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This paper presents an analytic solution for the sound generated by an unsteady gust in-
teracting with a semi-infinite flat plate with a serrated leading edge in a background
steady uniform flow. Viscous and non-linear effects are neglected. The Wiener-Hopf
method is used in conjunction with a non-orthogonal coordinate transformation and
separation of variables to permit analytical progress. The solution is obtained in terms of
a modal expansion in the spanwise coordinate, however for low- and mid-range incident
frequencies only the zeroth order mode is seen to contribute to the far-field acoustics,
therefore the far-field noise can be quickly evaluated. The solution gives insight into the
potential mechanisms behind the reduction of noise for plates with serrated leading edges
compared to those with straight edges, and predicts a logarithmic dependence between
the tip-to-root serration height and the decrease of far-field noise. The two mechanisms
behind the noise reduction are proposed to be an increased destructive interference in
the far field, and a redistribution of acoustic energy from low cuton modes to higher
cutoff modes as the tip-to-root serration height is increased. The analytic results show
good agreement in comparison with experimental measurements. The results are also
compared against non-linear numerical predictions where good agreement is also seen
between the two results as frequency and tip-to-root ratio are varied.

1. Introduction
Leading-edge noise is generated by the unsteady wakes of a forward rotor row impinging

on a rearward stator row within an aeroengine. It is well known as a dominant source of
aircraft noise (Peake & Parry 2012) and as such has sparked a large amount of research
aimed at understanding and controlling noise levels (Amiet 1975; Goldstein & Atassi
1976; Myers & Kerschen 1995; Lockard & Morris 1998; Ayton & Chaitanya 2017). Recent
interest in silent owl flight has led to research in a number of aerofoil adaptations as a
way to reduce aerofoil-turbulence interaction noise as discussed by Lilley (1998). The
leading-edge comb (Graham 1934) appears as a serration to the leading edge of the
wing, and through experimental (Geyer et al. 2016; Chaitanya et al. 2016) and numerical
investigations (Haeri et al. 2015; Kim et al. 2016) has been seen as an effective way to
reduce leading-edge noise. Despite these results, it is still not fully understood why the
serrated edge is such an effective way to reduce leading-edge noise, therefore analytic
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solutions for simple leading-edge interaction noise models are sought to illuminate the
physical noise-reduction mechanisms within the flow, and hence aid in designing optimal
leading-edge geometries for silent blade operation.

Current analytic models for leading-edge serrations such as the gust-interaction noise
model of Lyu & Azarpeyvand (2017) or the sound scattering model of Huang (2017)
typically rely on standard Fourier series expansions in the spanwise coordinate (along
which the serration lies) and iterative or numerical techniques to eventually solve the fi-
nal governing equations. A downside of this is that it becomes difficult to extract precise
information from the solutions as to why a reduction of noise is possible, as one cannot
pick apart the final solution to determine when and where each term has come from.
Solutions from the iterative method using the Schwartzchild technique (Lyu & Azarpey-
vand 2017) predict that the noise reduction for rapidly serrated edges may differ from
those predicted experimentally (Chaitanya et al. 2016) since it is typical that experimen-
tally noise is measured in a restricted arc centred above the plate. This misses the far
upstream and downstream directions; the solution (Lyu & Azarpeyvand 2017) predicts
that the acoustic directivity pattern is significantly distorted by rapid serrations, which
could result in larger or smaller pressure magnitudes at shallow angles than the effects
seen directly above the plate (at θ = 90◦).

Both Lyu & Azarpeyvand (2017)’s analytical and Chaitanya et al. (2016)’s experimen-
tal results suggest that phase interference in the scattered field are key to noise reduction
for rapidly serrated edges, and a greater noise reduction is possible for more rapidly ser-
rated edges due to an increased destructive interference. However if the far field were to
experience a region of destructive interference it would be natural to assume there could
be a corresponding region of constructive interference. The analytic solution obtained
via Green’s functions for the sound generated by individual vortices interacting with a
wavy leading edge by Mathews & Peake (2018) indicates certain leading-edge profiles do
increase noise as opposed to reducing it. Key to an increase or decrease in noise is the
relative angle between the vortex path and the leading edge, which is also an important
factor for swept leading edges (Adamczyk 1974). Huang (2017) who uses a Wiener-Hopf
approach proposes a reduction of far-field noise due to a cutoff of the scattered fre-
quency, as is the case for the swept edge (Adamczyk 1974), however similarly to Lyu &
Azarpeyvand (2017), it is difficult to infer this conclusion directly from the mathematics
as the details are unfortunately hidden by the complexity surrounding the Fourier series
expansions and numerical Wiener-Hopf factorisation.

This paper attempts to provide a simpler analytic solution for the noise generated
by a serrated leading edge, which can be used to understand the mechanisms allowing
for noise reduction. We avoid the need for any numerical steps during the calculation
of the far-field pressure by using a sequence of variable transformations to convert the
governing equation and boundary conditions into a form suitable for solving analytically
using the Wiener-Hopf technique. We also avoid the need for numerically factorising the
Wiener-Hopf kernel. This approach follows the work of Envia (1988) who considered the
effects of blade sweep in a finite-span channel with rigid walls.

The layout of this paper is as follows. The governing equation and boundary conditions
for the problem are given in Section 2 along with the required transformation of coordi-
nates to allow for a simple solution. The solution is found in Section 3 using separation
of variables and the Wiener-Hopf technique. Section 4 contains results for the scattered
acoustic far field which we compare to numerical simulations adapted from Turner &
Kim (2017). A brief discussion of the adapted numerical method used is given in Section
4.5. We discuss the conclusions of this paper in Section 5.
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Figure 1: Uniform steady flow in the x direction with unsteady convective gust pertur-
bation interacts with a rigid plate y = 0 with serrated edge x = cF (z).

