low to high based on occupational and leisure time physical activity) [70] aspirin use

over previous three months (yes or no), education level (no qualifications or some qualifica-

tions), occupational social class (manual or non-manual), and family history of cancer in a

first degree relative (yes or no). To test for linear trend, we modeled the quartiles as an ordinal

variable. However, since the anti-Neu5Gc IgG antibodies were highly skewed, we also modeled

the natural log of the sum of glycans as a continuous variable. Linear regression was used to

investigate the relationship between red meat intake and natural log of the sum of glycans in

cases and controls separately. Two-sided p-values <0.05 were considered statistically signifi-

cant. The software used for EPIC-Norfolk analyses were Stata v.14 (StataCorp, College Station,

Texas, USA) and R v.3 with packages ggplot2,corrplot,dplyr (R Foundation, Vienna, Austria).

Results

Levels of antibodies against simple defined Neu5Gc-containing epitopes

are not associated with coronary artery disease risk among the

EPIC-Norfolk cohort

It was originally thought that circulating antibodies against Neu5Gc-glycans were only found

in patients with cancer or other chronic inflammatory diseases [7]. However, using a more

sensitive ELISA assay, we subsequently discovered that all individuals tested had some levels of

detectable anti-Neu5Gc antibodies against a synthetic polyacrylamide (PAA) backbone pre-

senting multiple copies of the simple monosaccharide epitope Neu5Gcα2- (Neu5Gcα2-PAA),

when compared with the human sialic acid counterpart Neu5Acα2-PAA, which differs by a

single oxygen atom [9]. This assay was used to study an EPIC population of incident coronary

artery disease and age and sex matched controls. The anti-Neu5Gcα2-PAA antibody levels

showed a highly skewed non-Gaussian distribution in the population (Fig 1A), but there was

no significant association with CAD risk (Tables 2 and 3 and S4 Table).

We reasoned that such antibodies against a single monosaccharide might not be as specific

because the binding pockets of antibodies typically accommodate 3 to 5 monosaccharides

[71,72]. Based on our prior work showing that antibodies against the more extended epitope

Neu5Gcα2–6Lacβ–R were relatively common in the population [20], we next tried an ELISA

assay against chemically synthesized Neu5Gcα2–6Lacβ-HSA. We again found a skewed non-

Gaussian distribution of levels in the population (Fig 1B), but no significant association with

CAD risk (Tables 2 and 3 and S4 Table), similar to the results with Neu5Gcα2-PAA.

Moreover, as shown in Fig 1C, there was no significant correlation between the levels of

antibody directed against these two epitopes (Neu5Gcα2-PAA and Neu5Gcα2–6Lacβ-R), sug-

gesting that these two assays were detecting different populations of circulating antibodies

(Spearman correlation co-efficient is -0.1363 and the p-value is<0.0001). It should also be

noted that the majority of the sera showed IgGs at just detectable levels in both assays, consis-

tent with a recent report by others who also “found minimal antibody titer directed against

Neu5Gcα and the trisaccharide Neu5Gcα2–6Galβ1–4GlcNAcβ-”, using somewhat similar

assays [73].

Measuring antibodies against a more complex mixture of natural Neu5Gc-containing epi-

topes among EPIC-Norfolk and NHS II cohorts. We reasoned that the lack of association with

disease risk may be related to the fact that individual humans have a widely disparate spectrum

of antibodies against various Neu5Gc-containing epitopes [20]. To obtain a composite
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measurement of antibodies against multiple Neu5Gc-containing epitopes we turned to the use

of wild-type mouse serum as an ELISA target, since it displays multiple types of Neu5Gc-con-

taining N-glycans and O-glycans on glycoproteins [67,68,74]. In this instance, we established

background binding using serum from congenic Cmah-/- Neu5Gc-deficient mice. To adsorb

antibodies in some human sera directed against unrelated mouse epitopes, we also added

Cmah-/- serum into the fluid phase before and during the first binding step of the ELISA assay

[67]. For evaluating specificity of binding, a parallel set of human sera was prepared in a similar

Fig 1. Distribution of Anti-Neu5Gc IgG titers in EPIC-Norfolk cohort using defined ELISA target antigens. Each dot represents a value for a

single subject. (A) Levels of serum anti-Neu5Gc IgG quantified by ELISA using Neu5Gcα2-polyacrylamide (Neu5Gcα2-PAA) as the target antigen

(N = 2716). The mean anti-Neu5Gc IgG titer was 8.6 μg/ml (SD±10.6). (B) Levels of serum anti-Neu5Gc IgG quantified by ELISA using

