
Bitter Harvest: Systematically Fingerprinting Low- and Medium-interaction
Honeypots at Internet Scale

Alexander Vetterl
University of Cambridge

alexander.vetterl@cl.cam.ac.uk

Richard Clayton
University of Cambridge

richard.clayton@cl.cam.ac.uk

Abstract

The current generation of low- and medium interac-
tion honeypots uses off-the-shelf libraries to provide the
transport layer. We show that this architecture is fa-
tally flawed because the protocols are implemented sub-
tly differently from the systems being impersonated. We
present a generic technique for systematically finger-
printing low- and medium interaction honeypots at In-
ternet scale with just one packet and an ERR (Equal Er-
ror Rate) of 0.0183. We conduct Internet-wide scans and
identify 7 605 honeypot instances across nine different
honeypot implementations for the most important net-
work protocols SSH, Telnet, and HTTP. For SSH hon-
eypots we also determined their patch level and find that
they are poorly maintained – 27% of the honeypots have
not been updated within the last 31 months and only
39% incorporate improvements from 7 months ago. We
believe our findings to be a ‘class break’ in that trivial
patches cannot address the issue.

1 Introduction

Early detection of new attack vectors and abusive be-
haviour is a cornerstone of contemporary approaches to
improving Internet security. Honeypots, resources that
appear to be legitimate systems, have long proven effec-
tive in capturing malware, helping to counter spam and
providing early warning signals about upcoming threats.
Secure Shell (SSH), Telnet, and HTTP were a focus of
early honeypot research. Since SSH is the de facto stan-
dard to login to servers over an unsecured network, SSH
honeypots continue to be extremely valuable. With the
rise of the Mirai botnet, which recruits a variety of IoT
devices using Telnet, it became evident that Telnet hon-
eypots remain a key source of information [3].

For the last decade, honeypot research has received
limited attention, with efforts mainly focused on the
monitoring of human activity and the provision of a re-

alistic environment for humans to interact with. Attack-
ers have a strong motivation to detect honeypots at an
early stage as they do not want to disclose their methods,
exploits and tools [21]. These attackers have attempted
to distinguish honeypots by executing commands within
the login shell (or the impersonation of the login shell)
and examining the responses. This has led to an arms
race as attackers develop new distinguishers and honey-
pot authors improve the verisimilitude of their system.

However, if a honeypot can be detected at the transport
level, for example without completing the SSH hand-
shake or Telnet options negotiation, the honeypot’s value
will be minimal and efforts to impersonate the service
will be in vain [25]. This aspect of the detection arms
race is especially challenging because modern protocols
such as SSH must handle a variety of versions, key ex-
change mechanisms, ciphers and service requests. Sim-
ilarly, in Telnet the client and server can negotiate nu-
merous settings such as line mode, echo and terminal
type. As the RFCs do not mandate every aspect of a net-
work protocol, two implementations of a complex proto-
col may deal with ambiguities differently, and this may
reveal the presence of a honeypot.

Finding deviations between applications and their fin-
gerprints has a long history and a number of theoretical
and prototyped approaches, mainly based on binary anal-
ysis, have been proposed [6, 7, 37]. Specific to finger-
printing honeypots, Holz et al. [21] showed that the exe-
cution time of attackers’ commands may be significantly
longer due to the additional overhead of logging and
sandboxing the execution of the honeypot itself. Simi-
larly, Fu et al. [17] found that attackers could use the la-
tency of the networking layer to fingerprint honeypots. In
2015 Cymmetria Research summarized the known ways
to fingerprint a variety of honeypots and provided a list
of recommendations for honeypot developers [5].

All of these are individual findings, focusing on iden-
tifying single honeypot implementations. However, we
are the first to observe that there is a generic weakness

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162915667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-4761-8679
https://orcid.org/0000-0002-1673-918X

in the current generation of low- and medium-interaction
honeypots because of their reliance on off-the-shelf li-
braries to implement large parts of the transport layer.
These libraries are used for their convenience, but they
were never intended to provide identical behaviour to
‘real’ servers. We systematically identify these differ-
ences, which can number in the thousands, and show that
this allows us to locate a large variety of honeypots by
Internet scale scanning.

We believe this to be a class break in that patches to
the current generation of honeypots cannot address the
issue. Until these honeypots are given a new architec-
ture, anyone with moderate capabilities has a plethora of
extremely simple and quick methods of identifying that a
honeypot is running on a particular IPv4 address and can
thereby treat it differently than otherwise.

Overall, we make three main contributions:
• We present a generic and accurate technique for

systematically fingerprinting low- and medium in-
teraction honeypots by constructing distinguishing
probes at the transport layer. We identified thou-
sands of deviations between honeypots and the ser-
vices they are impersonating.
• We use this technique to perform Internet-wide

scans for 9 different honeypots for the most im-
portant network protocols SSH, Telnet and HTTP.
We find 7 605 honeypot instances residing on 6 125
IPv4 addresses: 2 779 honeypot instances for SSH,
1 166 for Telnet and 3 660 for HTTP.
• We provide insights into how honeypots are con-

figured and deployed in practice. We discover that
only 39% of the honeypots were updated within
the previous 7 months. Furthermore, we find that
546 (72%) of the 758 Kippo honeypots are still (44
months later) vulnerable to a known fingerprinting
technique that was first disclosed in 2014.

2 Background

Honeypots are classified by the type of system that they
emulate, such as web or email servers, or general purpose
remote access ‘shells’. Honeypots are further classified
as low interaction (in this context merely collecting cre-
dential guesses), medium interaction (providing a higher
level of interaction) or high interaction (allowing attack-
ers full control of a machine).

High-interaction honeypots have significant value, but
many people are unable to accept the risk that such hon-
eypots may be used for DDoS attacks, malware distri-
bution or the sending of email spam. However, low-
and medium-interaction honeypots have proven effec-
tive as they are easy to deploy and to maintain, while
at the same time potential harm is minimised. They
are especially useful in collecting quantitative data about

Table 1: Honeypots in this study

Updated Language Library

SSH
Kippo May 15 Python TwistedConch
Cowrie May 18 Python TwistedConch

Telnet
TPwd Feb 16 C custom
MTPot Mar 17 Python telnetsrv
TIoT May 17 Python custom
Cowrie May 18 Python TwistedConch

HTTP/Web
Dionaea Sep 16 Python custom
Glastopf Oct 16 Python BaseHTTPServer
Conpot Mar 18 Python BaseHTTPServer

large-scale attacks. A 2012 report for the European Net-
work and Information Security Agency (ENISA) evalu-
ated the vast majority of available honeypots, including
high-interaction honeypots. The authors recommend us-
ing the medium-interaction honeypots Kippo for SSH,
Glastopf for HTTP and Dionaea for the remaining proto-
cols [20]. Honeypots that support Telnet ‘out of the box’
were not widely available at the time of that study.

Table 1 provides an overview of the honeypots that we
considered in our study, which we now discuss in detail.

SSH Honeypots: In this paper we consider SSH
honeypots emulating generic servers running OpenSSH
whose login credentials can be guessed and commands
issued within an operating system shell such as bash.
OpenSSH is the most widely used SSH protocol suite,
and is installed on approximately 77% of all SSH servers
listening on port 22 [13].

Many SSH honeypots have been developed over the
years and one of the first SSH honeypots was Ko-
joney [24] but active development ceased around 2006.
Kojoney uses the TwistedConch library which dates back
to 2002 and is the de facto standard implementation
of SSHv2 for Python2/3. Kojoney inspired Kippo [23]
which was developed from 2009 to 2015 but the Kippo
author now recommends people use a forked project
called Cowrie [31]. Cowrie has added more extensive
logging and support for Telnet, and it remains under ac-
tive development. The project’s philosophy is to only
implement shell commands that are being used by at-
tackers and so as of 2018-01, Cowrie (partly) emulates
34 commands [8]. In 2015, Deutsche Telekom included
Kippo in T-Pot, a multi-honeypot platform “based on
well-established honeypots” [9]. T-Pot combines differ-
ent honeypots for network services with an intrusion de-
tection system and a monitoring and reporting engine.
As of March 2016, Kippo was replaced by Cowrie “since
it offers huge improvements over Kippo” [10].