2. Formulation of the Problem
We consider the interaction of a convective unsteady gust in uniform flow of Mach

number M over a semi-infinite flat plate with a serrated leading edge. To simplify the
problem we consider a single wavelength of the serration, thus the blade lies in the region
y = 0, x > cF (z), 0 6 z 6 1 as depicted in Figure 1. Here c is a positive real constant
parameterising the so-called ‘tip-to-root’ height of the serration (which is given by c/2).
We non-dimensionalise lengths by the wavelength of the serration, and velocities by the
far upstream steady velocity. Pressure is non-dimensionalised with respect to the far
upstream steady density and velocity.

We suppose the serration is single-frequency, therefore define

F (z) =


z, z ∈ [0, 14 )
1
2 − z, z ∈ ( 1

4 ,
3
4 )

z − 1, z ∈ ( 3
4 , 1]

(2.1)

Note the channel boundaries are located at serration midpoints to ensure any effects of
the sharp tip and root at z = 1/4, 3/4 are fully accounted for and the edges do not
interfere with these key features.

The unsteady gust incident from far upstream takes the form

vg = Aeik1x+ik2y+ik3z−iωt, (2.2)

where the amplitude, A = (A1, A2, A3)T , is constant.
We consider two cases for the scattered field: a) the channel has rigid walls thus there

is a single wavelength serrated blade in a duct; and b) the channel has periodic boundary
conditions. In both cases we set A3 = 0, and as we are dealing with an infinitely thin
plate the only amplitude term from the gust present in our problem will be A2, which
for simplicity we set to unity. Case a) allows us to compare the effects of a serrated
edge against that of a swept edge in a channel (Envia 1988), whilst case b) allows us to
consider a spanwise-infinite plate with a periodic serrated leading edge.

We decompose the unsteady flow field into a convective gust part and an acoustic
response part, v = vg + va, and write the response as va = ∇G. We suppose G is
harmonic in time ∼ e−iωt therefore spatially satisfies the convected Helmholtz equation,

β2 ∂
2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
+ 2ikM

∂G

∂x
+ k2G = 0, (2.3)

where β2 = 1−M2 and k = ω/c0 with c0 the speed of sound of the background steady
flow. Since the gust convects with the background flow, we require k = k1M . The zero
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normal velocity boundary condition on the aerofoil surface requires

∂G

∂y

∣∣∣∣
y=0

= −eik1x+ik3z x > cF (z). (2.4a)

We also impose continuity of the potential upstream

∆G|y=0 = 0 x < cF (z). (2.4b)

Finally, in case a) the rigid channel walls require

∂G

∂z

∣∣∣∣
z=0,1

= 0, (2.5a)

or case b) the periodic conditions yield

G|z=0 = G|z=1eiαk3 ,
∂G

∂z

∣∣∣∣
z=0

=
∂G

∂z

∣∣∣∣
z=1

eiαk3 , (2.5b)

where α is a real constant enforcing the level of periodicity of the problem, e.g. if α = −1
the solution must be periodic over one serration wavelength or if α = −1/2 the solution
must be periodic over two serration wavelengths. We will restrict results in this paper
to α = −1 however retain the parameter in our calculations to allow a future study on
varying the periodicity of the solution.

To simplify the governing equation, (2.3), we apply a convective transform,

h = G(x, y, z)eik1M
2x/β2

, (2.6)

to eliminate the convective terms. The resulting governing equation and boundary con-
ditions for h(x, y, z) are

β2 ∂
2h

∂x2
+
∂2h

∂y2
+
∂2h

∂z2
+

(
k1M

β

)2

h = 0, (2.7a)

∂h

∂y

∣∣∣∣
y=0

= −ei
k1
β2
x+ik3z x > cF (z), (2.7b)

∆h|y=0 = 0 x < cF (z), (2.7c)
accompanied by the option of a rigid vertical wall condition (case a) or periodic condition
(case b) on z = 0, 1 as before.

This set of equations, (2.7), forms a mixed boundary condition problem in regions
x ≷ cF (z) therefore we wish to employ the Wiener-Hopf technique. However to make
this problem more amenable to the Wiener-Hopf technique we wish to shift the two
regions to some ξ ≷ 0 making them independent of the spanwise variable. To do so we
perform the following transformation of coordinates (adapted from the transformation
used by Envia (1988) for a swept edge);

ξ =

√
1− γ2
β

x− γF (z), (2.8a)

η = y, (2.8b)
ζ = z, (2.8c)

γ =
c√

β2 + c2
. (2.8d)
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The transformed governing equation becomes

∇2
ξ,η,ζh− 2γF ′(ζ)

∂2h

∂ξ∂ζ
+ (dM)2h = γ

(
δ(ζ − 3

4
)− δ(ζ − 1

4
)

)
∂h

∂ξ
, (2.9a)

where we set d = k1/β and use δ(x) to denote the Dirac delta function arising due to
the discontinuities in F ′(ζ) at the peaks and roots of the serration. Note the right hand
side equals γF ′′(ζ)∂h∂ξ , and derivatives of F are formally weak derivatives.

The boundary conditions become

∂h

∂η

∣∣∣∣
η=0

= −eiκξ+ik3ζeiκγF (ζ) ξ > 0, (2.9b)

where κ = d/
√

1− γ2,
∆h|η=0 = 0 ξ < 0, (2.9c)

and either for the rigid walls of case a);(
∂h

∂ζ
− γF ′(ζ)

∂h

∂ξ

)
ζ=0,1

= 0, (2.9d)

or for the periodic conditions of case b);

G|ζ=0 = G|ζ=1eiαk3 ,
∂G

∂ζ

∣∣∣∣
ζ=0

=
∂G

∂ζ

∣∣∣∣
ζ=1

eiαk3 . (2.9e)

We have now completed the formulation of the mathematical model, which we shall
solve in the following section.

