
HARDWARE METAPAPER

A Cartesian Coordinate Robot for Dispensing Fruit Fly Food
Matthew T. Wayland and Matthias Landgraf

The fruit fly, Drosophila melanogaster, continues to be one of the most widely used model organisms in
biomedical research. Though chosen for its ease of husbandry, maintaining large numbers of stocks of
fruit flies, as done by many laboratories, is labour-intensive. One task which lends itself to automation
is the production of the vials of food in which the flies are reared. Fly facilities typically have to gener-
ate several thousand vials of fly food each week to sustain their fly stocks. The system presented here
combines a cartesian coordinate robot with a peristaltic pump. The design of the robot is based on an
open hardware CNC (computer numerical control) machine, and uses belt and pulley actuators for the X
and Y axes, and a leadscrew actuator for the Z axis. CNC motion and operation of the peristaltic pump
are controlled by grbl (gnea 2018), an open source, embedded, G-code parser. Grbl is written in optimized
C and runs directly on an Arduino. A Raspberry Pi is used to generate and stream G-code instructions to
Grbl. A touch screen on the Raspberry Pi provides a graphical user interface to the system. Whilst the
robot was built for the express purpose of filling vials of fly food, it could potentially be used for other
liquid handling tasks in the laboratory.

Keywords: open source; Drosophila; CNC; liquid handling; Cartesian coordinate robot; Arduino; Raspberry
Pi; G-code

Metadata Overview
•	 Hardware design files: https://doi.org/10.5334/
joh.9.s1.

•	 Software source code: https://doi.org/10.5281/ze-
nodo.846812.

•	 User manual: https://waylandm.github.io/fly-
food-robot/ (archived with software source code in:
https://doi.org/10.5281/zenodo.846812).

•	 Target group: scientists and technicians working in
the biological sciences.

•	 Skills required: laser cutting acrylic – easy; soldering
through-hole components onto printed circuit boards
– easy; cutting aluminium profile using a mitre	
saw – easy.

(1) Overview
Introduction
For more than 100 years the fruit fly, Drosophila mela-
nogaster, has served as a genetic model system for the
study of a wide range of questions, from the basics of
genetic inheritance to embryonic development and mod-
elling human disease. For example, around 77% of human
genes known to be involved in disease have been identi-
fied with confidence in Drosophila, illustrating the large
degree of evolutionary conservation that has informed
many studies (Held, Jr 2017). Moreover, the fruit fly was

the model system for pioneering work that revealed the
fundamental principles of genetic inheritance, speci-
fication of body plans, innate immunity and circadian
rhythms. These groundbreaking discoveries led to six
Nobel prizes in physiology and medicine, for a total of ten
scientists (Manchester Fly Facility 2018).
One reason for Drosophila’s success as an experimental

model system is its straight forward maintenance in the
laboratory environment. This enables scientists to breed
large numbers of flies, and to generate and keep large
numbers of genetically distinct stocks with relative ease
and at comparatively low cost. Fruit flies are commonly
reared in vials (glass, polystyrene or polypropylene) con-
taining a small quantity of food (Figure 1). Fly food is pre-
pared in batches by cooking a mixture of water, glucose,
yeast, agar and wheat flour in a kettle. Fungicides and
antibiotics are added to prevent spoilage by microorgan-
isms. Optionally dyes may be used to colour code batches.
Food must be dispensed into vials whilst it is molten
(above 50°C), as it solidifies at room temperature.
In the fly facility of the Department of Zoology,

University of Cambridge, vials used to be filled one at a
time by a technician using a neoprene tube and a peri-
staltic pump. One end of the neoprene tube would be
anchored in the kettle of food and the other inserted into
the vial to be filled. The technician would activate the
peristaltic pump (Cole-Parmer Masterflex, Cole-Parmer
2018) by pressing a foot switch until the desired volume
of food had been dispensed into the vial. The free end of
the tube would then be moved to the next vial to be filled

Wayland, MT and Landgraf, M 2018 A Cartesian Coordinate
Robot for Dispensing Fruit Fly Food. Journal of Open
Hardware, 2(1): 3, pp. 1–8, DOI: https://doi.org/10.5334/joh.9

Department of Zoology, University of Cambridge, Downing
Street, Cambridge, CB2 3EJ, UK
Corresponding author: Matthew T. Wayland (mw283@cam.ac.uk)

https://doi.org/10.5334/joh.9.s1
https://doi.org/10.5334/joh.9.s1
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5334/joh.9
mailto:mw283@cam.ac.uk

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 2 of 8

and the process repeated. This work flow was laborious,
messy, and consumed the valuable time of skilled techni-
cians. Nevertheless, this continues to be standard practice
in many fly facilities around the world.
There is an automated fly food dispenser on the market,

but it is prohibitively expensive for many academic fruit fly
facilities, including our own. We set out to design an open
hardware solution to share with the scientific community.