Telnet Honeypots: Since mid-2016, and the rise of
the Mirai botnet, there has been an increasing interest in
Telnet honeypots. In this paper we consider four recent

2

systems: MTPot, Telnet-IoT-Honeypot (TIoT), Telnet-
Password-Honeypot (TPwd) and Cowrie.

MTPot, developed by Cymmetria Research, a com-
pany focusing on cyber deception, is designed to catch
Mirai binaries. It is written in Python 2.x and uses the
telnetsrv library for its telnet protocol implementation.
TIoT also aims to catch IoT malware and is also written
in Python 2.x, but with a custom implementation of the
Telnet protocol. TPwd is written in C and also has its
own implementation of the Telnet protocol.

HTTP/Web Honeypots: There are many web applica-
tion honeypots available – some focusing on emulating
Wordpress or various login interfaces to obtain credential
guesses, while others are full web application honeypots.
We focus on three honeypots of this second type: Con-
pot, Dionaea and Glastopf – all implemented in Python.

Conpot is a honeypot designed to emulate industrial
control systems and by default it listens on ports 80,
102, 161 and 502. Dionaea supports almost all proto-
cols and provides templates for each of them, includ-
ing HTTP. Glastopf specifically focuses on HTTP and
uses the BaseHTTPServer library to implement the pro-
tocol. Glastopf is the most highly recommended honey-
pot for HTTP, including in the ENISA report we men-
tioned above. Glastopf is also included within the latest
versions of T-Pot.

3 Systematically fingerprinting honeypots

We present a new generic technique to systematically
identify low- and medium-interaction honeypots based
on protocol deviations. We find probes that result in dis-
tinctive protocol responses. This has resulted in the iden-
tification of thousands of deviations between honeypots
and the services they are impersonating.

3.1 Efficient Detection of Deviations

Given a set of implementations of a network protocol I =
{I1, I2, ..., Ix}, we send a set of probes P = {P1,P2, ...,Pn}
to I and record the set of responses RP. We then calculate
the cosine similarity coefficients C for all responses RPi .
The aim is to find the ‘best’ Pi where the sum of C is

Probes (P) Implementation (I)
send

output

Responses (RP)
Cosine similarity
coefficients (C)

calculate

Figure 1: Steps to identify probes with distinctive re-
sponses, which can then be used for Internet-wide scans.

the lowest, i.e. the responses RPi for I j are overall the
least similar. In other words, we try to find the probe
that results in the most distinctive response across all the
protocol implementations.

Cosine similarity is an established technique for com-
paring sets of information, commonly used to measure
text semantic similarity. It has also proven useful in traf-
fic analysis to find abnormalities [40] and to measure do-
main similarity [28, 38]. We represent our responses RP
as a vector of features appropriate to the network proto-
col. For example, in the case of Telnet, each individual
terminal option character is treated as a feature. The re-
sulting cosine similarity coefficient is a normalized value
between 0 and 1. The higher the coefficient, the more
similar the two items under comparison. The overall ap-
proach is outlined in Figure 1.

We fingerprinted the responses from widely deployed
systems that support SSH, Telnet or HTTP along with
the protocol libraries commonly used in building honey-
pots for these protocols. As honeypot developers sup-
plement their chosen protocol library with custom code
to emulate reference implementations, it is reasonable to
expect to be able to generate unique fingerprints and so it
proved. We then used the probe that resulted in the most
distinctive responses for each protocol and sent it to ev-
ery host on the Internet. From the responses we are able
to determine the implementation (possibly a honeypot)
that is running on each host.

The key point of our technique is that we are able to
rapidly identify honeypots because of the way in which
they have been implemented (using a particular protocol
library) rather than having to consider how they respond
when interacted with at length.

3.2 Protocol 1: SSH
We look for deviations in responses to a client version
string and a SSH2 MSG KEXINIT packet. For this com-
parison, we use five OpenSSH versions (6.6, 6.7, 6.8,
7.2, 7.5), the SSH server example supplied with Twist-
edConch and eight versions of the honeypots Kippo1 and
Cowrie2, four for each honeypot. We include multiple
versions of Kippo and Cowrie as both honeypots have
undergone substantial modifications over the years.

First, we create a set of client version strings:
SSH-protoversion-swversion SP comment crlf.
Our probes follow this syntax, but we alter individual
parts – expecting this to result in differing responses.
We start with ‘ssh’ and ‘SSH’, we use 12 different
protoversions ranging from 0.0 to 3.2, swversion (which

1Commits 0d03635, 40b6527, 4999618 and 9645e50 on
https://github.com/desaster/kippo

2Commits 96ca2ba, dc45961, dbe88ed and fd801d1 on
https://github.com/micheloosterhof/cowrie

3

identifies the software) we set OpenSSH or an empty
string, comment we set to FreeBSD or an empty string,
and the terminating crlf we set to either \r\n or an empty
string. In short, we construct 192 client version strings:
[SSH, ssh]-[0.0, 0.1, 0.2, 1.0, 1.1, 1.2,

2.0, 2.1, 2.2, 3.0, 3.1, 3.2]-[OpenSSH, ""]

SP[FreeBSD, ""][\r\n, ""].
Second, we create SSH2 MSG KEXINIT packets using

the algorithms defined in RFC 4250 [26] and its intended
update [2]. Together these give 16 key-exchange algo-
rithms, 2 host key algorithms, 15 encryption algorithms,
5 MAC algorithms and 3 compression algorithms. We
supplement each of them with an empty string and do
not include any supported languages in our packets. We
populate the 16 byte cookie with random bytes and cor-
rectly pad the packet. This leads to the generation of
19 584 correctly formed packets where each packet of-
fers just one algorithm of each type. In addition to these
correctly formed packets, we create a variant with incor-
rect padding (mod 13 instead of mod 8) and another vari-
ant for which we omit the packet and padding length.

In total, we generate 58 752 different packets; in com-
bination with the client versions, we issue 157 925 376
probes, 11 280 384 to determine how each of our 14 im-
plementations will respond.

We record every character the servers send in re-
sponse, including random content such as the cookie or
the padding. Thus for SSH, we do not expect a co-
sine similarity of 1.0. In fact, including random parts
has proven very valuable as we find that OpenSSH uses
NULL characters to pad packets, but the honeypots use
random bytes for padding (see Section 4.4.1).

Table 5 in the Appendix gives the average similar-
ity scores across all of the implementations. Overall,
Kippo and Cowrie respond similarly to OpenSSH, with
an average cosine similarity measure ranging from 0.66
to 0.81, but in no case do they manage to be iden-
tical across all probes. After calculating all the co-
sine similarity coefficients, as outlined in Section 3.1,
we find that SSH-2.2-OpenSSH \r\n as version string
and the SSH2 MSG KEXINIT packet including ecdh-sha2-
nistp521 as key-exchange algorithm, ssh-dss as host key
algorithm, blowfish-cbc as encryption algorithm, hmac-
sha1 as mac algorithm and zlib@openssh.com as com-
pression algorithm, with the wrong padding, is the probe
with the lowest cosine similarity coefficient C and will
be used in our scans because it is the best distinguisher
between honeypots and non-honeypot SSH servers.

3.3 Protocol 2: Telnet

For Telnet we look for deviations in responses to our ne-
gotiation requests. For this comparison, we use Busy-
box versions 1.6.1, 1.7.2, 1.8.0, 1.9.0, 2.0.0, 2.1.1, 2.4.0,

2.6.2, Ubuntu-telnetd 0.17.4, FreeBSD 11.1 telnetd and
the honeypots MTPot3, Cowrie4, TPwd5 and TIoT6.