3. Analytic Solution
We solve (2.9) by applying a Fourier transform in the ξ variable,

H(λ, η, ζ) =

∫ ∞
−∞

h(ξ, η, ζ)eiλξdξ, (3.1)

and separating the solution H(λ, η, ζ) = Y (λ, η)Z(λ, ζ) with separation constant χ̃. This
results in governing equations

Y ′′ +
(
(dM)2 − λ2 − χ̃2

)
Y = 0, (3.2)

and

Z ′′ + 2iγλF ′(ζ)Z ′ + χ̃2Z = −iλγ
(
δ(ζ − 3

4
)− δ(ζ − 1

4
)

)
Z, (3.3)

for the η and ζ dependencies.
We solve (3.3) by considering an ansatz of the form

Z(λ, ζ) = e−iγλF (ζ) (A(λ) cos(χζ) +B(λ) sin(χζ)) , (3.4)

which is found to satisfy (3.3) when χ2 = λ2γ2 + χ̃2. This yields solutions for Y given by

Y (λ, η) = sgn(η)e−|η|
√

1−γ2
√
λ2−w2

, (3.5)

where

w2 =
(dM)2 − χ2

1− γ2
. (3.6)
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To determine suitable values for χ and a relationship between A(λ) and B(λ) we must
apply the boundary conditions to Z at ζ = 0, 1. These give rise to a modal expansion of
the solution indexed by n. Using the rigid walled condition, (2.9d), yields

Z(λ, ζ) = An(λ)Zn(λ, ζ) = e−iγλF (ζ)An(λ) cos(nπζ), χ = nπ, n ∈ Z, (3.7)

whilst the periodic condition, (2.9e), yields

Z(λ, ζ) = An(λ)Zn(λ, ζ) = e−iγλF (ζ)An(λ)e−ik3αζe2inπζ , χ = ±k3α+ 2nπ, n ∈ Z.
(3.8)

We must now determine the An(λ) using the η = 0 boundary conditions and the
Wiener-Hopf method. We can write the general solution as

H(λ, η, ζ) =
∑
n

An(λ)sgn(η)e−|η|
√

1−γ2
√
λ2−w2

nZn(λ, ζ), (3.9)

where the Zn are either given in (3.7) or (3.8). The upstream continuity condition, (2.9c),
tells us An(λ) is a positive half-Fourier transform only, therefore is analytic in the upper
half λ−plane which we denote by a superscript + (analyticity in the lower half plane is
similarly denoted by a superscript −).

The zero normal velocity condition, (2.9b), upon applying the Fourier transform be-
comes

∂H

∂η
(λ, 0, ζ) = K+(λ, ζ) + U−(λ, ζ) (3.10)

where

K+(λ, ζ) = − i

λ+ κ
eiκγF (ζ)+ik3ζ (3.11)

and U−(λ, ζ) is an unknown function which is analytic in the lower half λ−plane. Using
(3.9) we obtain

−
∑
n

√
1− γ2

√
λ2 − w2

nA
+
n (λ)Zn(λ, ζ) = − i

λ+ κ
eiκγF (ζ)+ik3ζ + U−(λ, ζ). (3.12)

The functions Zn(λ, ζ) are orthogonal over the range ζ ∈ [0, 1] with respect to their
Schwartz conjugates thus we can use them as a basis for expanding our known and
unknown functions. In particular U−(λ, ζ) can be expressed as

U−(λ, ζ) =
∑
n

Dn(λ)Zn(λ, ζ) (3.13)

and we write eiκγF (ζ)+ik3ζ as

eiκγF (ζ)+ik3ζ =
∑
n

En(λ)Zn(λ, ζ). (3.14)

The functions En(λ) arise because of the spanwise form of the normal velocity on the
plate and are given in the Appendix A. If we suppose, like Envia (1988), that the normal
velocity just upstream of the plate must have a similar spanwise ζ dependence, then by
linearity each A+

n and each D−n must contain a factor of En(λ) †.
We factor out En in our Wiener-Hopf equation to obtain

† To assume this we must also neglect any boundary layer effects due to the channel walls at
ζ = 0, 1. We believe this is a suitable assumption as we are interested not in the effects of the
channel walls, but solely in the effects of the serration
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√
1− γ2

√
λ2 − w2

nÃ
+
n (λ) =

i

λ+ κ
+ D̃n(λ), (3.15)

where

Ã+
nEn = A+

n , D̃−nEn = D−n (3.16)

The En(λ) are entire, therefore we can factor them out of the terms A+
n and D−n

without affecting the domain of analyticity.
We rearrange (3.15) to give√

1− γ2
√
λ+ wnÃ

+
n (λ) =

i

λ+ κ

1√
λ− wn

− D−n (λ)√
λ− wn

. (3.17)

The left hand side is analytic in the upper half λ−plane, and the unknown term on
the right hand side is analytic in the lower half λ−plane. By additively splitting the
known term on the right hand side into two functions, F+

n +F−n , that are analytic in the
appropriate half planes we can apply Liouville’s theorem to solve for Ã+

n (λ) giving

Ã+
n (λ) =

F+
n (λ)√

1− γ2
√
λ+ wn

, (3.18)

with

F+
n (λ) =

i

λ+ κ

1√
−κ− wn

, (3.19)

hence

H(λ, η, ζ) = sgn(η)
∑
n

F+
n (λ)En(λ)e−|η|

√
1−γ2
√
λ2−w2

n√
1− γ2

√
λ+ wn

Zn(λ, ζ). (3.20)

We invert the Fourier transform and obtain the far-field (r � 1) acoustics by applying
the method of steepest descents to give

h(r, θ, z) ∼∑
n

eπi/4F+
n (−wn cos θ)En(−wn cos θ)

(1− γ2)3/4
√
π

cos

(
θ

2

)
ei
√

1−γ2wnr

√
r

Zn(−wn cos θ, z)e−iγwn cos θF (z),

(3.21)

where (r, θ, z) are standard cylindrical polar coordinates with origin corresponding to
Cartesian origin x = y = z = 0. For simplicity, we write (3.21) as

h(r, θ, z) ∼
∑
n

Bn(θ, z)
ei
√

1−γ2wnr

√
r

, (3.22)

where we refer to the Bn as the scattered modes with frequencies
√

1− γ2wn. We recall
the definition of wn in (3.6) and see that for sufficiently large n these modes are cutoff,
therefore practically we only need to sum a finite number of terms in (3.22) to calculate
this far-field expression.

