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A Cartesian Coordinate Robot for Dispensing Fruit Fly Food
Matthew T. Wayland and Matthias Landgraf

The fruit fly, Drosophila melanogaster, continues to be one of the most widely used model organisms in 
biomedical research. Though chosen for its ease of husbandry, maintaining large numbers of stocks of 
fruit flies, as done by many laboratories, is labour-intensive. One task which lends itself to automation 
is the production of the vials of food in which the flies are reared. Fly facilities typically have to gener-
ate several thousand vials of fly food each week to sustain their fly stocks. The system presented here 
combines a cartesian coordinate robot with a peristaltic pump. The design of the robot is based on an 
open hardware CNC (computer numerical control) machine, and uses belt and pulley actuators for the X 
and Y axes, and a leadscrew actuator for the Z axis. CNC motion and operation of the peristaltic pump 
are controlled by grbl (gnea 2018), an open source, embedded, G-code parser. Grbl is written in optimized 
C and runs directly on an Arduino. A Raspberry Pi is used to generate and stream G-code instructions to 
Grbl. A touch screen on the Raspberry Pi provides a graphical user interface to the system. Whilst the 
robot was built for the express purpose of filling vials of fly food, it could potentially be used for other 
liquid handling tasks in the laboratory.

Keywords: open source; Drosophila; CNC; liquid handling; Cartesian coordinate robot; Arduino; Raspberry 
Pi; G-code

Metadata Overview
•	 Hardware design files: https://doi.org/10.5334/
joh.9.s1.

•	 Software source code: https://doi.org/10.5281/ze-
nodo.846812.

•	 User manual: https://waylandm.github.io/fly-
food-robot/ (archived with software source code in: 
https://doi.org/10.5281/zenodo.846812).

•	 Target group: scientists and technicians working in 
the biological sciences.

•	 Skills required: laser cutting acrylic – easy; soldering 
through-hole components onto printed circuit boards 
– easy; cutting aluminium profile using a mitre	
saw – easy.

(1) Overview
Introduction
For more than 100 years the fruit fly, Drosophila mela-
nogaster, has served as a genetic model system for the 
study of a wide range of questions, from the basics of 
genetic inheritance to embryonic development and mod-
elling human disease. For example, around 77% of human 
genes known to be involved in disease have been identi-
fied with confidence in Drosophila, illustrating the large 
degree of evolutionary conservation that has informed 
many studies (Held, Jr 2017). Moreover, the fruit fly was 

the model system for pioneering work that revealed the 
fundamental principles of genetic inheritance, speci-
fication of body plans, innate immunity and circadian 
rhythms. These groundbreaking discoveries led to six 
Nobel prizes in physiology and medicine, for a total of ten 
scientists (Manchester Fly Facility 2018).
One reason for Drosophila’s success as an experimental 

model system is its straight forward maintenance in the 
laboratory environment. This enables scientists to breed 
large numbers of flies, and to generate and keep large 
numbers of genetically distinct stocks with relative ease 
and at comparatively low cost. Fruit flies are commonly 
reared in vials (glass, polystyrene or polypropylene) con-
taining a small quantity of food (Figure 1). Fly food is pre-
pared in batches by cooking a mixture of water, glucose, 
yeast, agar and wheat flour in a kettle. Fungicides and 
antibiotics are added to prevent spoilage by microorgan-
isms. Optionally dyes may be used to colour code batches. 
Food must be dispensed into vials whilst it is molten 
(above 50°C), as it solidifies at room temperature.
In the fly facility of the Department of Zoology, 

University of Cambridge, vials used to be filled one at a 
time by a technician using a neoprene tube and a peri-
staltic pump. One end of the neoprene tube would be 
anchored in the kettle of food and the other inserted into 
the vial to be filled. The technician would activate the 
peristaltic pump (Cole-Parmer Masterflex, Cole-Parmer 
2018) by pressing a foot switch until the desired volume 
of food had been dispensed into the vial. The free end of 
the tube would then be moved to the next vial to be filled 
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and the process repeated. This work flow was laborious, 
messy, and consumed the valuable time of skilled techni-
cians. Nevertheless, this continues to be standard practice 
in many fly facilities around the world.
There is an automated fly food dispenser on the market, 

but it is prohibitively expensive for many academic fruit fly 
facilities, including our own. We set out to design an open 
hardware solution to share with the scientific community.