Given the IAC escape character, four option codes
WILL, WON’T, DO, DON’T and 40 Telnet options7, we
create 160 different negotiation requests (n).

The Telnet protocol specifies that an arbitrary num-
ber of requests (r) can be sent at any time. To get the
most exhaustive coverage we test all 160 negotiation re-
quests (n = 160), but limit the maximum number of ne-
gotiation requests per connection to two (r = 2). As we
do not want to send the same requests twice, we gener-
ate 160!

(160−2)! = 25440 probes for each Telnet implementa-
tion. In total we generate 356 160 responses, 25 440 for
each of our 14 implementations. The responses will con-
tain the negotiation options that the server sends initially,
along with the response it makes to our probe.

Table 6 in the Appendix gives the average similar-
ity scores across all of the implementations. Again,
the honeypots respond in a similar way to other sys-
tems, but in no case do they manage to be identical
across all probes. Cowrie responds most similarly to
Ubuntu telnetd with an average cosine similarity mea-
sure of 0.94 followed by MTPot with 0.89. Interest-
ingly, Busybox versions 1.6.0 to 2.4.0 have identical
behaviour. After calculating all the coefficients, we
find that \xff\xfb\x00\xff\xfb\x12, i.e. IAC WILL

BINARY IAC WILL LOGOUT is the probe with the low-
est cosine similarity coefficient C and will be used in our
Internet-wide scan to find honeypot implementations.

3.4 Protocol 3: HTTP/Web
For HTTP we look for deviations in responses to
HTTP method requests. For this comparison, we
use Apache versions 2.0.50, 2.2.34, 2.4.27, ng-
inx versions 1.0.15, 1.4.7, 1.12.1, python3.5.2-aiohttp
version 2.2.0, python2.7-simplehttpserver, python2.7-
basehttpserver, Glastopf8, Conpot9, and Dionaea 0.610.

Our probes follow the syntax of HTTP requests and
are formed as follows: method char version. When
considering the responses we omitted the semantics of
the date and time information that is included in the
header, but not the syntax. This prevents region/language
configuration differences from affecting our results.

We use the 43 different request methods defined in
RFC2616 [16] and RFC2518 [19] (including Webdav
methods), the 123 non-alphanumeric ASCII characters

3https://github.com/Cymmetria/MTPot/commit/c32d433e
4https://github.com/micheloosterhof/cowrie/commit/ffe669f
5https://git.zx2c4.com/telnet-password-honeypot/commit/0f9b0c
6https://github.com/Phype/telnet-iot-honeypot/commit/15343df9
7We only use the main options from 0 to 39 [22]
8https://github.com/mushorg/glastopf/commit/bcbcebe
9https://github.com/mushorg/conpot/commit/74699fc

10https://github.com/DinoTools/dionaea/commit/02492e2b

4

0.6 0.7 0.8 0.9 1.0
similarity measure in %

0

1000

2000

3000

4000

5000

6000

of

 im
pl

em
en

ta
tio

ns
 (0

00
s)

OpenSSH_7_5
OpenSSH_7_2
OpenSSH_6_8
OpenSSH_6_7
OpenSSH_6_6
Twisted_15_2_1
Cowrie
Kippo

(a) SSH implementations

0.6 0.7 0.8 0.9 1.0
similarity measure in %

0

200

400

600

800

1000

1200

of

 im
pl

em
en

ta
tio

ns
 (0

00
s)

Busybox 2.6.2
Busybox 1.6-2.4
FreeBSD 11.1 telnetd
Ubuntu-telnetd 0.17.4
TPwd
TIoT
MTPot
Cowrie

(b) Telnet implementations

0.6 0.7 0.8 0.9 1.0
similarity measure in %

0

5000

10000

15000

20000

25000

of

 im
pl

em
en

ta
tio

ns
 (0

00
s)

nginx 1.12.1
nginx 1.4.7
nginx 1.0.15
Apache 2.4.27
Apache 2.2.34
Apache 2.0.5
Dionaea 0.6
Conpot
Glastopf
python2-simplehttp
python2-basehttp
python3-aiohttp

(c) HTTP implementations

Figure 2: Similarity of SSH, Telnet and HTTP implementations in the Internet-wide scan based on their responses to
our probes. Results are based on the latest scans for each protocol.

with a preceding / as the path and 9 different HTTP ver-
sions ranging from version HTTP/0.0 to HTTP/2.2 to
create our set of probes. In total, we sent 571 212 probes,
47 601 for each of our 12 implementations.

Table 7 in the Appendix gives the average similarity
scores. Again, no honeypot behaves identically to any of
the systems we tested. Compared with our SSH and Tel-
net results, the similarity measures are much lower and
the web server implementations respond far more dis-
tinctively. We find that Dionaea outperforms all the other
honeypots we tested and is the most identical to Apache
and nginx with average similarity measures ranging from
0.10 for nginx 1.4.7 to 0.20 for Apache 2.4.27. As ex-
pected, Glastopf most resembles python2-basehttpserver
and python2-simplehttpserver – the underlying libraries
used to provide its transport layer. We then identified the
probe with the lowest coefficient C and we use GET /.

HTTP/0.0\r\n\r\n for the Internet-wide scan.

4 Internet-wide Scanning

We use the probes we identified to perform six scans, two
scans each for SSH, Telnet and HTTP honeypots, to find
honeypots at Internet scale. Table 2 summarises these
scans and gives the number of detected honeypots. All
our scanning is performed from a dedicated host within
our University network and in accordance with the ethi-
cal considerations outlined in Section 6.

First, we use ZMap and perform a one-packet scan
sending TCP SYN packets to the respective ports 22,
23 and 80 using the exclusion list maintained by DNS-
OARC [11]. In total we scanned 3 336m IPv4 addresses,
78% of the IPv4 address space. We configured ZMap
to scan at 30mbps and determined which IPv4 addresses
responded successfully with a SYN-ACK packet.

Second, responsive IPv4 addresses were visited by a
custom scanner which connects on the appropriate port
and sends probes to identify honeypots. For each respon-

sive IPv4 address we only try to connect once, with a
socket timeout of six seconds.

For SSH, we only consider servers which appear to be
running OpenSSH configured for SSHv2, i.e. when we
connect to them on port 22 they send the server version
string SSH-2.0-OpenSSH *, where * is the OpenSSH
version (number). We then determine whether the server
behaves identically to OpenSSH.

4.1 Results
As shown in Figure 2a, we find that most SSH imple-
mentations are similar to OpenSSH 6.6 and 7.2. Only
when we look for a cosine similarity score of 0.9 and
higher does the number of hosts classified as OpenSSH
significantly decrease. As we do not exclude the ‘ran-
dom’ parts of the servers’ responses (Section 3.2) we
have no easy way of defining a threshold at which cosine
similarity score we should accept the hypothesis that re-
sponses originate from SSH honeypots. We discuss how
we overcome this with a detailed analysis of false posi-
tive and false negative rates in Section 4.2 below. Doing
so, we classify 758 honeypots as Kippo and the remain-
ing 2 021 are Cowrie honeypots (Scan 2). As Kippo and
Cowrie respond very similarly to our probes, we differ-
entiate them based on the disconnection messages (see
Section 4.4.2).

The very first scan predated our systematic method of
fingerprinting honeypots and was performed by sending
a non-compliant SSH2 MSG KEXINIT packet to each re-
sponsive IPv4 address (Section 4.4.2). In that first scan,
we found 2 844 honeypot instances, 1 938 instances of
Cowrie and 906 of Kippo.