Overall Implementation and Design
Overview
Vials are stored in cardboard boxes in a 10 × 10 grid.
This ordered arrangement facilitates automated filling
using a robot with three axes of motion (Figures 2 and
3). Coordinated movement of the x, y and z actuators
places a dispensing nozzle over the mouth of a vial and
a peristaltic pump is activated to deliver food. Top level
control is provided by a Raspberry Pi with a touchscreen
user interface. G-code (Wikipedia 2018b) instructions are
generated on the Raspberry Pi and then streamed to Grbl
(gnea 2017; gnea 2018), a G-code parser, running on an
Arduino Uno (Revision 3). Grbl uses a gShield (Synthetos
2018c; Synthetos 2018b) to translate the G-code instruc-
tions into digital pulses which drive the stepper motors of
the X, Y and Z actuators. The selection and specification of
components are described in more detail below.

Design based on a CNC router
Rather than attempt to design our own cartesian coordi-
nate robot, we decided to adapt an existing machine. We
originally planned to use a cheap, mass-produced, desk-
top CNC (Computer Numerical Control) router. However,
modifying a commercial CNC router would require some,

Figure 1: A vial of fruit flies. The food is at the bottom
of the vial and the flies can be seen crawling over the
inside wall. Green dye has been added to the food to
identify the batch; normally the colour of fly food is pale
yellow/brown. The vial has a height of 80 mm and a
diameter of 25 mm.

Figure 2: System architecture.

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly Food Art. 3, page 3 of 8

potentially challenging, reverse engineering. Addition-
ally, a commercial router would include components not
required for this project, such as a spindle.
An open-hardware router provided a much more flex-

ible starting point, because the design could be modified
before commencing the build. Of the numerous open-
hardware router designs available online, we chose Mark
Carew’s “routy” (Carew 2018) for the following reasons:

•	 The build was well documented with photographs.
•	 All parts were readily available.
•	 The OpenBuilds community forum showed that other
people had successfully built functioning routers us-
ing this design.

•	 This bed of this router is a suitable size to accommo-
date two boxes of vials.

•	 It was relatively cheap to build.

This cartesian coordinate robot uses belt and pulley actua-
tors for the X and Y axes, and a leadscrew actuator for the
Z axis. Grbl (gnea 2017; gnea 2018), an open source G-code
parser provides CNC motion control. Key features of Grbl
include precise timing, asynchronous operation and accel-
eration management. Grbl is written in optimized C and
runs on an Arduino. The Arduino cannot drive the step-
per motors directly and so a gShield (Synthetos 2018c;
Synthetos 2018b) is required to provide the hardware
interface (Figure 3). Header pins on the gShield enable it
to be mounted directly on top of an Arduino Uno.

We opted to use the combination of Grbl, Arduino
Uno and gShield, because they had been shown to be an
effective solution for CNC motion control in the original
“routy” design. However, alternative open hardware CNC
controllers are available, and could potentially be used
in this build. For example, the functions of the Arduino
Uno and gShield are combined in the SmoothieBoard
(smoothieboard 2018) and the TinyG (Synthetos 2018a;
Synthetos 2018d). The SmoothieBoard and TinyG each
have their own open source G-code parser.
For this project, some minor modifications to the

“routy” design were required, including:

•	 A pair of limit switches were added to each axis to
define the range of motion. The limit switches are also
used for ‘homing’; i.e. setting the origin of the coordi-
nate system.

•	 The z-actuator was lengthened to give greater range
in the vertical axis, and thus enable to robot to handle
vials of a variety of sizes.

•	 The gantry was raised to provide more clearance from
the bed of the router.

•	 A router would normally have a sacrificial bed. This
has been replaced with an acrylic platform with guide
rails to ensure the correct alignment of the boxes of
vials in the x-axis (Figure 4a). The platform can be re-
moved from the robot and disassembled for cleaning.

•	 A fence has been added to facilitate alignment of box-
es in the y-axis (Figure 4b).