Neu5Gcα2–6Lacβ-human serum albumin (HSA) as the target antigen (N = 2712). The mean anti-Neu5Gc IgG titer was 1.4 μg/ml (SD±1.2). (C)

There was no correlation between anti-Neu5Gc IgG antibody levels directed against the two different chemically synthesized ELISA targets:

Neu5Gcα2-PAA and Neu5Gcα2–6Lacβ-HSA.

https://doi.org/10.1371/journal.pone.0197464.g001
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way, but with the addition of methyl-α-Neu5Gc (Neu5Gc2Me) for specific inhibition. To calculate

the “specific” titer, the signal from the second set incubated with Neu5Gc2Me was subtracted

from the signal obtained by the first set without Neu5Gc2Me. Absorbance was interpolated using

standard curves generated with human IgG. The readout for “inhibitable” anti-Neu5Gc IgG

should theoretically represent the more specific but less sensitive titer (since the incubation step

with the free Neu5Gc2Me only blocks some of the specific binding). Negative values may be gen-

erated since some individuals could possess cross-reacting anti-Neu5Ac antibodies. Before pro-

ceeding further with using this assay we addressed inter-assay reproducibility, stability with

delayed processing, and within-person reproducibility over time using the NHS cohort.

Anti-Neu5Gc inter-assay reproducibility (NHS II cohort)

We observed good inter-assay reproducibility between blinded split samples for individuals

(Table 4A) Spearman correlation coefficients were 0.93 and 0.86 for total and inhibitable anti-

Neu5Gc antibody titers, respectively (Fig 2). Considering the categorical variable, 18 out of 21

paired samples were perfectly concordant for total anti-Neu5Gc IgG (weighted Kappa = 0.82)

and 15 out of 21 paired samples were perfectly concordant for inhibitable anti-Neu5Gc IgG

(weighted Kappa = 0.71) (Table 4A), that together suggest very high inter-assay reproducibility.

Anti-Neu5Gc IgG antibodies demonstrate stability with delayed processing

of whole blood samples (NHS II cohort)

Delays in processing of up to 48 hours appeared to have little influence on measurement of

plasma anti-Neu5Gc IgG. The overall ICCs across processing delays up to 48 hours were 0.58

Table 2. Comparison of serum anti-Neu5Gc antibody levels between coronary artery disease cases and controls

matched for age and sex in the EPIC-Norfolk cohort.

Controls

(N = 1869)

Cases

(N = 835)

Mean (SD)

Anti-Neu5Gc IgG against Neu5Gc-alpha-PAA (μg/mL) 13.74 (13.24) 12.96

(10.51)

Anti-NeuGc IgG against Neu5Gc2-6Lac-HSA (μg/mL) 7.53 (3.08) 7.18 (2.66)

Total anti-Neu5Gc IgG against mouse serum Neu5Gc-terminated glycans (μg/

mL)a
1.73 (1.68) 1.57 (1.29)

Neu5Gc Inhibitable IgG against mouse serum Neu5Gc-terminated glycans (μg/

mL)a
0.43 (1.26) 0.36 (1.07)

Age (years) 65.3 (7.7) 65.6(7.7)

BMI (kg/m2) 26.3 (3.5) 27.3 (3.8)

Systolic blood pressure (mm Hg) 138.7 (17.6) 143.4 (18.6)

Cholesterol (mmol/l) 6.28(1.17) 6.51(1.25)

LDL-cholesterol (mmol/l) 4.06 (1.00) 4.26 (1.05)

HDL-cholesterol (mmol/l) 1.39 (0.41) 1.27 (0.36)

White cell count 6.5 (1.7) 7.0 (2.1)

C-Reactive protein 3.27 (5.76) 4.76 (7.78)

% (n)

Men 62 (1157) 62 (521)

Current smokers 8.4 (156) 15.1 (125)

Diabetes mellitus history 1.9 (35) 6.6 (55)

aData available for 1076 controls and 386 cases

https://doi.org/10.1371/journal.pone.0197464.t002
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and 0.80 for total and inhibitable anti-Neu5Gc IgG, respectively (Table 4B). The Spearman

correlation coefficients between samples processed immediately versus after 24 hours were

respectively 0.43 for total and 0.65 for inhibitable anti-Neu5Gc IgG antibodies, and were simi-

lar for immediately versus after 48 hours (0.42 and 0.59). Using 4 categories of plasma anti-

Table 3. Odds ratios for coronary heart disease by quintile of each analyte for 835 coronary artery disease cases and 1869 controls in the EPIC-Norfolk cohort.