By design, Telnet servers do not advertise their imple-
mentation or version, so there are no deployment statis-
tics available; we are the first to fill this gap. As shown
in Figure 2b, a significant number of hosts are similar to
Busybox versions 1.6 to 2.4, but as the similarity mea-
sure increases, the number of hosts we can definitively

5

Table 2: Results of the Internet-Wide Scan. *Scan 1 (SSH) was performed with the techniques outlined in Section 4.4

SSH Honeypots Telnet Honeypots HTTP/Web Honeypots
Date #ACKs Sum Kippo Cowrie TPwd MTPot TIoT Cowrie Dionaea Glastopf Conpot

Scan 1 (SSH)* 2017-09 18,196k 2844 906 1938
Scan 2 (SSH) 2018-01 20,586k 2779 758 2021

Scan 1 (Telnet) 2017-09 8,290k 1430 1 388 22 1019
Scan 2 (Telnet) 2018-01 8,169k 1166 1 216 11 938

Scan 1 (HTTP) 2017-10 58,775k 2616 139 2390 87
Scan 2 (HTTP) 2018-01 67,615k 3660 202 3371 87

identify significantly decreases. We also find about 400k
Telnet servers that are identical to Ubuntu telnetd. When
identifying honeypots we only consider exact matches (a
cosine similarity score of 1.0) and we find that there are
1 430 Telnet honeypots deployed. The vast majority of
these are Cowrie (1 019) followed by MTPot (388), ToIT
(22) and TPwd (1). In our second scan three months later
we find 1 116 Telnet honeypots and again, the vast ma-
jority are Cowrie honeypots (938) followed by MTpot
(216), TIoT (11) and TPwd (1).

As shown in Figure 2c, most HTTP implementations
resemble nginx 1.12.1 and Apache 2.2.34. We further
observe that the number of implementations that are at
all similar to one of the honeypots or the plain library
implementations is minimal. In total, we find 2 616 in-
stances of HTTP honeypots in our first scan and 3 660 in
the second scan. Glastopf is the most widely used hon-
eypot with 3 371 instances followed by Dionaea (202)
and Conpot (87). Differences between scans not only
reflect changes to the honeypot population but also of
course whether temporary Internet glitches meant that
SYN-ACKs were not returned to ZMap.

4.2 Validation
The nature of honeypots means that there is no publicly
available list of honeypot IP addresses so we looked for
ways to cross-validate our method.

The Telnet and HTTP Honeypots in our study do not
include randomized content in their responses. Thus we
can classify hosts as honeypots only when there is an ex-
act match (cosine similarity score 1.0). We then used the
second-best distinguishing probe for these honeypots to
confirm the initial hypothesis that the servers’ response is
unique to the specific honeypot implementation. Doing
so, we find that 1 136 of 1 166 (97.4%) Telnet honeypots,
and 3 549 of 3 660 HTTP (97.0%) honeypots respond to
these probes as expected (cosine similarity score of 1.0
for both probes). Manual inspection shows that all the
discrepancies are caused by incomplete responses.

For SSH we first considered all responses classified
as honeypots with a cosine similarity of 0.80 or more
(9 607). We then remove the packet length, padding

length, cookie and the random padding. This results in
the identification of 2 779 instances of SSH honeypots
which now had a cosine similarity score of 1.0.

We find a significant difference in the original co-
sine similarity scores between what we now know to be
Cowrie honeypots (2 021), Kippo honeypots (758), and
all the other responses which we initially classified as
not being a honeypot (6 828); Kruskal-Wallis, p = 0.001
with a mean rank of 8 245 (median = 0.981) for Cowrie
honeypots, 8 057 (median = 0,972) for Kippo and 3 424
(median = 0.857) for Non−honeypots (see Figure 3a).

We further send the second-best probe to all of the
9 607 implementations that were initially been classified
as SSH honeypots. As can be seen in Figure 3b, for all
of the 2 779 fingerprinted honeypots the cosine similar-
ity score for both, the initial probe and the confirmation
probe (including the random parts), is 0.90 or higher.

In summary, the cosine similarity of 1.0 for payloads
makes us certain that we have found 2 779 SSH honey-
pots. Furthermore, the resulting cosine similarity values
of the second-best probe are effectively identical to the
initial probe, 0.90 and higher.

4.3 Accuracy

Evaluating our method further, it is essential to report
false positive rates (FPR) and false negative rate (FNR).
The FPR indicates how often our method identifies hosts
as honeypots when they aren’t and the FNR is the likeli-
hood that our method fails to identify hosts as honeypots
when they are. Assuming that the ground truth is 2 779
honeypots, we get an Equal Error Rate (ERR) of 0.0183
using the threshold (t) of 0.9235 and the best probe (see
Figure 3c). In other words, at this point we falsely accept
and at the same time fail to identify 51 honeypots.

When using both the best probe and the second-best
probe, we achieve a slightly better ERR of 0.0132. This
is a minor improvement and in most situations not worth
the additional overhead of sending twice the number of
packets. Arguably a real attacker would choose a higher
FPR so they can be certain not to touch a honeypot at the
expense of excluding potential targets.

6

0.80

0.85

0.90

0.95

1.00
si

m
ila

rit
y

m
ea

su
re

 in
 %

No honeypotKippoCowrie

(a) We find a significant difference between
the cosine similarity scores and the classified
groups – Cowrie honeypots, Kippo honeypots
and hosts not classified as honeypots.

0 2000 4000 6000 8000 10000
of implementations

0.80

0.85

0.90

0.95

1.00

si
m

ila
rit

y
m

ea
su

re
 in

 %

Confirmation probe
Initial probe

(b) Result confirmation: For all of the finger-
printed honeypots the cosine similarity score
for both, the initial probe and the confirmation
probe is 0.90 or higher.

0.80 0.85 0.90 0.95 1.00
Threshold (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e
(r)

Equal Error Rate (ERR)

False Positive Rate (FPR)
False Negative Rate (FNR)

(c) Our methods achieves an ERR of 0.0183
with a threshold of 0.9235, i.e. responses with
a cosine similarity score of 0.9235 and higher
are classified as honeypots.

Figure 3: We validate our method by removing the random parts in the servers’ responses and sending the second-best
distinguishing probe to each potential honeypot.

4.4 SSH: Implementation Flaws
We now explore some sources of divergence for the SSH
protocol and show that there are numerous differences
‘on-the-wire’ between entirely standards compliant im-
plementations; each of which gives attackers a quick and
easy way of identifying honeypots at Internet scale.

4.4.1 SSH Binary Packet Protocol

We find that Kippo and Cowrie use random bytes for
the SSH2 MSG KEXINIT packet, but OpenSSH uses NULL
characters for padding. The Binary Packet Protocol
(BPP) of SSH is defined in RFC4253. Each packet con-
sists of the packet length itself, the padding length, a pay-
load, random padding and the Message Authentication
Code (MAC). The BPP uses random padding to ensure
that the total length of the packet T Lp is a multiple of the
cipher block size (or of 8, whichever is larger). Section 6
of the RFC further states that the padding MUST consist
of at least 4 bytes and these bytes SHOULD be random.

We corresponded with the OpenSSH authors who told
us that long ago they used random values but have
changed to null padding bytes because this has no secu-
rity implications either way [32]. This difference means
that observing just one SSH2 MSG KEXINIT packet is
enough to distinguish OpenSSH from TwistedConch and
hence determine if Kippo or Cowrie is responding.

4.4.2 Disconnection Messages

A large source of divergences are the result of disconnec-
tion messages at various stages of the protocol exchange.
We list three differences, each of which can serve as a
distinguisher, and explain its origin.