Figure 3: System overview. The cartesian coordinate robot has three axes of motion (x, y and z). A Raspberry Pi (r) gen-
erates and streams G-code instructions to an Arduino (not shown) which drives stepper motors (s) via the gShield.
A protoshield is used for custom electronics; visible on this circuit board are the capacitors used to filter noise on
the limit switch lines, and the two optocouplers which are the interface to the peristaltic pump (p). The gShield and
protoshield are stacked on top of the Arduino and housed in the electronics box (e). A graphical user interface is
displayed on the touch screen of the Raspberry Pi (r). Fly food prepared in the kettle is propelled through neoprene
tubing (t) by the peristaltic pump (p) to the nozzle (n) from where it is dispensed. Boxes (b) of vials are loaded on to
the platform of the robot for filling.

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 4 of 8

Incorporation of the peristaltic pump
The Cole-Parmer Masterflex peristaltic pump (Cole-Parmer
2018) is used to manually fill vials. We decided to incorporate
one of these pumps into our build for the following reasons:

•	 Long term use in our fly facility has demonstrated the
reliability of the pump.

•	 The pump can be operated by remote control (via
cable), which is prerequisite for integration into a
robotic system.

•	 We had one at our disposal.

A promising open hardware alternative to this commer-
cial pump has been developed by iGEM (International
Genetically Engineered Machine) 2017 team Aachen
(iGEM Aachen 2018a; iGEM Aachen 2018b).
To fill vials of fly food we simply need to be able to start

and stop the pump. However, for other applications it may
be necessary to control the direction of flow. The remote
control interface on the peristaltic pump is a DB15 female
port. Closing contact between pins 10 and 12 starts the
pump; breaking contact stops the pump. The pump can
be switched from clockwise (CW) rotation to counter-
clockwise (CCW) rotation by closing contact between pins
11 and 12. In the operation of a CNC router Grbl uses
Arduino pins A3 and D13 for enabling coolant and chang-
ing spindle direction respectively. Here we use A3 for
pump stop/start and D13 for pump direction (CW/CCW).
Two optocouplers are used to connect the Arduino to
the pump while maintaining electrical isolation. When
Arduino pin A3 is high (i.e. set to 5 Volts), one of the opto-
couplers makes contact between pins 10 and 12 on the
DB15 port starting the pump.

A neoprene tube with a nylon nozzle is used to deliver
food to the vials. To attach this assembly on to the z-actu-
ator of the robot we designed a mounting plate which
was cut from a sheet of acrylic (Figure 4c). Cable ties are
threaded through the holes to attach the hose assembly.

Custom electronics
Several electronic components must be wired to the Arduino,
including optocouplers for interfacing with the peristaltic
pump, and capacitors for filtering noise on the wires from
the limit switches. These components are mounted on an
Arduino protoshield (Figure 3). A protoshield was chosen
over a custom printed circuit board, because (i) it can be
conveniently stacked between the Arduino and gShield
boards; and (ii) it is cheap and readily available to anyone
wishing to replicate the robot. Circuit diagrams for the cus-
tom electronics are provided on Docubricks.

Top level control
Movement of the robot is programmed in G-code. A com-
puter is required to generate G-code programs, and also to
stream them to the Grbl software running on the Arduino.
We chose a Raspberry Pi, on the basis of its small foot-
print, low energy consumption, and low cost.

User interface to control system
A touchscreen attached to the Raspberry Pi presents a
graphical user interface (GUI) to the operator of the robot
(Figure 3). A GUI was chosen over hardware switches,
because it could be rapidly reconfigured to add or remove
functionality as required. A resistive rather than a capaci-
tive touchscreen was selected for this application, because
some operators may wear gloves.

Figure 4: Parts laser cut from acrylic sheet. (a) Platform with guide rail to ensure correct alignment of boxes; can be
disassembled for cleaning. (b) Fence to prevent boxes of vials from being pushed off the platform and to ensure their
correct alignment in the y-axis. (c) Mount for the neoprene tube and nylon nozzle that deliver the fly food to the vials;
cable ties are threaded through the holes to attach the tube and nozzle assembly.

http://docubricks.com/viewer.jsp?id=8652757760093769728

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly Food Art. 3, page 5 of 8

Modularity
The system is inherently modular (Figure 2), facilitating fur-
ther customization. Should a module cease to be available,
it will be possible to substitute an alternative. For example:

•	 A different router design could be chosen to provide
linear actuators.

•	 The touchscreen could be replaced with mechanical
switches.

•	 The Raspberry Pi could be substituted for a spare lap-
top or desktop computer.

•	 A SmoothieBoard (Smoothieboard 2018) or TinyG
(Synthetos 2018a; Synthetos 2018d) could replace
both the Arduino and gShield.