Overall Implementation and Design
Overview
Vials are stored in cardboard boxes in a 10  ×  10  grid. 
This ordered arrangement facilitates automated filling 
using a robot with three axes of motion (Figures 2 and 
3). Coordinated movement of the x, y and z actuators 
places a dispensing nozzle over the mouth of a vial and 
a peristaltic pump is activated to deliver food. Top level 
control is provided by a Raspberry Pi with a touchscreen 
user interface. G-code (Wikipedia 2018b) instructions are 
generated on the Raspberry Pi and then streamed to Grbl 
(gnea 2017; gnea 2018), a G-code parser, running on an 
Arduino Uno (Revision 3). Grbl uses a gShield (Synthetos 
2018c; Synthetos 2018b) to translate the G-code instruc-
tions into digital pulses which drive the stepper motors of 
the X, Y and Z actuators. The selection and specification of 
components are described in more detail below.

Design based on a CNC router
Rather than attempt to design our own cartesian coordi-
nate robot, we decided to adapt an existing machine. We 
originally planned to use a cheap, mass-produced, desk-
top CNC (Computer Numerical Control) router. However, 
modifying a commercial CNC router would require some, 

Figure 1: A vial of fruit flies. The food is at the bottom 
of the vial and the flies can be seen crawling over the 
inside wall. Green dye has been added to the food to 
identify the batch; normally the colour of fly food is pale 
yellow/brown. The vial has a height of 80 mm and a 
diameter of 25 mm.

Figure 2: System architecture.
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potentially challenging, reverse engineering. Addition-
ally, a commercial router would include components not 
required for this project, such as a spindle.
An open-hardware router provided a much more flex-

ible starting point, because the design could be modified 
before commencing the build. Of the numerous open-
hardware router designs available online, we chose Mark 
Carew’s “routy” (Carew 2018) for the following reasons:

•	 The build was well documented with photographs.
•	 All parts were readily available.
•	 The OpenBuilds community forum showed that other 
people had successfully built functioning routers us-
ing this design.

•	 This bed of this router is a suitable size to accommo-
date two boxes of vials.

•	 It was relatively cheap to build.

This cartesian coordinate robot uses belt and pulley actua-
tors for the X and Y axes, and a leadscrew actuator for the 
Z axis. Grbl (gnea 2017; gnea 2018), an open source G-code 
parser provides CNC motion control. Key features of Grbl 
include precise timing, asynchronous operation and accel-
eration management. Grbl is written in optimized C and 
runs on an Arduino. The Arduino cannot drive the step-
per motors directly and so a gShield (Synthetos 2018c; 
Synthetos 2018b) is required to provide the hardware 
interface (Figure 3). Header pins on the gShield enable it 
to be mounted directly on top of an Arduino Uno.

We opted to use the combination of Grbl, Arduino 
Uno and gShield, because they had been shown to be an 
effective solution for CNC motion control in the original 
“routy” design. However, alternative open hardware CNC 
controllers are available, and could potentially be used 
in this build. For example, the functions of the Arduino 
Uno and gShield are combined in the SmoothieBoard 
(smoothieboard 2018) and the TinyG (Synthetos 2018a; 
Synthetos 2018d). The SmoothieBoard and TinyG each 
have their own open source G-code parser.
For this project, some minor modifications to the 

“routy” design were required, including:

•	 A pair of limit switches were added to each axis to 
define the range of motion. The limit switches are also 
used for ‘homing’; i.e. setting the origin of the coordi-
nate system.