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Anti-Neu5Gc IgG against Neu5Gc-alpha-PAA (μg/mL) <6.38 6.38–8.89 8.90–11.63 11.64–16.84 16.86+

Age and sex adjusted 1 1.14

(0.88–1.49)

1.21

(0.93–1.57)

1.15

(0.89–1.50)

0.99

(0.76–1.30)

Multivariate adjustedb 1 1.15

(0.87–1.51)

1.18

(0.90–1.55)

1.18

(0.90–1.55)

0.99

(0.75–1.31)

Anti-Neu5Gc IgG against Neu5Gc2-6Lac-HSA (μg/mL) <5.29 5.29–6.23 6.24–7.16 7.17–8.87 8.88+

Age and sex adjusted 1 1.09

(0.85–1.41)

1.18

(0.81–1.52)

1.03

(0.80–1.33)

0.74

(0.56–0.96)

Multivariate adjustedb 1 1.13

(0.86–1.47)

1.28

(0.98–1.68)

1.07

(0.82–1.40)

0.81

(0.61–1.08)

Total anti-Neu5Gc IgG against mouse serum Neu5Gc-terminated glycans (μg/mL)a <0.81 0.81–1.10 1.11–1.46 1.47–2.08 2.09+

Age and sex adjusted 1 1.06

(0.73–1.53)

1.31

(0.91–1.88)

1.13

(0.78–1.64)

0.89

(0.60–1.30)

Multivariate adjustedb 1 0.97

(0.65–1.43)

1.34

(0.91–1.97)

1.15

0.78–1.69)

0.95

(0.64–1.42)

Neu5Gc Inhibitable IgG against mouse serum Neu5Gc-terminated glycans (μg/mL)a <-0.05 -0.078 0.029–0.129 0.130–0.481 0.482+

Age and sex adjusted 1 0.88

(0.61–1,27)

1.03

(0.72–1.48)

0.86

(0.60–1.25)

0.83

(0.57–1.19)

Multivariate adjustedb 1 0.91

(0.62–1.34)

1.05

(0.72–1.52)

0.84

(0.57–1.24)

0.91

(0.62–1.34)

a Data available for 1076 controls and 386 cases
b Adjusted for age, sex, body mass index, total cholesterol, systolic blood pressure, smoking status and diabetes mellitus

https://doi.org/10.1371/journal.pone.0197464.t003

Table 4. Inter-assay reproducibility, effects of processing delay and within-person reproducibility in the NHS

cohort.

A. Inter-assay reproducibility (n = 21)

Total

anti-Neu5Gc IgG

Inhibitable

anti-Neu5Gc IgG

Median (minimum-maximum), ng/μL 2.75 (1.27, 21.61) 1.23 (-0.04, 18.26)

Spearman correlation between split pairs: 0.93 0.86

# concordant/discordant pairs (4 categories): 18/3 16/5

Weighted Kappa: 0.82 0.71

B. Effects of Processing delay (n = 53)

Median (minimum-maximum), ng/μL 2.39 (0.49, 7.42) 1.40 (-0.73, 6.24)

Spearman correlation between 0–24 hrs: 0.43 0.65

Spearman correlation between 0–48 hrs: 0.42 0.59

ICC across processing delays: 0.58 0.80

C. Within-person reproducibility (n = 47)

Median (minimum-maximum), ng/μL 1.92 (-0.08, 33.09) 0.10 (-3.33, 29.48))

Spearman correlation between 2 blood draws: 0.84 0.78

ICC across blood draws: 0.94 0.87

# concordant/discordant pairs (4 categories): 38/9 33/14

Weighted Kappa: 0.70 0.62

https://doi.org/10.1371/journal.pone.0197464.t004
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Neu5Gc IgG based on the distribution observed in the first pilot experiment, for immediate

versus 24-hour processing, there were 13 out of 16 concordant pairs for total and 14 out of 16

for inhibitable anti-Neu5Gc antibodies. These results indicate that measurement of this

marker is feasible, particularly the inhibitable anti-Neu5Gc IgG antibodies, in large-scale epi-

demiologic studies.

Anti-Neu5Gc IgG antibody levels are stable over time (NHS II cohort)

Within a subset of women in the NHSII who provided repeated blood samples (n = 47), anti-

Neu5Gc IgG antibodies remained stable over a time period of 1 to 3 years from the prior anti-

Neu5Gc level (Table 4C). The Spearman correlation coefficients between blood draws were

0.84 and 0.78 for total and inhibitable anti-Neu5Gc antibody titers, respectively, and the ICCs

were 0.94 and 0.87, respectively. Based on four categories, we noted 38 concordant pairs out of

47 total pairs for total anti-Neu5Gc IgG (weighted Kappa = 0.70) and 33 concordant pairs out

of 47 total pairs (weighted Kappa = 0.62) for inhibitable anti-Neu5Gc IgG.