Bad versions 2.2: We observe that changing the pro-
tocol version from 2.0 to 2.2 results in the disconnec-

Table 3: Update Statistics for Kippo and Cowrie

Scan 1 (SSH) Scan 2 (SSH)

Kippo <2014-05-28 695 (24.4%) 546 (19.6%)
Kippo <2015-05-24 211 (7.4%) 212 (7.6%)

Cowrie <2017-06-06 1228 (43.2%) 950 (34.2%)
Cowrie ≤date of scan 710 (25.0%) 1071 (38.6%)

tion message “bad version 2.2” for TwistedConch, but
OpenSSH does not raise an error and continues the proto-
col sequence by sending its SSH2 MSG KEXINIT packet.

Non-compliant SSH2 MSG KEXINIT packet: We
find that we can trigger disconnection messages by
sending SSH2 MSG KEXINIT packets that are not com-
pliant with the SSH transport layer protocol. By
omitting the packet and padding length, we force
the SSH server to close the connection. Based on
the disconnection message, we differentiate between
Kippo (“bad packet length *”, “Protocol mismatch.\n”),
Cowrie (“Packet corrupt\n”) and OpenSSH (“Packet
corrupt\x00”). OpenSSH does have a similar error mes-
sage to Kippo, but with a capital B, i.e. (“Bad packet
length *”), where * is the packet length.

Non-compliant packet: If we violate the specification
of the BPP and construct a SSH2 MSG KEXINIT packet
so that T Lp (mod 8) 6= 0, Kippo and Cowrie terminate
the connection with, for example, the error message “bad
packet mod (244%8 = 4)” where 244 ≡ T Lp. OpenSSH
provides no detail but terminates the connection with the
generic reason “Packet corrupt”.

4.5 Honeypot Deployment

Update Behaviour of SSH Honeypots: Based on the
honeypots’ responses, we split the SSH honeypots into
four groups according to their patch level. The results

7

are shown in Table 3. In the first scan we found that 695
(24%) of the Kippo honeypots were more than 40 months
out of date and hence would fall to a well-known finger-
printing technique first disclosed on 2014-05-28. Even
by the second scan three months later, 546 had still not
been updated (72.0% of a reduced population).

Kippo has not been actively developed since 2015, but
the people running Cowrie are also failing to keep their
deployments up to date. Our figures from the second
scan show that only 1 071 (53%) of these honeypots had
incorporated improvements from 7 months earlier. Since
developers track the commands that adversaries use and
continually add new features to make honeypots more
covert, not updating a honeypot increases the chances
that it may be fingerprinted (using traditional techniques)
and thus limits its value in detecting new attack vectors.

Mass Deployment of Honeypots: We scanned for all
three types of honeypots independently, but we now con-
sider what we learn by linking them by IPv4 address.
The 7 605 honeypot instances of our second scan reside
on 6 125 IPv4 addresses. Thus a significant number of
honeypot operators deploy several honeypots on a single
host. We find 714 IPv4 addresses run Cowrie on port 22
(SSH) and simultaneously Glastopf on port 80 (HTTP);
there are also 550 instances of Cowrie being run on both
port 22 (SSH) and port 23 (Telnet). The risk here is
that fingerprinting one honeypot instance may reveal the
presence of other honeypots on the same host.

We also fetched the SSH host keys, which are intended
to be unique, of all the honeypots that we had identi-
fied. We find that only 1 838 of the 2 844 SSH honey-
pots (65%) in the first scan have a unique host key. The
remaining 1 006 honeypots have 71 host keys between
them with a median of 5 honeypots per host key. For the
second scan only 2 193 of the 2 779 honeypots (78.9%)
have unique host keys. It follows that a substantial num-
ber of honeypot operators deploy more than one honey-
pot and while doing so exercise little caution. It is likely
that honeypot operators use deployment scripts, docker
containers or simply copy and paste the source files, in-
cluding the same host key, to all their honeypots.

We determine which hosting companies honeypot op-
erators use; we list the Top 10 ASs for all the honeypots
that our scans identified in Table 4. We find that the hon-
eypot are hosted in 82 countries, with the majority being
located at well-known cloud providers in the USA.

5 Discussion

Previously, especially for SSH honeypots, the main goal
was to provide a realistic looking shell for humans to
interact with. But with the rise of botnets probing ran-
dom servers and fast Internet-wide scanning, almost ev-
erything a honeypot observes is generated by automated

Table 4: Top 10 ASNs used to host Honeypots (latest scans)

CO ASN Organisation Telnet SSH HTTP Total

US 16509 Amazon.com 140 520 506 1166
JP 2500 WIDE Project – – 490 490
US 14061 Digital Ocean 162 189 139 490
FR 16276 OVH SAS 117 202 122 441
TW 4662 GCNet 15 2 254 271
TW 18182 Sony Network 2 – 256 258
US 15169 Google LLC 45 139 46 230
TW 9924 Taiwan Fixed 1 74 146 221
US 14618 Amazon.com 12 70 110 192
RO 43443 DDNET Sol. 30 – 155 185

scripts. Meanwhile, honeypot operators and develop-
ers have put little emphasis on the underlying protocols,
but have relied on off-the-shelf libraries. More emphasis
needs to be placed on identically implementing the lower
layers of the networking stack.

We have shown that no honeypot developer has imple-
mented a protocol the same way as the server they imper-
sonate. The RFCs that define protocols do not mandate
every protocol detail and hence there are numerous dif-
ferences ‘on-the-wire’ between entirely standards com-
pliant implementations. Ambiguities in RFCs are not the
only source of divergence because code also evolves over
time. For example, OpenSSH used random padding for
its SSH2 MSG KEXINIT in version 3.6p1 and earlier, but
now uses clear padding with NULL characters. The de-
velopers of OpenSSH argue that the SSH2 MSG KEXINIT

packet is unencrypted and so random padding does not
offer cryptographic benefits – but this change was missed
by honeypot developers.

In the same vein honeypot operators need to carefully
consider what Telnet terminal options, HTTP response
codes, SSH version and authentication settings are sent –
and far more care is needed with SSH host keys. Copying
the same key to multiple machines not only links honey-
pots together, but attackers need only see the same key
returned by multiple locations for suspicions to be raised.

5.1 Practical Impact

The generic technique presented above allows the (auto-
matic) generation of thousands of probes, any of which
could be used to identify that a honeypot is running
on a particular IPv4 address and thereby treat it differ-
ently than otherwise. Furthermore, we demonstrated that
by identifying a probe with the maximum discrimina-
tory power we can then rapidly scan the Internet to find
thousands of honeypot instances. It will be easy to add
scripts using these techniques into tools such as Metas-
ploit. Since the probes do not leave meaningful log en-
tries in any of our tested honeypots, operators will not be
aware that their honeypot has been detected.

8

Once a honeypot is identified, it must be expected that
it will be blacklisted by adversaries. The value of the
honeypot will drastically decrease, in particular its value
in collecting data about large-scale attacks will be mini-
mal. Thus, the main practical impact of our findings will
be high switching costs for honeypot owners. The hon-
eypot will need to be moved to a new IP address, perhaps
a new hosting provider.

5.2 Countermeasures
Short term, honeypot operators will want to assess
whether attackers have started to identify them by
carefully inspecting their logs and looking for incom-
plete connections and repetitive disconnection messages.
However, these messages commonly arise for other rea-
sons and without recourse to packet level logging this
will not be unambiguous evidence of fingerprinting.
While not our current aim, our technique can be adapted
to find and subsequently filter probes that induce no or
even less logging than the probes we used.

Medium term, the developers of honeypots and li-
braries such as TwistedConch (where the SSH distin-
guishers we have identified reside) may mitigate some
of the issues we have identified. Cowrie has already im-
plemented a fix to use NULL characters for padding.

Long term, the only robust fix is to develop a new gen-
eration of honeypots that implement protocols using ex-
actly the same code as the systems they set out to im-
personate. Otherwise, as attackers include our methods
in their scripts, low- and medium-interaction honeypots
will have minimal value. This is undesirable because
low- and medium-interaction honeypots are an extremely
useful source of information, and not everyone is pre-
pared to run high-interaction honeypots as they need to
be carefully operated and maintained.