•	 The z-actuator was lengthened to give greater range 
in the vertical axis, and thus enable to robot to handle 
vials of a variety of sizes.

•	 The gantry was raised to provide more clearance from 
the bed of the router.

•	 A router would normally have a sacrificial bed. This 
has been replaced with an acrylic platform with guide 
rails to ensure the correct alignment of the boxes of 
vials in the x-axis (Figure 4a). The platform can be re-
moved from the robot and disassembled for cleaning.

•	 A fence has been added to facilitate alignment of box-
es in the y-axis (Figure 4b).

Figure 3: System overview. The cartesian coordinate robot has three axes of motion (x, y and z). A Raspberry Pi (r) gen-
erates and streams G-code instructions to an Arduino (not shown) which drives stepper motors (s) via the gShield. 
A protoshield is used for custom electronics; visible on this circuit board are the capacitors used to filter noise on 
the limit switch lines, and the two optocouplers which are the interface to the peristaltic pump (p). The gShield and 
protoshield are stacked on top of the Arduino and housed in the electronics box (e). A graphical user interface is 
displayed on the touch screen of the Raspberry Pi (r). Fly food prepared in the kettle is propelled through neoprene 
tubing (t) by the peristaltic pump (p) to the nozzle (n) from where it is dispensed. Boxes (b) of vials are loaded on to 
the platform of the robot for filling.
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Incorporation of the peristaltic pump
The Cole-Parmer Masterflex peristaltic pump (Cole-Parmer 
2018) is used to manually fill vials. We decided to incorporate 
one of these pumps into our build for the following reasons:

•	 Long term use in our fly facility has demonstrated the 
reliability of the pump.

•	 The pump can be operated by remote control (via 
cable), which is prerequisite for integration into a 
robotic system.

•	 We had one at our disposal.

A promising open hardware alternative to this commer-
cial pump has been developed by iGEM (International 
Genetically Engineered Machine) 2017 team Aachen 
(iGEM Aachen 2018a; iGEM Aachen 2018b).
To fill vials of fly food we simply need to be able to start 

and stop the pump. However, for other applications it may 
be necessary to control the direction of flow. The remote 
control interface on the peristaltic pump is a DB15 female 
port. Closing contact between pins 10 and 12 starts the 
pump; breaking contact stops the pump. The pump can 
be switched from clockwise (CW) rotation to counter-
clockwise (CCW) rotation by closing contact between pins 
11 and 12. In the operation of a CNC router Grbl uses 
Arduino pins A3 and D13 for enabling coolant and chang-
ing spindle direction respectively. Here we use A3 for 
pump stop/start and D13 for pump direction (CW/CCW). 
Two optocouplers are used to connect the Arduino to 
the pump while maintaining electrical isolation. When 
Arduino pin A3 is high (i.e. set to 5 Volts), one of the opto-
couplers makes contact between pins 10 and 12 on the 
DB15 port starting the pump.

A neoprene tube with a nylon nozzle is used to deliver 
food to the vials. To attach this assembly on to the z-actu-
ator of the robot we designed a mounting plate which 
was cut from a sheet of acrylic (Figure 4c). Cable ties are 
threaded through the holes to attach the hose assembly.

Custom electronics
Several electronic components must be wired to the Arduino, 
including optocouplers for interfacing with the peristaltic 
pump, and capacitors for filtering noise on the wires from 
the limit switches. These components are mounted on an 
Arduino protoshield (Figure 3). A protoshield was chosen 
over a custom printed circuit board, because (i) it can be 
conveniently stacked between the Arduino and gShield 
boards; and (ii) it is cheap and readily available to anyone 
wishing to replicate the robot. Circuit diagrams for the cus-
tom electronics are provided on Docubricks.