In summary, the above results indicate that this ELISA measurement of multiple anti-

Neu5Gc IgG antibodies in blood samples is reliable, with low laboratory errors, stable in

Fig 2. Correlation between total and inhibitable anti-Neu5Gc IgG titers in the NHS cohort. Plasma anti-Neu5Gc IgG

levels were quantified by ELISA using wild type mouse serum that contains naturally occurring Neu5Gc-containing

epitopes as the target antigen (N = 46). A strong correlation was observed between total and inhibitable anti-Neu5Gc

IgG titers in the NHS cohort (Spearman r = 0.80).

https://doi.org/10.1371/journal.pone.0197464.g002
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samples with delayed processing up to 48 hours, and strongly reproducible within subjects

over time—providing evidence that plasma anti-Neu5Gc IgG can be used in large epidemio-

logic studies involving stored samples.

Distribution of Anti-Neu5Gc IgG in the NHS II and EPIC cohorts

The target antigen for the ELISA assay was wild-type mouse serum discussed above, which

exhibits a limited range of naturally occurring Neu5Gc-containing sialoglycoproteins epitopes.

Among the 46 samples (18 individuals plus 3 QC pools) included in the split pilot study,

plasma anti-Neu5Gc IgGs displayed a discontinuous skewed distribution, with few samples

exhibiting high values (>10 μg/ml) and the majority having low levels of anti-Neu5Gc IgG

antibodies (Fig 3). There was strong correlation between total and inhibitable anti-Neu5Gc

IgG antibodies (Spearman r = 0.80) (Fig 2). A similar discontinuous distribution was identified

in the EPIC study population as well (Fig 4A and 4B), with the inhibitable IgG showing lower

values compared to the measured total anti-Neu5Gc IgG (Figs 3 and 4B). Yet similar to the

previous analysis on the single Neu5Gc-epitopes, measured anti-Neu5Gc IgG was not associ-

ated with CAD risk (Tables 1 and 2 and S4 Table).

Fig 3. Distribution of anti-Neu5Gc IgG titers against a mixture of epitopes in NHS II population. Plasma total and

inhibitable anti-Neu5Gc IgG levels were quantified by ELISA using wild-type mouse serum as a target that contains

naturally occurring Neu5Gc containing sialoglycoproteins epitopes as antigens (N = 46; Table 1). Total anti-Neu5Gc

IgG refers to the “raw” antibody level obtained against the ELISA target. To obtain a more specific titer, plasma was

incubated with free Neu5Gcα2Me to block non-specific binding and the inhibitable anti-Neu5Gc IgG is this signal

subtracted from the total signal. Plasma anti-Neu5Gc IgG antibodies in the NHS II population displayed a

discontinuous distribution. While the majority of individuals have low levels, a minority of samples (represented by

dots) exhibit very high levels of anti-Neu5Gc IgG.

https://doi.org/10.1371/journal.pone.0197464.g003
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Fig 4. Distribution of Anti-Neu5Gc IgG titers against a mixture of epitopes in the EPIC-Norfolk cohort. (A) Serum anti-Neu5Gc IgG antibodies in the

EPIC-Norfolk population assayed as in Fig 1. Serum total and inhibitable anti-Neu5Gc IgG levels were quantified by ELISA using wild type mouse serum that

contains naturally occurring Neu5Gc containing epitopes as the target antigen (N = 1469). The mean total IgG was 1.7 μg/ml (SD±1.6) and the mean inhibitable

IgG was 0.4 μg/ml (SD±1.2). Total and “inhibitable” anti-Neu5Gc IgG were defined as in Fig 1. (B) The distribution of levels of anti-Neu5Gc IgG was evaluated

by dividing all the samples into 16 bins, in steps of 1 μg/ml each, and the frequency of number of tested samples in each bin described as bar charts for both total

(black) and inhibitable (grey) IgG values.

https://doi.org/10.1371/journal.pone.0197464.g004
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Anti-Neu5Gc IgG levels did not correlate with red meat intake within the

NHS II cohort

Red meat consumption leads to metabolic incorporation of Neu5Gc, generating xeno-auto-

glycans that could be involved in tumor stimulation via chronic inflammation. In the human-

like Cmah-/- mice, Neu5Gc-fed mice demonstrated a five-fold increase in the carcinoma inci-

dence in the liver, an organ that accumulates Neu5Gc in mice [75]. However, while tumor

growth was stimulated at low antibody doses, it was inhibited by much higher doses [68] over

a linear range [76]. Thus, it is essential to examine the factors influencing circulating levels of

anti-Neu5Gc. Given that the major source of human antigen exposure is dietary red meat, we

evaluated whether red meat consumption was correlated with plasma antibody levels. Among