(2) Quality control
Safety
Operators of the robot should be aware of three hazards:

•	 Electric shock.
•	 Entanglement or entrapment in moving parts.
•	 Slips, trips and falls.

Electric shock
The power supply runs on mains electricity and so should
be positioned well away from the robot where there is
no danger of it being splashed with liquid. Additionally,
use of a residual current device (RCD) is recommended to
protect operators from electrocution. The actuators of the
robot use low voltage (24V) motors. All cables should be
inspected for damage before switching on the robot.

Entanglement or entrapment in moving parts
Precautions should be taken for loose hair, clothing, jew-
ellery and other items so that they are not caught in the
machine. Trays of vials should be loaded and unloaded
when the actuators of all three axes are stationary. The
touchscreen handset allows the operator to start and stop
jobs while standing well clear of the moving parts.

Slips, trips and falls
Cables and neoprene tubing should be positioned so that
they do not pose an obstruction or tripping hazard. Spillages
of fly food to be cleaned up immediately to avoid slip hazard.

Calibration
Before the robot can be used, it is essential to calibrate
the motion of the actuators, determine the cartesian
coordinates of the vials to be filled, calibrate the flow
rate of the peristaltic pump, and generate G-code pro-
grams for filling vials. These procedures are described in
detail in the user manual (live: https://waylandm.github.
io/fly-food-robot/; archive: https://doi.org/10.5281/
zenodo.846812), and summarized below.

Calibration of actuator motion
The step size (steps/mm) of the stepper motor(s) on each
axis must be calculated, so that Grbl can calculate the
number of digital pulses required to move an actuator a
known distance (https://perma.cc/T2F4-QUEB). Grbl can

automatically find the origin of the cartesian coordinate
system by running a homing cycle in which the actuators
are driven in the positive direction until the limit switches
are activated. The step size of the linear actuators is calcu-
lated on completion of the build, and this calibration pro-
cedure should not need to be repeated unless the motors
or timing belt are replaced.

Determination of vial coordinates
The platform of the robot can accommodate two boxes,
each containing 100 vials (Fisher Scientific 2018). The
guide rail and fence ensure that the boxes are always
placed in the same position (Figure 4). The robot must
be given the coordinates of every vial to be filled. If we
know the xy coordinates of the vials in diagonally oppo-
site corners of a box, we can calculate the coordinates of
all other vials in the box by interpolation. We also need
to determine the appropriate height (z coordinate) of the
nozzle for filling vials; sufficient proximity to the mouth
of the vial to ensure accuracy of food delivery, but not so
close that it might strike the vial when moving laterally. A
step by step protocol for determining vial coordinates is
provided: https://perma.cc/DM23-UAL8. This procedure
is performed once and would only need to be repeated if
the size of the boxes or vials changed.

Calibration of the flow rate of the peristaltic pump
To maximize speed the peristaltic pump is run at its maxi-
mum flow rate of 30 ml/second. In our fly facility, we add
8 ml of food to each vial, therefore based on the maxi-
mum flow rate, we should only need to run the pump for
0.27 seconds to dispense 8 ml of food. However, there is
latency in the system and the pump does not reach its
maximum flow rate instantaneously on activation. There-
fore, it is important to determine the fill time empirically.
We do this by programming the robot to test fill a single
box of vials using a range of fill times; one per row. The
volume of food in the vials can then be measured and the
optimum fill time identified. A script has been written for
this purpose and more details can be found in the manual:
https://perma.cc/9J24-FUZP.

Generation of G-code programs
Two G-code programs are required, one for filling a single
box of vials, and another for filling two boxes of vials. We
have written a python script to generate these G-code pro-
grams; it requires the following parameters:

•	 for each box, the xy coordinates of diagonally oppo-
site vials

•	 the fill time, as determined in the calibration of the
flow rate of the peristaltic pump

•	 the appropriate height (z coordinate) of the nozzle for
filling vials

•	 the time the robot should wait after filling a vial, to
allow for drips of food from the nozzle, before moving
on to the next vial (default value of 0.1 seconds).

Protocol and script for generating G-code programs:
https://perma.cc/G94Y-BED4.

https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://perma.cc/T2F4-QUEB
https://perma.cc/DM23-UAL8
https://perma.cc/9J24-FUZP
https://perma.cc/G94Y-BED4

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 6 of 8

Liquid handling performance
The precision and accuracy with which the robot aliquots
fly food to vials was assessed by measuring the depth of
food in each of 100 vials. The volume of food in each vial
was estimated using the following formula:

		 2volume r h � (1)

where r is the internal radius of the vial and h is the
depth of food. The estimated volume of food in each vial
ranged from 7.1–8.3 ml (mean = 7.7 ml; standard devia-
tion = 0.27 ml). For comparison, 100 manually filled vials
contained an estimated 7.5–9.1 ml (mean = 8.3 ml; stand-
ard deviation = 0.25 ml) of food. The variation reported
here is probably inflated by measurement error.