To obtain the acoustic pressure, we use the relation

p = −
(
∂h

∂x
− ik1
β2

h

)
e−ik1M

2x/β2

, (3.23)
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Figure 2: Polar plot of 103|p(10, θ, z)|2 compared to the span average, 103Da(10, θ), and
straight-edge, c = 0, results, for blades in a rigid walled channel. In all cases M = 0.3,
k3 = 0, k1 = 10. Serrated blades have c = 1.

which in the far field, r � 1, using (3.22) yields

p(r, θ, z) ∼
∑
n

i

(
k1
β2
−
√

1− γ2wn
)
Bn(θ, z)

ei
√

1−γ2wnr

√
r

. (3.24)

This completes our analytic solution of the scattered field.

4. Results
In this section we present far-field noise results for both the rigid-walled channel and

periodic channel. To do so, we define a spanwise averaged far-field pressure, as

Da(r, θ) =

∫ 1

0

|p(r, θ, z)|2dz, (4.1)

where p(r, θ, z) is given by (3.24). We evaluate this numerically, using Mathematica’s
inbuilt NIntegrate feature. We only sum a finite number of terms from (3.24) corre-
sponding to the cuton terms with wn ∈ R. The number of cuton terms depends on the
gust wavenumber components, k1,3, and the Mach number of the background flow, M .
Figure 2 illustrates a variation in |p(r, θ, z)|2 with spanwise location, z. Different span-
wise locations can produce different directivity patterns at different magnitudes due to
interference between different Bn modes. We see in Figure 2 that the spanwise averaged
pressure recovers the cardiod pattern typically associated with a straight-edge interac-
tion, and we believe the spanwise average gives the best indication of the overall noise
generated in the channel.

The layout of this results section is as follows. First in section 4.1 we replicate the
results from Envia (1988) for a swept blade in a rigid walled channel and compare to our
serrated blade in a channel. Second in section 4.2 we present results for the far-field noise
from a serrated edge in a periodic channel, and we discuss how the far-field results are
affected by the channel wall conditions, with attention given to noise generated by gusts
with both zero and non-zero spanwise wavenumbers, k3. By noting the importance of the
spanwise wavenumber on the far-field sound, in section 4.3 we integrate over a spectrum
of k3 values to compare the far-field power spectral density calculated analytically to
that measured experimentally from (Narayanan et al. 2015). We use the analytic results
to infer noise reduction mechanisms for the serrated leading edge in section 4.4. Finally
in section 4.5 we compare the analytic results against numerical predictions.
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4.1. Spanwise averaged far-field pressure in a rigid walled channel
Here we compare the span averaged directivity for a serrated blade in a channel to a swept
blade in a channel (known from Envia (1988)) in Figure 3. We see that the swept blade
is more effective at reducing the far-field noise than the serration across all frequency
ranges as the gradient of the edges (sweep angle or serration tip-to-root height) increase.
To understand this we consider the individual modes contributing to the solutions in
each case.

In Figure 4 we plot the amplitude of the modes, |Bn(θ, z)|, from (3.24), contributing
to the scattered field for k1 = 50, c = 1. We choose a very high frequency as this permits
more scattered modes. We clearly see the modes for the swept blade are more oscillatory,
thus encounter a greater destructive interference than the modes for the serrated edge.
This is to be expected as the greatest horizontal distance between points for the swept
blade is twice that of the serrated edge (the swept edge effectively has F (z) = z rather
than our definition of (2.1)), and indeed the effective oscillations seen for the swept
blade are twice those seen for the serrated edge (compare Figure 5 to Figure 4a). This
equivalence between the 0th modes does not occur for higher modes, as these account for
more complicated leading-edge geometry effects, and none of the modes are equivalent
if k3 6= 0 as the modal expansions are heavily dependent on k3 (spanwise variations
in the flow expanded in different spanwise bases certainly shouldn’t be equivalent). We
also note that the oscillations in the modes decreases with increasing mode number; the
zeroth mode is the most oscillatory. This is to be expected given that for mid-frequency
interactions (such as k1 = 5) only the zeroth mode propagates to the far field yet we see
a highly oscillatory directivity for large c. Note, the second mode, B2, for case a) has a
coefficient of zero (as indeed do all B2(2n+1) for n = 0, 1, . . . ).

4.2. Spanwise averaged far-field pressure in a periodic channel
We now consider the spanwise average directivity, Da(r, θ), for the periodic case b).
In Figure 6 we plot Da(r, θ) over the same range of frequency and serration height as
Figure 3 when k3 = 0. We see great similarity between the two figures since for low and
mid-range frequencies only the 0th order mode propagates to the far field, and these
contributions are the same when k3 = 0 (they yield the same E0 coefficients). For higher
frequencies (illustrated by k1 = 10), or when k3 6= 0 we expect to see different behaviour
between case a) and b) as the En coefficients contributing to the far-field acoustics are
no longer identical.