Top level control
Movement of the robot is programmed in G-code. A com-
puter is required to generate G-code programs, and also to 
stream them to the Grbl software running on the Arduino. 
We chose a Raspberry Pi, on the basis of its small foot-
print, low energy consumption, and low cost.

User interface to control system
A touchscreen attached to the Raspberry Pi presents a 
graphical user interface (GUI) to the operator of the robot 
(Figure 3). A GUI was chosen over hardware switches, 
because it could be rapidly reconfigured to add or remove 
functionality as required. A resistive rather than a capaci-
tive touchscreen was selected for this application, because 
some operators may wear gloves.

Figure 4: Parts laser cut from acrylic sheet. (a) Platform with guide rail to ensure correct alignment of boxes; can be 
disassembled for cleaning. (b) Fence to prevent boxes of vials from being pushed off the platform and to ensure their 
correct alignment in the y-axis. (c) Mount for the neoprene tube and nylon nozzle that deliver the fly food to the vials; 
cable ties are threaded through the holes to attach the tube and nozzle assembly.

http://docubricks.com/viewer.jsp?id=8652757760093769728
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Modularity
The system is inherently modular (Figure 2), facilitating fur-
ther customization. Should a module cease to be available, 
it will be possible to substitute an alternative. For example:

•	 A different router design could be chosen to provide 
linear actuators.

•	 The touchscreen could be replaced with mechanical 
switches.

•	 The Raspberry Pi could be substituted for a spare lap-
top or desktop computer.

•	 A SmoothieBoard (Smoothieboard 2018) or TinyG 
(Synthetos 2018a; Synthetos 2018d) could replace 
both the Arduino and gShield.

(2) Quality control
Safety
Operators of the robot should be aware of three hazards:

•	 Electric shock.
•	 Entanglement or entrapment in moving parts.
•	 Slips, trips and falls.

Electric shock
The power supply runs on mains electricity and so should 
be positioned well away from the robot where there is 
no danger of it being splashed with liquid. Additionally, 
use of a residual current device (RCD) is recommended to 
protect operators from electrocution. The actuators of the 
robot use low voltage (24V) motors. All cables should be 
inspected for damage before switching on the robot.

Entanglement or entrapment in moving parts
Precautions should be taken for loose hair, clothing, jew-
ellery and other items so that they are not caught in the 
machine. Trays of vials should be loaded and unloaded 
when the actuators of all three axes are stationary. The 
touchscreen handset allows the operator to start and stop 
jobs while standing well clear of the moving parts.

Slips, trips and falls
Cables and neoprene tubing should be positioned so that 
they do not pose an obstruction or tripping hazard. Spillages 
of fly food to be cleaned up immediately to avoid slip hazard.

Calibration
Before the robot can be used, it is essential to calibrate 
the motion of the actuators, determine the cartesian 
coordinates of the vials to be filled, calibrate the flow 
rate of the peristaltic pump, and generate G-code pro-
grams for filling vials. These procedures are described in 
detail in the user manual (live: https://waylandm.github.
io/fly-food-robot/; archive: https://doi.org/10.5281/
zenodo.846812), and summarized below.

Calibration of actuator motion
The step size (steps/mm) of the stepper motor(s) on each 
axis must be calculated, so that Grbl can calculate the 
number of digital pulses required to move an actuator a 
known distance (https://perma.cc/T2F4-QUEB). Grbl can 

automatically find the origin of the cartesian coordinate 
system by running a homing cycle in which the actuators 
are driven in the positive direction until the limit switches 
are activated. The step size of the linear actuators is calcu-
lated on completion of the build, and this calibration pro-
cedure should not need to be repeated unless the motors 
or timing belt are replaced.