General testing
The robot has been used routinely in the Department of
Zoology’s fly facility since 21st October 2015, each week
filling at least 1,000 vials with food. In the first few weeks
of operation the control system malfunctioned three
times, resulting in jobs stopping before all vials were filled
and then restarting. The malfunction was not reproduci-
ble, and so the cause could not be determined definitively.
However, all errors involved a prototype of the software
user interface, where the operator would tap a desktop
icon on the touchscreen to launch a shell script, which
would in turn run a job. It is possible that if the operator
tapped the icon too many times, a second instance of the
shell script might be initiated, potentially conflicting with
the first. The current graphical user interface (GUI), devel-
oped using TkInter (Tkinter 2018), prevents more than
one job being launched at a time. Since starting to use
the current GUI approximately two years ago, not a single
fault has been reported. The robot can fill two boxes, each
containing 100 vials, within seven minutes.

(3) Application
Use case
To date the robot has been applied solely to the use case of filling
vials of fly food. A video showing the robot in action is available
at: https://doi.org/10.6084/m9.figshare.5175223.v1.

Reuse potential and adaptability
The system in its current form could be applied to other
low precision liquid handling operations, such as dispens-
ing reagents. The design includes the electronics required
to control the direction of rotation of the peristaltic pump,
so the system could be programmed (in G-code) to extract
liquid from one vial and transfer it to another. More gener-
ally, a cartesian coordinate robot can be used to automate
many tasks in the laboratory, such as moving a camera
to capture macroscopic images of museum specimens
arranged in trays (Blagoderov et al. 2012) or positioning
an extruder for 3D bioprinting (Banović and Vihar 2018).

Support
The robot has yet to be replicated in other labs and so a
community of users has still to be established. Neverthe-
less, support communities are associated with all of the
constituent open hardware and software components:

•	 Arduino (Arduino 2018)
•	 CNC router (OpenBuilds 2018)
•	 grbl (gnea 2018)
•	 gShield (Synthetos 2018c)
•	 Raspberry Pi (Raspberry Pi Foundation 2018)
•	 TkInter (Tkinter 2018)

(4) Build Details
Availability of materials and methods
All materials are readily available from online suppliers. A
complete bill of materials, including URLs of vendors, is
provided on Docubricks. There are two specialized hard-
ware components which are produced by only one manu-
facturer: the Cole-Parmer Masterflex peristaltic pump and
the gShield CNC motion controller. The peristaltic pump is
mass produced and so should be easy to acquire, but could
be substituted with a device of similar specification. The
gShield is one of several CNC motion controllers. Should
production of the gShield cease, suitable alternatives
include the SmoothieBoard (Smoothieboard 2018) and
TinyG (Synthetos 2018a; Synthetos 2018d). Moreover, cir-
cuit diagrams for the gShield are available (Synthetos 2018c;
Synthetos 2018b) and so the device could be fabricated.
Access to a laser cutter will be required to cut the acrylic

parts (tube mount, platform and fence rails). A mitre
(chop) saw is needed to cut the V-Slots™ Aluminium
extrusion.

Ease of build
The robot can be assembled using standard workshop
tools (i.e. spanners, screw drivers, Allen (hex) keys and a
soldering iron). Detailed documentation on the build pro-
cess is available on Docubricks, with every step illustrated
with a photograph or diagram. Similarly, comprehensive
instructions on software installation and configuration
are provided on github: https://waylandm.github.io/
fly-food-robot/ (archived in https://doi.org/10.5281/
zenodo.846812).

Operating software and peripherals
•	 Adafruit’s custom raspberry pi image (Adafruit
2018a), based on Raspbian version 8 (‘jessie’; kernel
release 4.4.24-v7), is pre-configured for use with the
PiTFT touch screen and contains all required software
dependencies. Alternatively, Adafruit provide a helper
script (Adafruit 2018c) to customize a standard Rasp-
bian release for use with the touch screen.

•	 Grbl gcode parser (gnea 2018). Originally used ver-
sion 0.9i and currently using version 1.1f (gnea 2017)
which was released on 01/08/2017.