This new generation is not especially difficult to im-
plement and we have already developed a modified
OpenSSH daemon to be used in conjunction with Cowrie
so there will be no difference in responses [36].

6 Ethical Considerations

We followed our institution’s ethical research policy
throughout, with appropriate authorisation at every stage.

We followed a strict responsible disclosure process
and notified the relevant honeypot developers of our
findings. We initially notified the developer of Cowrie
on 2017-03-01 and subsequently the developers of the
TwistedConch library used by Cowrie on 2017-03-14.
Development of Kippo has ceased. Once we could fin-
gerprint Telnet and HTTP honeypots, we also disclosed
our results to the developers of TPwd, MTpot, TIoT,
Cowrie, Dionaea, Glastopf and Conpot on 2017-10-16.

As of 2018-06, only one of the issues we have iden-
tified in Cowrie has been resolved. TwistedConch ac-
knowledges that honeypots are an important use-case for
their library, but they never promised byte-for-byte parity
with OpenSSH. Based on the responses from the devel-
opers of Cowrie and TwistedConch, we are pessimistic
that any further issues will be resolved.

The developer of Glastopf and Conpot agrees that fixes
require a new architecture. Cymetria Research, the main-
tainer of MTPot, classified our findings as vulnerabilities
as it is a “critical aspect of any honeypot” even though
they say that some would argue otherwise. However,
their view is that MTPot was intended to capture Mirai
binaries and that it achieves that goal as Mirai does not
try to fingerprint honeypots. The author of TIoT is not
concerned about transport layer issues as his honeypot
can be identified solely by its delivered content.

Before performing the Internet-wide scans to identify
honeypot deployments, we thoroughly tested our scan-
ner. For all scans we used the exclusion list maintained
by DNS-OARC [11]. The host used for scanning runs
a web page on port 80 so that people who are scanned
can determine the nature of our experiment and learn
our contact details. We also added reverse DNS entries
to clarify the nature of the host. We ensured that local
CERTs were fully aware of our activity. We received two
complaints and respected their request to be excluded
from further scanning.

7 Related Work

Closest to this work, Bethencourt et al. [4] sent probes to
ranges of IP addresses and observed changes of activity
within published reports of sensor networks such as the
SANS Internet Storm Center. Thus, over time, they could
enumerate all sensors for particular systems. However,
this approach requires that sensors make their data pub-
licly available and our technique does not require this.

Brumley et al. [6] showed that by automatically build-
ing symbolic formulas from binaries they could find de-
viations in the protocol implementations of HTTP and
NTP. Similarly, AUTOPROBE [39] generates finger-
prints of malicious C&C servers through binary analysis.
Focusing on protocol reverse engineering, Comparetti et
al. [7] developed Prospex, a system to extract protocol
specific information, but it may also be used to iden-
tify protocol deviations. Our approach differs from all
of them in that it is scalable to a variety of implementa-
tions, that we do not rely on binary analysis, and that it
works at Internet scale.

Identifying vulnerabilities and characterizing network
services by sending specifically crafted packets towards
network hosts and analysing their response is a long es-
tablished practice. Popular tools include Nmap [27] and

9

more recently ZMap [14]. Characterizing network hosts
based on Internet-wide scanning has been previously per-
formed for Industrial Control Systems (ICSs) and con-
tinuously for SSH. Censys.io performs weekly scans for
all major protocols and grabs all publicly available infor-
mation [13]. Similarly. Feng et al. [15] performed an
Internet-wide scan to characterize ICSs and their usage.
To get more accurate results, they trained a probability
model and use a heuristic algorithm to exclude ICS hon-
eypots. To do so, they use four characteristics including
the number of open ports and HTTP configuration.

Focusing on SSH, Albrecht et al. [1] present multiple
vulnerabilities in SSH and perform an Internet-wide scan
to obtain deployment statistics and estimate the impact
of their new attacks. Similarly, Gasser et al. [18] showed
that the rate of software updates for SSH is slow and that
many SSH keys are reused on different hosts. While our
results will not explain all of the hundred thousand du-
plicate keys they found, some belong to honeypots and
not ‘real’ systems.

There has been a long arms race between finding
ways to detect honeypots and camouflaging their pres-
ence [12, 34]. In 2004, Provos [33] developed Honeyd, a
framework that simulates virtual computer systems and
their TCP/IP stack to deceive fingerprinting tools. More
recently, Mukkamala et al. [30] demonstrate that hon-
eypots within virtual environments respond slower to
ICMP echo requests than real systems. Successful at-
tempts to fingerprint Kippo have been made by sending
eight carriage returns as the SSH client version as pre-
vious versions of Kippo return the error message “bad
packet length 168430090” instead of replying with “Pro-
tocol mismatch” [29]. In 2014, the SANS Technology
Institute [34] reported that attackers issue the command
file /sbin/init that returns dynamic content to fin-
gerprint Kippo. In 2015, Cymmetria Research summa-
rized such known cases for a variety of honeypots and
outlined a list of recommendations [5]. However, unlike
our automated and generic approach, these are individual
findings inspecting single honeypot implementations.

Krawetz [25] developed a tool called Honeypot Hunter
to fingerprint honeypots. This tool tests if emails sent
through the compromised system were actually deliv-
ered as advanced functionalities are likely not emulated
by low-interaction honeypots. Similarly, Zou and Cun-
ningham [41] proposed fingerprinting honeypots based
on their limited ability to participate in real attacks and
execute malicious activities.

More recently, Shodan provides an online tool [35]
that allows anyone to check whether a host is running a
honeypot or a real industrial control system (ICS). While
Shodan’s effort is still work-in-progress and mainly tar-
gets ICSs, we find that all of the honeypots’ IPs that we
identified are believed by Shodan to be real systems.

8 Conclusion

We have presented a generic approach for systemati-
cally generating probes that can be used to find low and
medium-interaction honeypots with just one or two pack-
ets, leaving minimal clues in the logging. Our technique
is not only applicable to the SSH, Telnet and HTTP hon-
eypots we discussed, but to a wide range of other pro-
tocols including SMTP, FTP, Modbus, S7 and SIP. We
start by identifying a number of distinguishing probes
and subsequently select the ‘best’ probe that minimises
the effort to identify honeypots at Internet scale. We
then present a number of techniques to determine the
patch level of Kippo and Cowrie, the leading examples
of medium interaction SSH honeypots.

The distinguishers we have identified result from de-
sign decisions to use off-the-shelf libraries (or in some
cases newly developed code) to handle the protocol im-
plementation – even though the libraries never promised
byte-for-byte parity. This is a class break in that we do
not believe that patching the current generation of honey-
pots can fully address the issues we have identified. The
potential damage is worrying. We will need a new gen-
eration of honeypots with new architectures – and those
new honeypots will need to be installed on new IP ad-
dresses with new settings and with far more attention
paid to the mechanics of deployment so that honeypot
collections cannot be linked together.

Our impression is that honeypot authors believe that
they are dealing with naı̈ve human adversaries, but with
the rise of fast Internet-wide scanning and the dominance
of automated scripts probing servers, much more em-
phasis has to be put on ensuring that there is complete
verisimilitude in the lower levels of the networking stack
rather than just ensuring that humans can be fooled. This
is, however, not an argument for high-interaction honey-
pots as many are unable to accept the risk that they pose
or the effort required to monitor them to prevent them
from doing harm. We need low- and medium-interaction
honeypots; we just need a new generation that is far less
easy to identify.

Acknowledgments

This work was supported by the EPSRC [grant number
EP/M020320/1] and a Premium Research Studentship
from the Department of Computer Science and Tech-
nology, University of Cambridge. We are grateful to
Ross Anderson, Alastair R. Beresford, Alice Hutchings,
Daniel R. Thomas, Sergio Pastrana and to the anony-
mous reviewers for helpful comments on this paper.