In Figure 7 we compare cases a) and b) when k3 6= 0. For the periodic boundary
conditions of case b) a non-zero k3 can cutoff all scattered frequencies wn, but this is not
true in the rigid walled case a). This cutoff is similar to a spanwise-infinite straight edge
and is therefore not specifically a feature of the serration. Note when cutoff the results
only include the first 6 modes. For the cases that are not cutoff, the periodic serrated
edge (case b), shows the ability to increase noise versus a straight edge (c = 0) for large
k1 and similar sized k3 (Figure 7d) when c 6 1, however a reduction of noise occurs for
c > 2. The walled serration, case a), sees little noise reduction in similar circumstances
(Figure 7c), but only exhibits a consistent noise increase with increasing c when k3 is
significantly larger than k1. We note for high k1 and (relative) small k3, such as Figure
7a,7b, the periodic serration results in a slightly greater reduction of far-field noise than
the walled serration.

Overall we see serrations either in a rigid walled channel or periodic channel reduce
gust interaction noise with increasing serration heights. Some increases of noise can also
occur for low tip-to-root heights.
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(d) k1 = 5, swept blade.
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(f) k1 = 1, swept blade.
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(g) k1 = 0.1, Case a).
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(h) k1 = 0.1, swept blade.

Figure 3: Polar plot of the spanwise average directivity, 103Da(r, θ) as given by (4.1), for
r = 10, M = 0.3, k3 = 0. Large dashed c = 0; dashed c = 0.5; dot-dashed c = 1; dotted
c = 2, solid c = 5.
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(b) |B0(θ, 0.5)|, swept blade.
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(c) |B2(θ, 0.5)|, Case a).
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(d) |B2(θ, 0.5)|, swept blade.
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(e) |B4(θ, 0.5)|, Case a).
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(f) |B4(θ, 0.5)|, swept blade.

Figure 4: Polar plot of the magnitude of the nth mode, 104|Bn(θ, z)|, as defined in (3.24),
at mid-span point z = 0.5, for M = 0.3, k3 = 0, k1 = 50.
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Figure 5: Polar plot of 104|B0(θ, 0.5)| for M = 0.3, k3 = 0, k1 = 25 for a swept blade in
a rigid channel.
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(a) k1 = 10.
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(b) k1 = 5.
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(c) k1 = 1.
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(d) k1 = 0.1.

Figure 6: Polar plot of the spanwise average directivity, 103Da(r, θ) as given by (4.1), for
case b) (periodic channel) with r = 10, M = 0.3, k3 = 0. Large dashed c = 0; dashed
c = 0.5; dot-dashed c = 1; dotted c = 2, solid c = 5.

4.3. Far-field PSD for periodic channel
In the previous sections we have considered the far-field noise at fixed k3 values. In this
section we integrate over a spectrum of k3 values to calculate the far-field power spectral
density (PSD) and compare to experimental measurements from Narayanan et al. (2015).
We use an upstream spectrum defined by

Φ(∞)(k1, k3) =
k21/k

2
e + k23/k

2
e

(1 + k21/k
2
e + k23/k

2
e)

7/3
, (4.2)

where

ke =

√
πΓ(5/6)

Γ(1/3)Lt
,

and Lt = 0.6 is the non-dimensionalised lengthscale of turbulence. The far-field PSD is
thus defined as

PSD =

∫ ∞
−∞
|p(r, θ, z)|2Φ(∞)(k1, k3)dk3. (4.3)

Large k3 values have been seen to cut off the scattered field, thus in practice when
numerically evaluating this quantity from the analytic expression for p, we integrate only
over a finite range of k3 corresponding to cut on modes.

In Figure 8 we compare the analytic predictions for the PSD to experimental mea-
surements from Narayanan et al. (2015), taken at θ = π/2, and mid-span z = 0.5. The
serrations correspond to c = 2, 4. We see very good agreement between the analytic
and experimental results at mid-range frequencies, indicating that the simple analytic
model is capturing all of the key physics behind the noise reductions. We do not expect
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(b) k1 = 10, k3 = 1, Case b).
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(c) k1 = 10, k3 = 5, Case a).
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(f) k1 = 1, k3 = 1, Case b).
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(g) k1 = 1, k3 = 5, Case a).
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(h) k1 = 1, k3 = 5, Case b).

Figure 7: Polar plot of the spanwise average directivity, 103Da(r, θ) as given by (4.1), for
r = 10, M = 0.3. Large dashed c = 0; dashed c = 0.5; dot-dashed c = 1; dotted c = 2,
solid c = 5.
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Figure 8: Comparison of far-field PSD for two serrated leading edges. Solid lines give the
analytic results, dashed lines give the experimental measurements.

good agreement at low frequencies due to the dominance of jet noise in the experimental
measurements. Similarly at very high frequencies trailing-edge noise dominates the exper-
imental measurements thus we do not expect agreement for frequencies beyond around
104 Hz.

We note that whilst the straight-edge analytic PSD is non-oscillatory (as expected for
a single scattering location, the leading edge), the serrated PSD results oscillate with
increasing frequency. This indicates the destructive interference effect discussed at fixed
k3 values for the individual modes, Bn, remains true for a spectrum of k3 values.

4.4. Noise reduction mechanisms
The mathematical solution allows us to see that the reduction occurs due to two key
properties: first the interference between terms in the modal expansion coefficients,
En(−wn cos θ), which depend on both wavenumber components k1 and k3, and the tip-to-
root ratio of the serration. Generally destructive interference occur, however constructive
interference can also occur at fixed k3 values and in these cases we see the increase of
overall far-field noise. Second; a redistribution energy towards higher modes for large
serration heights.

We illustrate these two properties for periodic case b) by considering the modal ex-
pansion terms (for simplicity when k3 = 0) given by

En =
4(−1)ns sin

(
s+2nπ

4

)
(s+ 2nπ)(s− 2nπ)

, (4.4)

where s = γ(κ + λ). When evaluating in the far field, we set λ = −wn cos θ, hence
s = k1cβ

−2(1 −M cos θ). The interference is clearly represented by the oscillatory sine
term, which oscillates with varying (reduced) frequency, k1, and with varying tip-to-root
ratio, c.