•	 Arduino IDE (Arduino 2018) is required to load Grbl
software onto the Arduino Uno.

•	 Python 2.7.9 scripts are used to generate all gcode
programs used by the robot.

•	 The touchscreen user interface is developed using Py-
thon 2.7.9 and Tkinter (Tkinter 2018; Tk version 8.6).

Dependencies
•	 Raspberry Pi version 3 (Raspberry Pi Foundation
2018). Earlier versions can potentially be used, but
may require a different touch screen.

https://doi.org/10.6084/m9.figshare.5175223.v1
http://docubricks.com/viewer.jsp?id=8652757760093769728
http://docubricks.com/viewer.jsp?id=8652757760093769728
https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly Food Art. 3, page 7 of 8

•	 Adafruit PiTFT Plus 320 × 240 2.8″ TFT + Resistive
Touchscreen (Adafruit 2018b).

•	 Arduino Uno, which is open source hardware under
the Creative Commons Attribution Share-Alike li-
cense (Arduino 2018).

•	 Arduino gShield (Synthetos 2018c; Synthetos 2018b)
provides the hardware implementation of the Grbl
CNC motion control system.

•	 Cole-Parmer Masterflex Peristaltic Pump (Cole-Parmer
2018). This commercial pump could potentially be
substituted with an open hardware peristaltic pump.

•	 V-Slot™ Aluminium Extrusion by OpenBuilds is li-
censed under the Creative Commons – Attribution –
Share Alike license (OpenBuilds 2018).

Hardware documentation and files location
Archive for hardware documentation and build files

Name: CNC fly food dispenser
�Persistent identifier: https://doi.org/10.5334/joh.9.s1
Licence: CC-BY 3.0
Publisher: Matthew T. Wayland
Date published: 21/04/2017

Software source code repository
�Name: Cartesian coordinate robot for dispensing fruit
fly food
�Repository: https://github.com/WaylandM/fly-food-	
robot
�Persistent identifier: https://doi.org/10.5281/zenodo	
.846812
Licence: GNU General Public License 3.0
Date published: 22/08/17

(5) Discussion
Conclusions
The cartesian coordinate robot described here is a cheap
(at the time of writing, May 2018, the total cost of mate-
rials, excluding pump, was £650) and reliable tool for
automating the production of vials of fly food. It does
not provide greater speed, accuracy or precision than a
human operator of a peristaltic pump. However, it does
release skilled technicians from a tedious task that car-
ries the risk of repetitive strain injury (El-Helaly, Balkhy,
and Vallenius 2017). The entire system can be built and
configured in one day. In our fly facility the robot cur-
rently saves our technicians around an hour of work each
week.
This project is a testament to the power of open source

hardware and software. Designing a cartesian coordinate
robot from scratch would be a technically challenging
task, beyond the skill set of the authors, who have no
formal training in engineering. However, by building on
existing open hardware (OpenBuilds “routy”, Arduino,
gShield) and software (Grbl, Python, TkInter) projects,
we have been able to develop an automated fly food dis-
penser with relative ease.

Future Work
The current system is fully functional and very reliable.
Nevertheless, in future iterations of the design, the follow-
ing points should be considered:

•	 We had a commercial peristaltic pump at our disposal,
and so it made sense to use it in our build. However,
substituting the commercial pump for an open hard-
ware alternative (e.g. iGEM Aachen 2018b), would
make the system easier and cheaper to replicate in
other labs.

•	 The current system has a single nozzle and so food is
delivered to one vial at a time. Multiple nozzles would
allow several vials to be filled simultaneously, poten-
tially saving time.

•	 The limit switches are wired in the normally open con-
figuration, the Grbl default. Changing to a normally
closed configuration would make the limit switches fail
safe (i.e. in the event of a fault in any of the limit switch
circuits, it would not be possible to operate the robot).

•	 Further experimentation and testing is required to
determine if the actuators can reliably be driven at
higher speed and acceleration, and thus increase the
rate at which vials are filled.

•	 Shields could be added to protect the actuators
against food spatter, although this hasn’t been an is-
sue in our facility.

•	 The cables connecting the cartesian coordinate robot
to the power supply, raspberry pi and peristaltic pump
are enclosed in spiral wrap, which provides some pro-
tection against entanglement with the actuators. How-
ever, a chain style cable carrier system would be a more
reliable solution to this problem (Wikipedia 2018a).