338 individuals in the NHS II with available FFQ information, we did not observe higher

plasma anti-Neu5Gc IgG titers with increasing red meat intake (Spearman correlation coeffi-

cients were -0.05 and -0.02 for total and inhibitable anti-Neu5Gc, respectively). Among

women who reported no red meat consumption (n = 15), mean total anti-Neu5Gc IgG anti-

body level was 4.1 μg/ml, whereas among women who consumed >2 servings/day of red meat

(n = 6), mean antibody level was 1.5 μg/ml (Fig 5). Further, there was no evidence of a signifi-

cant association in regression analyses (p-values of 0.13 and 0.18 for total and inhibitable anti-

Neu5Gc IgG, respectively). Similarly, no associations were observed when considering pro-

cessed and unprocessed red meat products separately, or when considering the cumulative

average intake from baseline through 1999 (data not shown). These data are consistent with

our earlier data suggesting that spontaneous immunization against Neu5Gc glycans may occur

Fig 5. Lack of Correlation between Anti-Neu5Gc IgG titers and red meat intake in the NHS II population. Plasma anti-Neu5Gc IgG levels (total anti-

Neu5Gc IgG levels, or inhibitable anti-Neu5Gc IgG levels) were quantified by ELISA using wild type mouse serum as a target that contains multiple naturally

occurring Neu5Gc containing epitopes (N = 338). Individuals were sorted into categories based on red meat servings/day (s/d).

https://doi.org/10.1371/journal.pone.0197464.g005
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via uptake and presentation of dietary Neu5Gc by bacteria like H. influenzae early in life [21]

may be a more important determinant of subsequent levels during adult life.

Combined total anti-Neu5Gc IgG levels determined by sialoglycan array

are associated with colorectal cancer risk in the EPIC-Norfolk cohort

Given that Neu5Gc can cap a variety of different underlying glycans, the immune response

against it is diverse and polyclonal (despite Neu5Gc being the terminal antigenic epitope) [20].

Thus, while the ELISA assay described using the mouse serum target provides a general over-

view of the anti-Neu5Gc IgG response and maybe tested in future as a screening tool, it does

not cover all the common Neu5Gc-containing epitopes that would be found on epithelial or

endothelial surfaces in vivo. A much broader view of specific antibody response against precise

Neu5Gc-containing glycan can be obtained using a sialoglycan microarray that displays most

of the common naturally-occurring Neu5Gc-containing epitopes [77]. Such data could poten-

tially be useful for identifying a specific anti-Neu5Gc antibody for a particular disease process.

On the other hand, this microarray approach is far more expensive and labor intensive, so a

smaller study was set up to assess its value, targeting colorectal cancer, a risk which has been

best established for red meat consumption.

We analyzed the anti-Neu5Gc IgG profiles for 71 colorectal cases and 71 age and sex-

matched controls within the EPIC-Norfolk cohort, using a custom sialoglycan array that

includes 31 pairs of Neu5Ac/Neu5Gc-terminated glycans (S1 Table). When evaluating anti-

bodies directed against these individual Neu5Gc-containing epitopes on the array (S2 Table),

we did not observe any strong association between CRC risk and any of the epitopes, including

antibody levels against Neu5Gcα2–6GalNAcαOR (GcSTn), which we had previously found to

be more prominent in patients with carcinomas than with other diseases [68].

Since antibody levels against any single Neu5Gc-glycan were not predictive of risk, we consid-

ered the combined total (sum) of all anti-Neu5Gc-glycan IgG antibody levels, as measured on the

array as Relative Fluorescence Units (RFUs). Table 5 demonstrates this sum of all anti-Neu5Gc-

glycan IgG antibody RFU levels (“total antibodies”) measured on the array, divided into quartiles.

As with the ELISA results, the discontinuous skewed distribution is notable. S3 Table shows the

descriptive characteristics by case control status. By design, cases and controls were similar with

respect to age and sex distribution. They were also similar with regard to other factors, such as

body mass index, physical activity, smoking history, aspirin use, blood pressure, occupation, edu-

cation level, family history of cancer, and red meat intake. Controls had slightly higher total cho-

lesterol and slightly greater intakes of total energy, total fat and dairy compared to cases, while

cases had slightly higher alcohol consumption than controls. S2 Table shows the mean, standard

deviation, median, and inter quartile range of the individual glycans by case control status.