For small serration heights, s → 0, E0 → 1 and En 6=0 → 0 (which is what would be
obtained if we did a modal expansion when F (z) = 0 for a straight edge). For large s,
when s � m, Em → 0, but for s = O(m), Em 6= 0, thus the low En coefficients tend to
zero whilst the higher modes which do not propagate to the far field do not tend to zero.
Thus there is a redistribution of acoustic energy towards cutoff modes hence the far-field
noise decreases.

This simple formula for the modal terms, (4.4), also allows us to predict the rate of noise
reduction for increasing tip-to-root ratio. In particular, for large serration heights, c� 1,
En ∼ c−1, therefore the far-field noise reduction in decibels is logarithmic, ∼ log10(c),
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which is as predicted via the numerical and experimental investigations of Narayanan
et al. (2015). This additional noise-reduction mechanism (the redistribution of energy
between modes) ensures that even if a constructive interference is occurring in the modal
expansion terms, the overall combination of the two mechanisms leads to one observing
an overall decrease of noise in the far field (except at low values of c for which the
redistribution is less effective).

The modal coefficients arise due to the expansion of the normal velocity on the leading
edge. If the leading edge were straight (spanwise infinite), the expansion of a single
frequency normal velocity would be into a Fourier series with a single viable mode, eik3ζ ,
as if we just factored the ζ dependence from the problem. For a serrated edge, the term
eiκγF (ζ) must be decomposed into the modal basis which is now not a simple Fourier
series, but also dependent on γF (ζ), and requires multiple modes each of which have
coefficients dependent on γ and k3 allowing for individual modes to have a destructive
interference and a redistribution of energy among different modes.

4.5. Numerical results
In addition to the comparison of the analytic predictions to experimental results (figure
8), here we compare the analytic results, for convective gust plate interaction, to numeri-
cal results using an adapted method first presented in Turner & Kim (2017). The original
incident field in Turner & Kim (2017) was that of a line vortex which we anticipate to
produce different final results. It is however expected that given both incident fields rep-
resent upstream turbulence, they will yield qualitatively similar far-field predictions. We
shall first use to obtain numerical results in the two cases of a) a walled channel and
b) a periodic channel; we shall compare qualitatively with the analytic predictions. This
will show a range of different models of turbulence can be used to qualitatively predict
the same effects. Different models of incoming turbulence are beneficial as different ap-
proaches (e.g. analytical or numerical) are best suited to different incident fields. Second
we shall implement a numerical incident gust model in line with the analytical solution
to directly compare the results for periodic channels. In the following sections we briefly
outline the numerical procedure.

4.5.1. Description of the numerical solution approach
The current numerical solutions are achieved by using the same approach published

recently by Turner & Kim (2017). The adjustments made for this particular work are to
change the leading-edge serration geometry from a sinusoidal to a sawtooth, to implement
the periodic condition on the spanwise boundaries, and to alter the incident field. The
current computation employs full three-dimensional compressible Euler equations in a
conservative form transformed onto a generalised coordinate system:

∂

∂t

(
Q

J

)
+

∂

∂ξi

(
F j
J

∂ξi
∂xj

)
= − c0

Lc

S

J
, (4.5)

where c0 is the ambient speed of sound; Lc is a characteristic length scale (Lc = 10, i.e. 10
times the serration wavelength in this paper); and, the indices i = 1, 2, 3 and j = 1, 2, 3
denote the three dimensions. In (4.5), the conservative variable and flux vectors are given
by

Q = [ρ, ρu, ρv, ρw, ρet]
T ,

F j = [ρuj , (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj ]
T ,

}
(4.6)

where ξi = {ξ, η, ζ} are the generalised coordinates, xj = {x, y, z} are the Cartesian
coordinates, δij is the Kronecker delta, uj = {u, v, w}, et = p/[(γ − 1)ρ] + ujuj/2 and
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γ = 1.4 for air. In the current setup, ξ, η and ζ are body fitted coordinates along the
grid lines in the streamwise, vertical and lateral directions, respectively. The Jacobian
determinant of the coordinate transformation (from Cartesian to the body fitted) is given
by J−1 = |∂(x, y, z)/∂(ξ, η, ζ)| (Kim & Morris 2002). The extra source term S on the
right-hand side of (4.5) is arranged to implement a non-reflecting sponge condition which
is detailed in Kim et al. (2010a,b).

The governing equations given above are solved by using high-order accurate numer-
ical methods specifically developed for aeroacoustic simulations on structured grids as
discussed in Turner & Kim (2017). The computational domain is a cuboid that covers
4.5Lc (including the sponge layers) in the upstream, vertical and downstream directions
from the mean leading edge position. The spanwise length is equal to the serration wave-
length. The domain is filled with a structured grid that is uniform in the majority of
the domain except in the sponge zone and the local area nearest to the leading edge. A
high grid density is maintained in the acoustic field in order to accurately capture the
high-frequency components (at least 8 cells per gust wavelength and 10 cells per acoustic
wavelength in the upstream direction at the frequency of k1 = 10 in this paper). In total,
22 million grid cells (768×448×64) are used in the current numerical simulations.

The computation is parallelised via domain decomposition and message passing in-
terface (MPI) approaches. The compact finite difference schemes and filters used are
implicit in space due to the inversion of pentadiagonal matrices involved, which requires
a precise and efficient technique for the parallelisation in order to avoid numerical arti-
facts that may appear at the subdomain boundaries. A recent parallelisation approach
based on quasi-disjoint matrix systems (Kim 2013) offering super-linear scalability is
used in the present paper. The entire domain is decomposed and distributed onto 336
separate processor cores (12× 14× 2 in the streamwise, vertical and spanwise directions,
respectively). The parallel computation has successfully been carried out in the IRIDIS-4
computer cluster at the University of Southampton.