Determination of vial coordinates
The platform of the robot can accommodate two boxes, 
each containing 100 vials (Fisher Scientific 2018). The 
guide rail and fence ensure that the boxes are always 
placed in the same position (Figure 4). The robot must 
be given the coordinates of every vial to be filled. If we 
know the xy coordinates of the vials in diagonally oppo-
site corners of a box, we can calculate the coordinates of 
all other vials in the box by interpolation. We also need 
to determine the appropriate height (z coordinate) of the 
nozzle for filling vials; sufficient proximity to the mouth 
of the vial to ensure accuracy of food delivery, but not so 
close that it might strike the vial when moving laterally. A 
step by step protocol for determining vial coordinates is 
provided: https://perma.cc/DM23-UAL8. This procedure 
is performed once and would only need to be repeated if 
the size of the boxes or vials changed.

Calibration of the flow rate of the peristaltic pump
To maximize speed the peristaltic pump is run at its maxi-
mum flow rate of 30 ml/second. In our fly facility, we add 
8 ml of food to each vial, therefore based on the maxi-
mum flow rate, we should only need to run the pump for 
0.27 seconds to dispense 8 ml of food. However, there is 
latency in the system and the pump does not reach its 
maximum flow rate instantaneously on activation. There-
fore, it is important to determine the fill time empirically. 
We do this by programming the robot to test fill a single 
box of vials using a range of fill times; one per row. The 
volume of food in the vials can then be measured and the 
optimum fill time identified. A script has been written for 
this purpose and more details can be found in the manual: 
https://perma.cc/9J24-FUZP.

Generation of G-code programs
Two G-code programs are required, one for filling a single 
box of vials, and another for filling two boxes of vials. We 
have written a python script to generate these G-code pro-
grams; it requires the following parameters:

•	 for each box, the xy coordinates of diagonally oppo-
site vials

•	 the fill time, as determined in the calibration of the 
flow rate of the peristaltic pump

•	 the appropriate height (z coordinate) of the nozzle for 
filling vials

•	 the time the robot should wait after filling a vial, to 
allow for drips of food from the nozzle, before moving 
on to the next vial (default value of 0.1 seconds).

Protocol and script for generating G-code programs: 
https://perma.cc/G94Y-BED4.

https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://perma.cc/T2F4-QUEB
https://perma.cc/DM23-UAL8
https://perma.cc/9J24-FUZP
https://perma.cc/G94Y-BED4
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Liquid handling performance
The precision and accuracy with which the robot aliquots 
fly food to vials was assessed by measuring the depth of 
food in each of 100 vials. The volume of food in each vial 
was estimated using the following formula:

		  2volume r h � (1)

where r is the internal radius of the vial and h is the 
depth of food. The estimated volume of food in each vial 
ranged from 7.1–8.3 ml (mean = 7.7 ml; standard devia-
tion = 0.27 ml). For comparison, 100 manually filled vials 
contained an estimated 7.5–9.1 ml (mean = 8.3 ml; stand-
ard deviation = 0.25 ml) of food. The variation reported 
here is probably inflated by measurement error.

General testing
The robot has been used routinely in the Department of 
Zoology’s fly facility since 21st October 2015, each week 
filling at least 1,000 vials with food. In the first few weeks 
of operation the control system malfunctioned three 
times, resulting in jobs stopping before all vials were filled 
and then restarting. The malfunction was not reproduci-
ble, and so the cause could not be determined definitively. 
However, all errors involved a prototype of the software 
user interface, where the operator would tap a desktop 
icon on the touchscreen to launch a shell script, which 
would in turn run a job. It is possible that if the operator 
tapped the icon too many times, a second instance of the 
shell script might be initiated, potentially conflicting with 
the first. The current graphical user interface (GUI), devel-
oped using TkInter (Tkinter 2018), prevents more than 
one job being launched at a time. Since starting to use 
the current GUI approximately two years ago, not a single 
fault has been reported. The robot can fill two boxes, each 
containing 100 vials, within seven minutes.

(3) Application
Use case
To date the robot has been applied solely to the use case of filling 
vials of fly food. A video showing the robot in action is available 
at: https://doi.org/10.6084/m9.figshare.5175223.v1.