In this analysis mean total RFU levels were much higher among CRC cases (9534 ± 24561)

compared to controls (4157 ± 6829). In multivariable analyses of these summed values, we

observed a positive association between total anti-Neu5Gc IgG antibody levels and colorectal

cancer. Individuals in the top quartile of anti-Neu5Gc IgG antibody concentrations had nearly

three times the risk of colorectal cancer compared to those in the bottom quartile (OR: 2.98,

95% CI: 0.80, 11.09) (Table 6). Given the suggestive trend across quartiles and the skewed dis-

tribution of glycans, we also modeled it as a continuous variable: the OR (95% CI) for colorec-

tal cancer per unit increase in log-transformed standardized sum of glycans is 1.46 (1.07, 1.99)

(p-value = 0.02). Adding quartiles of alcohol as an additional covariate to the model did not

make any substantial difference to the result.

Notably, as with the ELISA assays, there was no apparent association between red meat

intake and the sum of glycans (Table 7) or individual glycans (Fig 6) among either cases or
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Table 5. Descriptive characteristics of the colorectal cancer case-control study for anti-Neu5Gc IgG levels, divided into quartiles in the EPIC-Norfolk cohort.

All Quartile 1 (n = 36; 25.4%) Quartile 2

(n = 35; 24.6%)

Quartile 3

(n = 36; 25.4%)

Quartile 4

(n = 35; 24.6%)

Sum of antibodies against all Neu5Gc-glycans

Mean ± SD 6845.2 ± 18163.7 453.8 ± 287.2 1438.4 ± 277.5 2917.5 ± 812.7 22866.0 ± 31834.8

Sum of antibodies against all Neu5Gc-glycans (median)

Median

(IQR)

1928.0

(933.9–4554.8)

383.2

(255.8–708.1)

1393.5

(1234.2–1678.9)

2573.5

(2266.6–3544.8)

9102.0

(6750.9–24271.8)

Inhibitable Anti-Neu5Gc IgG

Mean ± SD 0.4 ± 1.3 0.1 ± 0.4 0.1 ± 0.3 0.3 ± 0.8 1.2 ± 2.3

Total Anti-Neu5Gc IgG

Mean ± SD 1.7 ± 1.7 1.6 ± 1.6 1.3 ± 0.8 1.6 ± 1.0 2.5 ± 2.6

Age, years

Mean ± SD 67.1 ± 6.1 67.2 ± 5.2 66.8 ± 7.0 66.5 ± 6.0 67.8 ± 6.1

Sex

Men (%) 98 (69.0) 24 (66.7) 26 (74.3) 26 (72.2) 22 (62.9)

Women (%) 44 (31.0) 12 (33.3) 9 (25.7) 10 (27.8) 13 (37.1)

Body mass index, kg/m2

Mean ± SD 26.6 ± 3.4 26.9 ± 3.2 26.3 ± 2.8 27.6 ± 4.2 25.7 ± 3.0

Weight, kg

Mean ± SD 76.6 ± 12.3 75.9 ± 12.4 77.5 ± 11.6 79.8 ± 13.1 72.9 ± 11.4

Height, cm

Mean ± SD 169.3 ± 8.9 167.7 ± 9.6 171.3 ± 10.1 170.2 ± 8.2 168.0 ± 7.4

Units of Alcohol per week

Mean ± SD 7.8 ± 8.5 8.4 ± 8.7 6.1 ± 7.7 8.5 ± 8.1 8.3 ± 9.4

Total cholesterol

Mean ± SD 6.4 ± 1.2 6.4 ± 1.2 6.4 ± 1.3 6.4 ± 1.1 6.3 ± 1.4

Systolic blood pressure

Mean ± SD 137.8 ± 18.1 140.5 ± 20.3 137.3 ± 17.4 136.7 ± 20.5 136.9 ± 13.9

Total energy (kJ/day)

Mean ± SD 8461.8 ± 2033.6 8359.6 ± 2108.7 8854.4 ± 1955.4 8467.3 ± 1900.7 8168.8 ± 2184.7

Total fat (g/day)

Mean ± SD 76.1 ± 23.1 74.2 ± 23.8 83.4 ± 22.6 75.5 ± 21.0 71.4 ± 24.2

Red meat (g/day)

Mean ± SD 39.8 ± 32.3 34.0 ± 35.1 44.9 ± 36.6 44.7 ± 29.0 35.8 ± 28.0

Dairy (g/day)

Mean ± SD 288.0 ± 163.5 277.3 ± 149.1 298.7 ± 192.4 290.9 ± 170.0 285.2 ± 144.8

Smoking status

Current 9 (6) 3 (8) 2 (6) 2 (6) 2 (6)

Former (%) 76 (54) 16 (44) 19 (54) 23 (64) 18 (51)

Never (%) 57 (40) 17 (47) 14 (40) 11 (31) 15 (43)

Physical activity

Inactive (%) 58 (41) 13 (36) 17 (49) 15 (42) 13 (37)