4.5.2. Prescribed spanwise vortex model
The current numerical simulation employs a spanwise vortex model prescribed as an

initial condition, instead of a harmonic vortical gust used for the analytical solution.
This approach has an advantage of having a wide range of frequency responses in a
single simulation as opposed to running multiple separate simulations each for a single-
frequency gust. The vortex model is based on a vector potential function:

ψ(x) =
ε

2π
c0R

( r
R

) 3
2

exp

[
1− 1

2

( r
R

)2]
ez with r =

√
(x− x0)2 + y2, (4.7)

where R is a representative length scale of the vortex and ez is a unit vector in the
spanwise direction. The velocity field is created by taking the curl of the vector potential,
which provides a divergence-free initial condition:

u(x) = ∇× ψ(x) = ψ(x)

{
M∞ +

y

R
σ(x) , −x− x0

R
σ(x) , 0

}
, (4.8)

σ(x) = 1− 3R2

(x− x0)2 + y2
, (4.9)

where x0 is the initial streamwise position of the vortex. The pressure and density are
determined by assuming an isentropic flow with its total enthalpy conserved:

ρ(x) = ρ∞

[
1− γ − 1

2

(
ψ(x)

c0R

)2
]
, p(x) = p∞

[
ρ(x)

ρ∞

]γ
. (4.10)
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Figure 9: Polar plot of the spanwise average directivity multiplied by frequency,
k1Dn(r, θ), found numerically with incident vortex and r = 10, M = 0.3, k3 = 0, c = 4.
Dashed k1 = 1; dotted k1 = 5; solid k1 = 10.

The subscript ‘∞’ denotes the free-stream condition. The free-stream Mach number is
set toM∞ = 0.3 for the current simulations. The free parameters R and ε in (4.7) are set
to R = 0.05Lc and ε = 0.08, which results in the largest vertical velocity perturbation to
reach 5% of the free-stream velocity.

4.5.3. Prescribed gust model
A prescribed periodic gust model is also used in the current numerical simulations in

order to allow for a direct comparison between the numerical results with the analytic
ones in the same scenario. The gust function used in the simulations is identical to
(2.2) where k2 = k3 = A1 = A3 = 0 and A1 = 0.01c0, hence purely vertical velocity
perturbations as a function of k1 (streamwise gust wavenumber). The gust is introduced
into the computational domain through the sponge layer – via the source term S in
(4.5) – in the upstream boundary region, of which the details of the implementation are
described in Kim et al. (2010a,b). Unlike the vortex model introduced above, the gust
model contains only one frequency per each simulation case, hence is not suitable to
discuss the frequency spectra. It is intended to compare the sound directivity at certain
frequencies between the numerical and analytical solutions.

4.5.4. Comparison of numerical and analytical results
We first compare the numerical results using the original vortex model from case a)

to those from case b) in Figure 9, for fixed serration height with c = 4, for varying
frequencies, k1 = 1, 5, 10. We define Dn(r, θ) as the equivalent span-averaged directivity
to the analytically defined Da(r, θ), and multiply by the frequency to ensure details at
k1 = 10 can be viewed. It is clear both case a) and case b) show very similar acoustic
directivities in Figure 9 for k1 = 1, 5, which is as predicted analytically by comparing the
results in Figures 3 and 6. Through the analytic solution we are able to attribute this to
the fact that at these frequencies there is only one scattered mode, and for zero spanwise
wavenumber these modes are identical for cases a) and b). For k1 = 10 the directivities
differ, also as predicted by the analytic results. Evident too in Figure 9 is the trend of
increasing k1 increasing the modulation of the far-field, which is found analytically.

We next directly compare the numerical and analytical directivity patterns for incident
gusts on a logarithmic scale by plotting 10 log10

(
108Dn,a(r, θ)

)
in Figure 10. The value of

108 is included to ensure all plotted values are positive and visible. We see good agreement
between the results, but some discrepancies at larger frequencies which we attribute to
the non-linear effects present in the numerical model; it is known from Turner & Kim
(2017) that horseshoe vortices form at the leading edge serration when exposed to an
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Figure 10: Polar plot of the (scaled) logarithmic spanwise average directivity,
10 log10

(
108Dn,a(r, θ)

)
calculated numerically (solid) and analytically (dashed), for dif-

ferent serration height parameters; c = 0 (black), c = 2 (red), c = 4 (blue).

unsteady incident field, and these effects only occur for non-zero serration heights. These
horseshoe vortices modify the strength of the acoustic sources at the tip and root of
the serration, which in turn causes the tip-and-root interference to be less effective (and
therefore numerically there is a disappearance of the perfect cancellations present at
certain observer angles in the analytic solution of the far-field pressure). This non-linear
effect is not present in the linear analytic model. These non-linear effects become larger
for larger values of k1 and c.

Finally, to compare the two results over a wider range of frequencies, we now consider
the far-field sound pressure level (SPL) measured in dB averaged over a cylinder at radius
r = 10, as a function of reduced frequency k1. This is defined as

SPL = 10 log10

(
1

π

∫ π

0

∫ 1

0

|p(10, θ, z)|2dz dθ
)
. (4.11)

We integrate over θ ∈ [0,π] to capture all oscillatory effects of the far-field directivity
which we know are affected by non-linear features in the numerical results. Analytically
we restrict to k3 = 0 (and thus do not include a turbulent spectrum). We compare to
the numerical line vortex model which has no a spanwise variation in the incident field.
We see very good agreement between the analytic and numerical results in Figure 11.
The very low frequencies do not agree well as the method of steepest descents required
k1r � 1, and this assumption breaks down for small k1. As expected, the highest c
results (c = 8) compare least favourably, particularly at high frequencies, again due to
the influence of non-linear effects accounted for in the numerical model.
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Figure 11: Comparison of the k3 = 0 SPL calculated numerically for a line vortex (solid)
and analytically for an incident gust (dashed), for c = 0 (black), c = 2 (red), c = 4 (blue),
and c = 8 (magenta).