10

https://orcid.org/0000-0001-8697-5682
https://orcid.org/0000-0003-0818-6535
https://orcid.org/0000-0003-3037-2684
https://orcid.org/0000-0001-8936-0683
https://orcid.org/0000-0003-1036-6359

References
[1] ALBRECHT, M. R., DEGABRIELE, J. P., HANSEN, T. B., AND

PATERSON, K. G. A Surfeit of SSH Cipher Suites. In Proc. of
the 23rd ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ‘16) (2016), pp. 1480–1491.

[2] BAUSHKE, M. Key Exchange (KEX) Method Updates and
Recommendations for Secure Shell (SSH), 2017. Avail-
able: https://tools.ietf.org/id/draft-ietf-curdle-
ssh-kex-sha2-09.html.

[3] BERTINO, E., AND ISLAM, N. Botnets and Internet of Things
Security. Computer 50, 2 (2017), 76–79.

[4] BETHENCOURT, J., FRANKLIN, J., AND VERNON, M. Map-
ping Internet Sensors with Probe Response Attacks. In Proc.
of the 14th USENIX Security Symposium (USENIX‘05) (2005),
pp. 193–208.

[5] BLACKHAT. Breaking Honeypots for Fun and Profit,
2015. Available: https://www.blackhat.com/us-

15/briefings.html#breaking-honeypots-for-fun-

and-profit.

[6] BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J.,
AND SONG, D. Towards Automatic Discovery of Deviations in
Binary Implementations with Applications to Error Detection and
Fingerprint Generation. In Proc. of the 16th USENIX Security
Symposium (USENIX ‘07) (2007), pp. 213–228.

[7] COMPARETTI, P. M., WONDRACEK, G., KRUEGEL, C., AND
KIRDA, E. Prospex: Protocol specification extraction. In Proc.
of the 30th IEEE Symposium on Security and Privacy (S&P ‘09)
(2009), pp. 110–125.

[8] COWRIE. Project Philosophy, 2015. Available: https://

github.com/micheloosterhof/cowrie/pull/48.

[9] DEUTSCHE TELEKOM AG. T-Pot: A Multi-Honeypot Plat-
form, 2015. Available: http://dtag-dev-sec.github.io/
mediator/feature/2015/03/17/concept.html.

[10] DEUTSCHE TELEKOM AG. T-Pot 16.03 – Enhanced Multi-
Honeypot Platform, 2016. Available: http://dtag-dev-

sec.github.io/mediator/feature/2016/03/11/t-pot-

16.03.html.

[11] DNS-OARC. Don’t Probe List, 2018. Available: https://

www.dns-oarc.net/oarc/services/dontprobe.

[12] DORNSEIF, M., HOLZ, T., AND KLEIN, C. NoSEBrEaK - At-
tacking Honeynets. In Proc. of the 5th Annual IEEE SMC Infor-
mation Assurance Workshop (2004), pp. 123–129.

[13] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., BAILEY, M.,
AND HALDERMAN, J. A. A Search Engine Backed by Internet-
Wide Scanning. In Proc. of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS ‘15) (2015),
pp. 542–553.

[14] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
ZMap: Fast Internet-wide Scanning and Its Security Appli-
cations. In Proc. of the 22nd USENIX Security Symposium
(USENIX ‘13) (2013), pp. 605–619.

[15] FENG, X., LI, Q., AND WANG, H. Characterizing Industrial
Control System Devices on the Internet. In Proc. of the 24th
IEEE International Conference on Network Protocols (ICNP ‘16)
(2016), pp. 1–10.

[16] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. RFC 2616 –
Hypertext Transfer Protocol – HTTP/1.1, 1999.

[17] FU, X., YU, W., CHENG, D., TAN, X., STREFF, K., AND GRA-
HAM, S. On Recognizing Virtual Honeypots and Countermea-
sures. In Proc. of the 2nd IEEE International Symposium on De-
pendable, Autonomic and Secure Computing (DASC ‘06) (2006),
pp. 211–218.

[18] GASSER, O., HOLZ, R., AND CARLE, G. A deeper understand-
ing of SSH: Results from Internet-wide scans. In Proc. of the
Network Operations and Management Symposium (NOMS ‘14)
(2014), pp. 1–9.

[19] GOLAND, Y., WHITEHEAD, E., FAIZI, A., CARTER, S., AND
JENSEN, D. RFC 2518 – HTTP Extensions for Distributed Au-
thoring – WEBDAV, 1999.

[20] GRUDZIECKI, T., JACEWICZ, P., JUSZCZYK, L., KIJEWSKI,
P., AND PAWLINSKI, P. Proactive Detection of Network
Security Incidents. Tech. rep., 2011. Available: https:

//www.enisa.europa.eu/activities/cert/support/

proactive-detection/proactive-detection-report.

[21] HOLZ, T., AND RAYNAL, F. Detecting Honeypots and Other
Suspicious Environments. In Proc. of the 6th Annual IEEE
System, Man and Cybernetics Information Assurance Workshop
(SMC ‘05) (2005), pp. 29–36.

[22] IETF. Telnet Options, 2011. Available: https://www.ietf.
org/assignments/telnet-options/.

[23] KIPPO. SSH Honeypot, 2015. Available: https://github.

com/desaster/kippo.

[24] KOJONEY. A Honeypot for the SSH Service, 2015. Available:
https://github.com/madirish/kojoney2.

[25] KRAWETZ, N. Anti-honeypot Technology. IEEE Security &
Privacy Magazine 2, 1 (2004), pp. 76–79.

[26] LEHTINEN, S., AND LONVICK, C. RFC 4250 – The Secure
Shell (SSH) Protocol Assigned Numbers, 2006.

[27] LYON, G. F. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning. In-
secure, USA, 2009.

[28] MAHMOOD, A. N., LECKIE, C., AND UDAYA, P. An Efficient
Clustering Scheme to Exploit Hierarchical Data in Network Traf-
fic Analysis. IEEE Transactions on Knowledge and Data Engi-
neering 20, 6 (2008), pp. 752–767.

[29] MORRIS, A. Detecting Kippo SSH Honeypots, By-
passing Patches, and All That Jazz, 2014. Available:
https://www.redpacketsecurity.com/problems-i-

have-found-with-kippo-honeypot/.

[30] MUKKAMALA, S., YENDRAPALLI, K., BASNET, R.,
SHANKARAPANI, M. K., AND SUNG, A. H. Network
Based Detection of Virtual Environments and Low Interaction
Honeypots Network Based Detection of Virtual Environments
and Low Interaction Honeypots. In Proc. of the Information
Assurance and Security Workshop (IAW ‘07) (2007), pp. 92–98.

[31] OOSTERHOF, M. Cowrie, 2016. Available: https://github.
com/micheloosterhof/cowrie.

[32] OPENSSH. Implications of using clear padding instead of ran-
dom padding, 2017. Private communication.

[33] PROVOS, N. Honeyd: A Virtual Honeypot Daemon. In Proc.
of the 12th USENIX Security Symposium (USENIX ‘03) (2003),
pp. 1–7.

[34] SANS TECHNOLOGY INSTITUTE. Kippo Users Be-
ware: Another Fingerprinting Trick, 2014. Available:
https://isc.sans.edu/forums/diary/Kippo+Users+

Beware+Another+fingerprinting+trick/18119/.

[35] SHODAN. Shodan – Honeyscore, 2017. Available: https://

honeyscore.shodan.io/.

[36] VETTERL, A. OpenSSH Honeypot (sshd-honeypot), 2018.
Available: https://github.com/amv42/sshd-honeypot.