Additional File
The additional file for this article can be found as follows:

•	 Additional File. Hardware design files. DOI: https://
doi.org/10.5334/joh.9.s1

Acknowledgements
We are indebted to the developers of the open-hardware
and free software on which this project is based. We would
like to thank Tracey Brazier and Oksana Elliott (Depart-
ment of Zoology, University of Cambridge) for testing the
robot and providing feedback on its performance. We are
grateful to Dr José Casal (Department of Zoology, Univer-
sity of Cambridge) for helpful discussions. This project
would not have been possible without the Cambridge
Makespace (http://makespace.org/). We would like to
thank the reviewers, Mainardo Gaudenzi Asinelli, Tom
Baden and an anonymous individual, for helpful feedback
on our manuscript.

Funding Information
The project was supported by a Wellcome Trust Grant
(WT096645MA) to Peter A. Lawrence.

Competing Interests
The authors have no competing interests to declare.

Author Contributions
ML conceived the idea of modifying a CNC router to
dispense fruit fly food. MTW built and documented the
robot. MTW wrote the first draft of the manuscript, which
was improved by feedback from ML.

https://doi.org/10.5334/joh.9.s1
https://github.com/WaylandM/fly-food-robot
https://github.com/WaylandM/fly-food-robot
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5334/joh.9.s1
https://doi.org/10.5334/joh.9.s1
http://makespace.org/

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 8 of 8

References
Adafruit 2018a Adafruit PiTFT 2.8″ touchscreen display

for Raspberry Pi: Easy install. Perma Link: https://
perma.cc/HR9B-GWRZ (visited on 06/16/2018).

Adafruit 2018b Adafruit PiTFT 2.8″ touchscreen display
for Raspberry Pi: Overview. Perma Link: https://
perma.cc/Y45B-RBXJ (visited on 06/16/2018).

Adafruit 2018c Raspberry Pi installer scripts: adafruit-
pitft.sh. Perma Link: https://perma.cc/TCE6-U8M8
(visited on 06/16/2018).

Arduino 2018 Arduino. Perma Link: https://perma.cc/
YSS9-QKM2 (visited on 06/16/2018).

Banović, L and Vihar, B 2018 “Development of an
Extruder for Open Source 3D Bioprinting”. In: Jour-
nal of Open Hardware, 2(1): 1. ISSN: 2514-1708. DOI:
https://doi.org/10.5334/joh.6

Blagoderov, V, et al. 2012 “No specimen left behind:
Industrial scale digitization of natural history collec-
tions”. In: ZooKeys, 209: 133–146. ISSN: 1313-2989.
DOI: https://doi.org/10.3897/zookeys.209.3178

Carew, M 2018 ROUTY CNC Router (V-Slot Belt and Pin-
ion). Perma Link: https://perma.cc/FN2W-7F58 (vis-
ited on 06/16/2018).

Cole-Parmer 2018 Masterflex L/S: An accurate digital
pump drive for critical metering and dispensing
applications. Perma Link: https://perma.cc/8WKG-
T3D6 (visited on 06/16/2018).

El-Helaly, M, Balkhy, HH and Vallenius, L 2017 “Carpal
tunnel syndrome among laboratory technicians in
relation to personal and ergonomic factors at work”.
In: Journal of Occupational Health, 59(6): 513–520.
DOI: https://doi.org/10.1539/joh.16-0279-OA

Fisher Scientific 2018 Drosophila products and supplies.
Perma Link: https://perma.cc/H252-Y5YK (visited
on 06/27/2018).

gnea 2017 Grbl v1.1f (2017-08-01) Release. Perma
Link: https://perma.cc/K26Y-7BY4 (visited on
08/01/2017).

gnea 2018 Grbl: An open source, embedded, high perfor-
mance g-code-parser and CNC milling controller writ-
ten in optimized C that will run on a straight Arduino.

URL: https://github.com/gnea/grbl (visited on
06/17/2018).

Held, LI, Jr. 2017 Deep Homology? Uncanny Similari-
ties of Humans and Flies Uncovered by Evo-Devo.
Cambridge: Cambridge University Press. ISBN:
9781316601211.

iGEM Aachen 2018a Hardware. Perma Link: https://
perma.cc/2VCJ-4XRF (visited on 06/16/2018).

iGEM Aachen 2018b Precise peristaltic pump. Perma
Link: https://perma.cc/N6GQ-LDZZ (visited on
06/16/2018).

Manchester Fly Facility 2018 Why the fly? Perma
Link: https://perma.cc/PNQ3-Y7EP (visited on
02/03/2018).

OpenBuilds 2018 OpenBuilds. Perma Link: https://
perma.cc/Q6SW-ZLCS (visited on 06/16/2018).