Reuse potential and adaptability
The system in its current form could be applied to other 
low precision liquid handling operations, such as dispens-
ing reagents. The design includes the electronics required 
to control the direction of rotation of the peristaltic pump, 
so the system could be programmed (in G-code) to extract 
liquid from one vial and transfer it to another. More gener-
ally, a cartesian coordinate robot can be used to automate 
many tasks in the laboratory, such as moving a camera 
to capture macroscopic images of museum specimens 
arranged in trays (Blagoderov et al. 2012) or positioning 
an extruder for 3D bioprinting (Banović and Vihar 2018).

Support
The robot has yet to be replicated in other labs and so a 
community of users has still to be established. Neverthe-
less, support communities are associated with all of the 
constituent open hardware and software components:

•	 Arduino (Arduino 2018)
•	 CNC router (OpenBuilds 2018)
•	 grbl (gnea 2018)
•	 gShield (Synthetos 2018c)
•	 Raspberry Pi (Raspberry Pi Foundation 2018)
•	 TkInter (Tkinter 2018)

(4) Build Details
Availability of materials and methods
All materials are readily available from online suppliers. A 
complete bill of materials, including URLs of vendors, is 
provided on Docubricks. There are two specialized hard-
ware components which are produced by only one manu-
facturer: the Cole-Parmer Masterflex peristaltic pump and 
the gShield CNC motion controller. The peristaltic pump is 
mass produced and so should be easy to acquire, but could 
be substituted with a device of similar specification. The 
gShield is one of several CNC motion controllers. Should 
production of the gShield cease, suitable alternatives 
include the SmoothieBoard (Smoothieboard 2018) and 
TinyG (Synthetos 2018a; Synthetos 2018d). Moreover, cir-
cuit diagrams for the gShield are available (Synthetos 2018c; 
Synthetos 2018b) and so the device could be fabricated.
Access to a laser cutter will be required to cut the acrylic 

parts (tube mount, platform and fence rails). A mitre 
(chop) saw is needed to cut the V-Slots™ Aluminium 
extrusion.

Ease of build
The robot can be assembled using standard workshop 
tools (i.e. spanners, screw drivers, Allen (hex) keys and a 
soldering iron). Detailed documentation on the build pro-
cess is available on Docubricks, with every step illustrated 
with a photograph or diagram. Similarly, comprehensive 
instructions on software installation and configuration 
are provided on github: https://waylandm.github.io/
fly-food-robot/ (archived in https://doi.org/10.5281/
zenodo.846812).

Operating software and peripherals
•	 Adafruit’s custom raspberry pi image (Adafruit 
2018a), based on Raspbian version 8 (‘jessie’; kernel 
release 4.4.24-v7), is pre-configured for use with the 
PiTFT touch screen and contains all required software 
dependencies. Alternatively, Adafruit provide a helper 
script (Adafruit 2018c) to customize a standard Rasp-
bian release for use with the touch screen.

•	 Grbl gcode parser (gnea 2018). Originally used ver-
sion 0.9i and currently using version 1.1f (gnea 2017) 
which was released on 01/08/2017.

•	 Arduino IDE (Arduino 2018) is required to load Grbl 
software onto the Arduino Uno.

•	 Python 2.7.9  scripts are used to generate all gcode 
programs used by the robot.

•	 The touchscreen user interface is developed using Py-
thon 2.7.9 and Tkinter (Tkinter 2018; Tk version 8.6).

Dependencies
•	 Raspberry Pi version 3 (Raspberry Pi Foundation 
2018). Earlier versions can potentially be used, but 
may require a different touch screen.

https://doi.org/10.6084/m9.figshare.5175223.v1
http://docubricks.com/viewer.jsp?id=8652757760093769728
http://docubricks.com/viewer.jsp?id=8652757760093769728
https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
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•	 Adafruit PiTFT Plus 320 × 240 2.8″ TFT + Resistive 
Touchscreen (Adafruit 2018b).