[37] WONDRACEK, G., AND COMPARETTI, P. Automatic Net-
work Protocol Analysis. In Proc. of the 16th Annual
Network & Distributed System Security Symposium (NDSS ‘08)
(2008), pp. 1–18.

11

https://tools.ietf.org/id/draft-ietf-curdle-ssh-kex-sha2-09.html
https://tools.ietf.org/id/draft-ietf-curdle-ssh-kex-sha2-09.html
https://www.blackhat.com/us-15/briefings.html#breaking-honeypots-for-fun-and-profit
https://www.blackhat.com/us-15/briefings.html#breaking-honeypots-for-fun-and-profit
https://www.blackhat.com/us-15/briefings.html#breaking-honeypots-for-fun-and-profit
https://github.com/micheloosterhof/cowrie/pull/48
https://github.com/micheloosterhof/cowrie/pull/48
http://dtag-dev-sec.github.io/mediator/feature/2015/03/17/concept.html
http://dtag-dev-sec.github.io/mediator/feature/2015/03/17/concept.html
http://dtag-dev-sec.github.io/mediator/feature/2016/03/11/t-pot-16.03.html
http://dtag-dev-sec.github.io/mediator/feature/2016/03/11/t-pot-16.03.html
http://dtag-dev-sec.github.io/mediator/feature/2016/03/11/t-pot-16.03.html
https://www.dns-oarc.net/oarc/services/dontprobe
https://www.dns-oarc.net/oarc/services/dontprobe
https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-report
https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-report
https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-report
https://www.ietf.org/assignments/telnet-options/
https://www.ietf.org/assignments/telnet-options/
https://github.com/desaster/kippo
https://github.com/desaster/kippo
https://github.com/madirish/kojoney2
https://www.redpacketsecurity.com/problems-i-have-found-with-kippo-honeypot/
https://www.redpacketsecurity.com/problems-i-have-found-with-kippo-honeypot/
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie
https://isc.sans.edu/forums/diary/Kippo+Users+Beware+Another+fingerprinting+trick/18119/
https://isc.sans.edu/forums/diary/Kippo+Users+Beware+Another+fingerprinting+trick/18119/
https://honeyscore.shodan.io/
https://honeyscore.shodan.io/
https://github.com/amv42/sshd-honeypot

[38] XU, K., BUTLER, P., SAHA, S., AND YAO, D. D. DNS for
massive-scale command and control. IEEE Transactions on De-
pendable and Secure Computing 10, 3 (2013), pp. 143–153.

[39] XU, Z., NAPPA, A., BAYKOV, R., YANG, G., CABALLERO, J.,
AND GU, G. AutoProbe: Towards Automatic Active Malicious
Server Probing Using Dynamic Binary Analysis. In Proc. of the
21st ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ‘14) (2014), pp. 179–190.

[40] YEGNESWARAN, V., GIFFIN, J., BARFORD, P., AND JHA, S.
An Architecture for Generating Semantics-aware Signatures. In
Proc. of the 14th USENIX Security Symposium (USENIX ‘05)
(2005), pp. 97–112.

[41] ZOU, C., AND CUNNINGHAM, R. Honeypot-Aware Advanced
Botnet Construction and Maintenance. In Proc. of the 36th An-
nual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN ‘06) (2006), pp. 199–208.

12

Appendix

13

Table 5: Average similarity measures across all tested SSH implementations based on their responses (n=157 925 376)

A B C D E F G H I J K L M N

OpenSSH 6.6 A X 0.98 0.98 0.94 0.94 0.42 0.75 0.75 0.75 0.66 0.78 0.79 0.79 0.79
OpenSSH 6.7 B X
OpenSSH 6.8 C
OpenSSH 7.2 D
OpenSSH 7.5 E

Twisted 15.2.1 F
Kippo 0d03635 G
Kippo 40b6527 H
Kippo 4999618 I
Kippo 9645e50 J

Cowrie 96ca2ba K

0.98 0.98 0.98 0.41 0.76 0.76 0.76 0.68 0.80 0.81 0.81 0.80
X 0.96 0.96 0.42 0.76 0.76 0.76 0.76 0.78 0.79 0.79 0.79

X 0.98 0.42 0.76 0.76 0.76 0.68 0.80 0.80 0.80 0.80
X 0.41 0.80 0.80 0.80 0.71 0.78 0.79 0.79 0.79

X 0.46 0.46 0.46 0.45 0.50 0.51 0.51 0.52
X 0.99 0.99 0.92 0.88 0.88 0.88 0.88

X 0.99 0.92 0.88 0.88 0.88 0.88
X 0.92 0.88 0.88 0.88 0.88

X 0.83 0.83 0.83 0.83
X 0.98 0.98 0.98

Cowrie dc45961 L X 0.99 0.99
X 0.99Cowrie dbe88ed M

Cowrie fd801d1 N X

Table 6: Average similarity measures across all tested Telnet implementations based on their responses (n=356 160)

A B C D E F G H I J K L M N

Busybox 1.6.1 A X 1 1 1 1 1 1
Busybox 1.7.2 B X 1 1 1 1 1
Busybox 1.8.0 C X 1 1 1 1
Busybox 1.9.0 D X 1 1 1
Busybox 2.0.0 E X 1 1
Busybox 2.1.1 F X 1
Busybox 2.4.0 G X
Busybox 2.6.2 H

MTPot I
Cowrie J

TPwd K

0.99 0.89 0.83 0.89 0.85 0.85 0.88
0.99 0.89 0.83 0.89 0.85 0.85 0.88
0.99 0.89 0.83 0.89 0.85 0.85 0.88
0.99 0.89 0.83 0.89 0.85 0.85 0.88
0.99 0.89 0.83 0.89 0.85 0.85 0.88
0.99 0.89 0.83 0.89 0.85 0.85 0.88
0.99 0.89 0.83 0.89 0.85 0.85 0.88

X 0.89 0.83 0.89 0.85 0.85 0.88
X 0.90 0.99 0.84 0.89 0.86

X 0.88 0.95 0.97 0.94
X 0.83 0.87 0.85

TIoT L X 0.94 0.96
X 0.96FreeBSD 11.1 telnetd M

Ubuntu-telnetd 0.17.4 N X

Table 7: Average similarity measures across all tested HTTP implementations based on their responses (n=571 212)

A B C D E F G H I J K L

Apache 2.0.50 A X 0.74 0.74 0.23 0.23 0.03 0.39 0.27 0.29 0.02 0.10 0.19
Apache 2.2.34 B X 0.97 0.26 0.26 0.04 0.50 0.31 0.32 0.01 0.09 0.20
Apache 2.4.27 C X 0.26 0.26 0.04 0.51 0.31 0.32 1.13e−3 0.09 0.20

python2-basehttpserver D X 0.64 0.01 0.17 0.08 0.08 0.11 0.02 0.08
python2-simplehttpserver E X 0.01 0.17 0.08 0.08 0.11 0.02 0.08

python3-aiohttp F X 0.04 0.02 0.02 3.34e−3 0.01
nginx 1.12.1 G X 0.57 0.57

3
4
.
.
68e
63e
−7

4 0.04 0.17
nginx 1.4.7 H X 0.57 4.68e

−
4 0.02 0.10

nginx 1.0.15 I X −4.37e
−

4 0.02 0.11
Glastopf J X 2.53e−4 1.97e−4
Conpot K X 0.02

Dionaea 0.6.0 L X

	Introduction
	Background
	Systematically fingerprinting honeypots
	Efficient Detection of Deviations
	Protocol 1: SSH
	Protocol 2: Telnet
	Protocol 3: HTTP/Web

	Internet-wide Scanning
	Results
	Validation
	Accuracy
	SSH: Implementation Flaws
	SSH Binary Packet Protocol
	Disconnection Messages

	Honeypot Deployment

	Discussion
	Practical Impact
	Countermeasures

	Ethical Considerations
	Related Work
	Conclusion