Moderately inactive (%) 36 (25) 8 (22) 9 (26) 6 (17) 13 (37)

Moderately active (%) 18 (13) 4 (11) 2 (6) 8 (22) 4 (11)

Active (%) 30 (21) 11 (31) 7 (20) 7 (19) 5 (14)

Social class

Professional (1) (%) 13 (10) 5 (14) 3 (9) 3 (9) 2 (6)

Technical (2) (%) 55 (40) 14 (40) 12 (36) 17 (50) 12 (35)

Clerical NM (3.1) (%) 23 (17) 6 (17) 6 (18) 4 (12) 7 (21)

(Continued)
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controls in the EPIC-Norfolk study. Fig 6 shows the Spearman’s correlation heatmap of the 31

individual glycans and red meat for cases and controls combined. It attempts to summarize

the correlation matrix in a compact visual format. Red meat correlations with each glycan (the

top row) are shown as almost white meaning the correlations are close to zero. The remaining

rows show the correlation of each glycan with every other. Almost all glycan correlations are

positive, appearing as light or dark blue on the diagram. Glycans numbered 2 to 36 are strongly

Table 5. (Continued)

All Quartile 1 (n = 36; 25.4%) Quartile 2

(n = 35; 24.6%)

Quartile 3

(n = 36; 25.4%)

Quartile 4

(n = 35; 24.6%)

Clerical M (3.2) (%) 26 (19) 7 (20) 6 (18) 4 (12) 9 (26)

Semi-skilled (4) (%) 16 (12) 3 (9) 4 (12) 5 (15) 4 (12)

Unskilled (5) (%) 3 (2) 0 (0) 2 (6) 1 (3) 0 (0)

Aspirin use over 3 months

No (%) 127 (89) 30 (83) 34 (97) 31 (86) 32 (91)

Yes (%) 15 (11) 6 (17) 1 (3) 5 (14) 3 (9)

Family history of cancer

Yes (%) 67 (47) 18 (50) 17 (49) 16 (44) 16 (46)

No (%) 75 (53) 18 (50) 18 (51) 20 (56) 19 (54)

Education level

High (%) 86 (61) 21 (58) 22 (63) 24 (67) 19 (54)

Low (%) 56 (39) 15 (42) 13 (37) 12 (33) 16 (46)

https://doi.org/10.1371/journal.pone.0197464.t005

Table 6. Matched logistic regressiona models for the sum of antibodies against all Neu5Gc-glycans measured in

quartiles, and log transformed sum of antibodies against all Neu5Gc-glycans in the EPIC-Norfolk cohort.

Colorectal cancer

OR (95% CI)

p value

Model 1, unadjusted

Quintile 1 (ref) 1 -

Quartile 2 1.23 (0.45–3.40) 0.685

Quartile 3 1.42 (0.53–3.78) 0.485

Quartile 4 1.51 (0.57–4.00) 0.411

Trend over quartiles 1.15 (0.85–1.54) 0.371

Model 2, adjusted for study covariatesb

Quintile 1 (ref) 1 -

Quartile 2 1.54 (0.44–5.35) 0.500

Quartile 3 1.74 (0.51–6.01) 0.379

Quartile 4 2.98 (0.80–11.09) 0.104

Trend over quartiles 1.40 (0.93–2.09) 0.105

Model 3, log sum of antibodies against all Neu5Gc-glycans, unadjusted

1.28 (1.01–1.61) 0.040

Model 4, log sum of antibodies against all Neu5Gc-glycans, adjusted for study

covariatesb

1.46 (1.07–1.99) 0.016

a Cases matched to controls on date of birth, date of health examination and sex
b Adjusted for body mass index, height, smoking status, physical activity, aspirin use over three months, education

level, social class and family history of cancer

https://doi.org/10.1371/journal.pone.0197464.t006
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correlated with each other while those numbered 38 to 77 generally show weaker correlations.

Glycan 77 is weakly correlated to most others.

Discussion

Taken together, our data indicate that while ELISA measurement of IgG antibodies directed

against limited sets of Neu5Gc-glycans show a markedly discontinuous skewed distribution in

populations, they do not provide clear associations with red-meat related diseases. There was no

association between anti-Neu5Gc antibodies and CAD risk when measured by such assays. In

contrast to these important negative results, the sum of all antibody titers against more than 30

Neu5Gc-glycans on a glycan array was significantly associated with higher colorectal cancer risk.