•	 Arduino Uno, which is open source hardware under 
the Creative Commons Attribution Share-Alike li-
cense (Arduino 2018).

•	 Arduino gShield (Synthetos 2018c; Synthetos 2018b) 
provides the hardware implementation of the Grbl 
CNC motion control system.

•	 Cole-Parmer Masterflex Peristaltic Pump (Cole-Parmer 
2018). This commercial pump could potentially be 
substituted with an open hardware peristaltic pump.

•	 V-Slot™ Aluminium Extrusion by OpenBuilds is li-
censed under the Creative Commons – Attribution – 
Share Alike license (OpenBuilds 2018).

Hardware documentation and files location
Archive for hardware documentation and build files

Name: CNC fly food dispenser
�Persistent identifier: https://doi.org/10.5334/joh.9.s1
Licence: CC-BY 3.0
Publisher: Matthew T. Wayland
Date published: 21/04/2017

Software source code repository
�Name: Cartesian coordinate robot for dispensing fruit 
fly food
�Repository: https://github.com/WaylandM/fly-food-	
robot
�Persistent identifier: https://doi.org/10.5281/zenodo	
.846812
Licence: GNU General Public License 3.0
Date published: 22/08/17

(5) Discussion
Conclusions
The cartesian coordinate robot described here is a cheap 
(at the time of writing, May 2018, the total cost of mate-
rials, excluding pump, was £650) and reliable tool for 
automating the production of vials of fly food. It does 
not provide greater speed, accuracy or precision than a 
human operator of a peristaltic pump. However, it does 
release skilled technicians from a tedious task that car-
ries the risk of repetitive strain injury (El-Helaly, Balkhy, 
and Vallenius 2017). The entire system can be built and 
configured in one day. In our fly facility the robot cur-
rently saves our technicians around an hour of work each 
week.
This project is a testament to the power of open source 

hardware and software. Designing a cartesian coordinate 
robot from scratch would be a technically challenging 
task, beyond the skill set of the authors, who have no 
formal training in engineering. However, by building on 
existing open hardware (OpenBuilds “routy”, Arduino, 
gShield) and software (Grbl, Python, TkInter) projects, 
we have been able to develop an automated fly food dis-
penser with relative ease.

Future Work
The current system is fully functional and very reliable. 
Nevertheless, in future iterations of the design, the follow-
ing points should be considered:

•	 We had a commercial peristaltic pump at our disposal, 
and so it made sense to use it in our build. However, 
substituting the commercial pump for an open hard-
ware alternative (e.g. iGEM Aachen 2018b), would 
make the system easier and cheaper to replicate in 
other labs.

•	 The current system has a single nozzle and so food is 
delivered to one vial at a time. Multiple nozzles would 
allow several vials to be filled simultaneously, poten-
tially saving time.

•	 The limit switches are wired in the normally open con-
figuration, the Grbl default. Changing to a normally 
closed configuration would make the limit switches fail 
safe (i.e. in the event of a fault in any of the limit switch 
circuits, it would not be possible to operate the robot).

•	 Further experimentation and testing is required to 
determine if the actuators can reliably be driven at 
higher speed and acceleration, and thus increase the 
rate at which vials are filled.

•	 Shields could be added to protect the actuators 
against food spatter, although this hasn’t been an is-
sue in our facility.

•	 The cables connecting the cartesian coordinate robot 
to the power supply, raspberry pi and peristaltic pump 
are enclosed in spiral wrap, which provides some pro-
tection against entanglement with the actuators. How-
ever, a chain style cable carrier system would be a more 
reliable solution to this problem (Wikipedia 2018a).

Additional File
The additional file for this article can be found as follows:

•	 Additional File. Hardware design files. DOI: https://
doi.org/10.5334/joh.9.s1
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