5. Conclusion
This paper has presented an analytic solution for the sound generated by a convective

gust interacting with a flat plate with a serrated edge. The plate is in a channel with
either rigid walls, or a periodic condition such that the result mimics that of a spanwise
semi-infinite blade with leading-edge serration. The solutions follow the method used by
Envia (1988) who considered a swept blade in a channel with rigid walls and employed
the Wiener-Hopf technique.

The solution both for rigid or periodic walls predicts overall a decrease in far-field
acoustic pressure as the height of the serration in increased, however for low frequency
incident gusts the reduction of noise is much smaller than at higher frequencies, as is
known from experimental, numerical and analytical results (Chaitanya et al. 2016; Haeri
et al. 2015; Lyu & Azarpeyvand 2017). There is little difference between the rigid or
periodic cases when the gust has zero spanwise wavenumber, k3 = 0, indicating the key
parameters are the gust streamwise wavenumber, k1, and the greatest distance between
points along the leading edge, namely the tip-to-root distance, c/2. All of these features
are also replicated in numerical results. The numerical method shows good agreement for
the far-field SPL verses frequency, k1, for a range of serration heights, c. This indicates the
key noise-reduction mechanisms can be appropriately modelled by the simple analytical
solution which uses an incident gust.

The analytical solution relies on a modal decomposition of the incident and scattered
fields, however this is not simply a Fourier series expansion, but a modal expansion which
depends intrinsically on the leading-edge geometry. Because of this choice of modal basis,
the expansion coefficients can be calculated analytically thus the acoustic pressure can
be computed for any parameters incredibly quickly; span-averaged directivities can be
plotted in approximately 6 seconds on a standard 4-core desktop computer (via Math-
ematica). The modal coefficients also shed light on the mechanisms behind the noise
reduction as we see they lead to two key features. First, the coefficients are oscillatory
indicating interference in the acoustic pressure in the far field. This interference com-
monly is destructive and reduces the scattered noise, but in some cases of non-zero k3
has been seen to increase the scattered noise (i.e. is constructive). Second, as the tip-to-
root distance of the serration, c/2, increases, the expansion coefficients vary, with lower
modes tending to zero. Higher modes do not tend to zero but are cutoff. Thus increas-
ing the tip-to-root distance redistributes acoustic energy from the lower (cuton) modes
to higher (cutoff) modes hence significant far-field noise reductions can be achieved for
large tip-to-root distances. This second noise reduction mechanism means that even if a
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constructive interference were to occur, an overall noise reduction would be observed in
the far-field.

The rate at which the cuton modes decrease with increasing serration height is pro-
portional to 1/c, thus it is predicted as c increases the reduction of noise in decibels is
logarithmic, ∼ log10(c), as alluded to in Narayanan et al. (2015). A logarithmic noise re-
duction dependency indicates that continuing to increase the tip-to-root serration height
lessens the level of noise reduction. Therefore, since increasing the tip-to-root height
decreases aerodynamic performance, for a given application of serrated leading edges,
it is likely an optimum serration height yielding a significant noise reduction could be
determined for a prescribed limited decrease of aerodynamic performance. However ob-
taining further noise reductions, whilst possible by further increasing the tip-to-root
height, would be too costly on aerodynamic performance. Other leading-edge designs,
such as the hook structures from (Chaitanya et al. 2016) (comprised of a sawtooth serra-
tion with an additional v-shaped cut in the root), could allow the same tip-to-root ratio
as a simple serration, but greater aerodynamic efficiency due to a greater leading-edge
surface area. Therefore much work is still needed to consider more complicated leading-
edge geometries and the potential for optimal noise reduction with minimal aerodynamic
impact.
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Appendix A. Expansion Coefficients, En(λ)

The expansion coefficients are obtained by

En = ε−1n

∫ 1

0

eiκγF (ζ)+ik3ζZn(λ̄, ζ)dζ, (A.1)

where the overbar denotes the complex conjugate, and εn are normalisation coefficients

εn =

∫ 1

0

Zn(λ, ζ)Zn(λ̄, ζ)dζ. (A.2)

When Zn is given by (3.7) (case a),

E0 =
2eik3/2

(k3 − s)(k3 + s)

(
(k3 − s) sin

[
k3
2

]
+ 2s sin

[
1

4
(k3 − s)

])
, (A.3)

En =
e−

is
4

((k3 + s)2 − n2π2)((k3 − s)2 − n2π2)

[
2e

is
4

(
1− (−1)neik3

)
(k3 + s)((k3 − s)2 − n2π2)

+ 4is(k23 − s2 + n2π2) cos
[nπ

4

] (
e
i
4 (k3+2s) − (−1)ne

3ik3
4

)
+8k3nπs sin

[nπ
4

] (
e
i
4 (k3+2s) + (−1)ne

3ik3
4

)]
, (A.4)

where s = γ(κ+ λ).
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When Zn is given by (3.8) (case b),

E0 =
2eiq/2

s2 − q2

(
2s sin

[
s− q

4

]
+ (s− q) sin

[q
2

])
, (A.5)

En =
−ie−is/4

(s+ 2nπ− q) (s− 2nπ + q)

(
2inse3iq/4

(
−1 + ei(s+2nπ−q)/2

)
+ eis/4(eiq − 1)(s+ 2nπ− q)

)
,

(A.6)

where q = k3(1 +α). We note that all singularities in these En are removable, thus there
are no poles.
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