Raspberry Pi Foundation 2018 Raspberry Pi. Perma
Link: https://perma.cc/WSG5-BVHF (visited on
06/16/2018).

Smoothieboard 2018 Smoothieboards. Perma Link:
https://perma.cc/US2N-UA2W (visited on
06/16/2018).

Synthetos 2018a Affordable Industrial Grade Motion Con-
trol. URL: https://github.com/synthetos/TinyG (vis-
ited on 06/17/2018).

Synthetos 2018b Arduino gShield: Archived source code
and hardware design files. Perma Link: https://
perma.cc/B2WM-D2LF (visited on 06/17/2018).

Synthetos 2018c The Arduino gShield: A complete hard-
ware solution the grbl CNC motion control software.
URL: https://github.com/synthetos/grblShield (vis-
ited on 06/17/2018).

Synthetos 2018d TinyG: Archived source code and hard-
ware design files. Perma Link: https://perma.
cc/67Y7-RAJM (visited on 06/17/2018).

Tkinter 2018 Tkinter wiki. Perma Link: https://perma.
cc/9VGV-RGVN (visited on 06/16/2018).

Wikipedia 2018a Cable carrier. Perma Link: https://
perma.cc/D87F-9QTG (visited on 06/16/2018).

Wikipedia 2018b G-code. Perma Link: https://perma.
cc/2MQN-TX97 (visited on 06/16/2018).

How to cite this article: Wayland, MT and Landgraf, M 2018 A Cartesian Coordinate Robot for Dispensing Fruit Fly Food.
Journal of Open Hardware, 2(1): 3, pp. 1–8, DOI: https://doi.org/10.5334/joh.9

Published: 31 July 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 	 OPEN ACCESS Journal of Open Hardware is a peer-reviewed open access journal published by Ubiquity
Press.

https://perma.cc/HR9B-GWRZ
https://perma.cc/HR9B-GWRZ
https://perma.cc/Y45B-RBXJ
https://perma.cc/Y45B-RBXJ
https://perma.cc/TCE6-U8M8
https://perma.cc/YSS9-QKM2
https://perma.cc/YSS9-QKM2
http://doi.org/10.5334/joh.6
https://doi.org/10.3897/zookeys.209.3178
https://perma.cc/FN2W-7F58
https://perma.cc/8WKG-T3D6
https://perma.cc/8WKG-T3D6
https://doi.org/10.1539/joh.16-0279-OA
https://perma.cc/H252-Y5YK
https://perma.cc/K26Y-7BY4
https://github.com/gnea/grbl
https://perma.cc/2VCJ-4XRF
https://perma.cc/2VCJ-4XRF
https://perma.cc/N6GQ-LDZZ
https://perma.cc/PNQ3-Y7EP
https://perma.cc/Q6SW-ZLCS
https://perma.cc/Q6SW-ZLCS
https://perma.cc/WSG5-BVHF
https://perma.cc/US2N-UA2W
https://github.com/synthetos/TinyG
https://perma.cc/B2WM-D2LF
https://perma.cc/B2WM-D2LF
https://github.com/synthetos/grblShield
https://perma.cc/67Y7-RAJM
https://perma.cc/67Y7-RAJM
https://perma.cc/9VGV-RGVN
https://perma.cc/9VGV-RGVN
https://perma.cc/D87F-9QTG
https://perma.cc/D87F-9QTG
https://perma.cc/2MQN-TX97
https://perma.cc/2MQN-TX97
https://doi.org/10.5334/joh.9
http://creativecommons.org/licenses/by/4.0/

	Metadata Overview
	(1) Overview
	Introduction
	Overall Implementation and Design
	Overview
	Design based on a CNC router
	Incorporation of the peristaltic pump
	Custom electronics
	Top level control
	User interface to control system
	Modularity

	(2) Quality control
	Safety
	Electric shock
	Entanglement or entrapment in moving parts
	Slips, trips and falls

	Calibration
	Calibration of actuator motion
	Determination of vial coordinates
	Calibration of the flow rate of the peristaltic pump
	Generation of G-code programs
	Liquid handling performance

	General testing

	(3) Application
	Use case
	Reuse potential and adaptability
	Support

	(4) Build Details
	Availability of materials and methods
	Ease of build
	Operating software and peripherals
	Dependencies
	Hardware documentation and files location
	Archive for hardware documentation and build files
	Software source code repository

	(5) Discussion
	Conclusions
	Future Work

	Additional File
	Acknowledgements
	Funding Information
	Competing Interests
	Author Contributions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