The chronic inflammation induced by antibodies is generally related to complement depo-

sition and to attraction of Fc-receptor-positive innate immune cells [78–81]. Given that epithe-

lial and endothelial cells (where diet-derived Neu5Gc tends to accumulate) are expected to

display a wide variety of sialic acid-bearing epitopes, it is actually not surprising that it is the

sum total of all antibodies that showed a positive association with disease risk—rather than

antibodies directed against a specific glycan. Although the sample size for this colorectal cancer

case-control study was small and statistical power was limited, the results warrant a thorough

investigation between the total anti-Neu5Gc immune response and colorectal cancer risk. Rep-

lication in future studies will be necessary.

Notably, a strong correlation was observed between anti-Neu5Gc IgG titers in the ELISA

assay and the fraction inhibitable by Neu5Gcα2Me. This indicates that use of the expensive

inhibitor to determine specificity is unnecessary. However, while anti-Neu5Gc IgG can be

measured and followed with an ELISA screening assay, the sialoglycan microarray approach

will likely be needed to accurately identify sub-populations at risk and/or unique combinations

of epitopes that are associated with specific diseases. Of course, the sialoglycan microarray

approach is much more expensive and time-consuming. In this regard, it is notable that the

majority of individuals in the populations studied had rather low levels of antibodies detected

in all of the assays. Since the distribution of levels is so highly skewed in the population, there

is a possibility that only those with high levels are at risk for red meat related disease. Thus, it

may be worthwhile to see if a screening ELISA assay (such as the ones described here) can be

used to focus attention on those individuals whose total antibody levels are in the upper quar-

tile or quintile of the population distribution. However, the more expensive and time-consum-

ing slide array studies will likely still be required to obtain more precision.

Consistent with our earlier data regarding early childhood emergence of anti-Neu5Gc anti-

bodies [21], we did not find a correlation with dietary red meat intake in 338 adult women.

Table 7. Linear regression models for the log transformed sum of antibodies against all Neu5Gc-glycans against

food diary red meat for cases and controls separately in the EPIC-Norfolk cohort.

Beta (95% CI) p-value

Age and sex adjusted

Model 1: Controls 0.009 (-0.004–0.021) 0.185

Model 2: Cases -0.006 (-0.017–0.005) 0.299

Multivariate adjusteda

Model 3: Controls 0.008 (-0.007–0.022) 0.286

Model 4: Cases -0.002 (-0.016–0.011) 0.713

aAdjusted for body mass index, height, smoking status, physical activity, aspirin use over three months, education

level, social class and family history of cancer.

https://doi.org/10.1371/journal.pone.0197464.t007
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We queried usual adult red meat consumption; given that levels of anti-Neu5Gc antibodies are

determined earlier in life, i.e., upon first exposure to red meat and/or represent cumulative

exposure over a lifetime, this result is not unexpected. We also lacked information regarding

introduction of solid foods in infancy for adult participants in these studies, which could have

provided further insights into the discontinuous distribution of antibodies we observed.

Despite a strong rationale for associations with disease risk [20,21,68,68,75,82] and recent

suggestive reports from us and others studying various diseases and clinical situations [67,83–

Fig 6. No correlation in heatmap matrix of antibodies against 31 individual Neu5Gc-glycans and red meat consumption in the EPIC-Norfolk samples studied for

CRC Risk. The top and left side of the figure represents the individual glycans on the microarray, with each number representing the glycan ID. Each colored dot

represents the correlation between the anti-Neu5Gc IgG against the individual glycans and red meat consumption. Black represents a correlation of 1, shades of blue are

between 0 and 1, while shades of red are correlations between 0 and -1.

https://doi.org/10.1371/journal.pone.0197464.g006
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90], such simple ELISA assays directed at specific Neu5Gc-containing epitopes, or even the

limited mixtures of epitopes studied here did not give definitive correlations with disease risk.

However, in retrospect this result is logical when considering the disease mechanism involved.

In any given cancer or inflammatory cardiovascular lesion, a multitude of varied epitopes pre-

senting the non-human Neu5Gc sialic acid are expected. Given that each individual has a dis-

tinct profile of antibodies it is consistent that the total level of all antibodies combined has the

closest correlation with inflammation and disease risk. Our finding of a positive association of

total anti-Neu5Gc antibodies with CRC risk warrants confirmation in larger prospective

studies.

Further work harnessing the utility of these anti-Neu5Gc antibodies as biomarkers in red

meat-associated diseases must consider such diversity in individual antibody profiles against

different Neu5Gc-bearing glycans. Traditional ELISA assays directed against Neu5Gc alone,

or against specific Neu5Gc-glycans may not be adequate to define risk associations. Further

research on the association of anti-Neu5Gc IgG and red meat-related pathology will have to

utilize either the complex and expensive slide array method, or perhaps a novel approach to

generating a mixed target containing most of the epitopes.
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