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ABSTRACT: Mitigation plans to combat climate change
depend on the combined implementation of many abatement
options, but the options interact. Published anthropogenic
emissions inventories are disaggregated by gas, sector, country,
or final energy form. This allows the assessment of novel energy
supply options, but is insufficient for understanding how options
for efficiency and demand reduction interact. A consistent
framework for understanding the drivers of emissions is therefore
developed, with a set of seven complete inventories reflecting all
technical options for mitigation connected through lossless
allocation matrices. The required data set is compiled and
calculated from a wide range of industry, government, and
academic reports. The framework is used to create a global
Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is
demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an
example showing how the “technical potentials” of a set of separate mitigation options should be combined.

■ INTRODUCTION

The need for urgent large-scale action to counter climate
change is well established, but anthropogenic emissions
continue to rise ahead of the worst IPCC scenarios.1 The
political and economic difficulties of implementing change are
widely discussed, but even agreeing on technical implementa-
tion plans remains problematic as the mitigation potential of
particular options are often overstated and considered in
isolation. In particular, attention to date has largely focused on
energy supply, but increasingly, the difficulty of delivering such
supplies at scale and in time is becoming clear. For example:
MacKay2 demonstrates that deployment of renewable energy in
the UK is likely to be constrained by a available land; Smil3

argues that “The speed of transition from a predominantly
fossil-fuelled world to conversion of renewable flows is being
grossly overestimated”; the International Energy Agency
(IEA)4 suggests that deployment of clean energy technologies
and carbon capture and storage (CCS) is lagging behind critical
projections. This lack of progress will cause a shift of attention
toward demand-side options. However changes to demand,
whether through efficiency measures, structural change,
alternative service delivery, or changes in behavior, require
wider changes in the energy and agricultural systems.
Mitigation options are evaluated through predictions of their

effect on an inventory of emissions. An inventory of emissions
is defined here as an additive decomposition of total annual
anthropogenic emissions. To reveal the range of inventories in
current use, Figure 1 shows how global anthropogenic
greenhouse gas (GHG) emissions data is collected, estimated
and reported at present.5−13

Energy related emissions are predicted from fuel use data, as
reported to international statistical agencies by national
agencies based on reports from companies in the main energy
using sectors. Emissions from nonenergy related sources are
estimated based on other “activity data” gathered by relevant
international organisations. Primary data sources for nonenergy
emissions include expert estimates and use of satellite imaging.
GHG data sets often cross-reference one another to comple-
ment information omitted in their own data gathering and the
Figure 1 shows how key data sets have different scopes.
Four parameters define the scopes of existing GHG emission

data sets: (i) the range of GHGs included (CO2, CH4, N2O,
and three families of F-gases); (ii) the range of fuels included,
or in case of nonenergy emissions, the range of other sources;
(iii) the economic sectors that reported fuel use; (iv) the
country in which emissions were released. Existing data sets
therefore provide four possible GHG inventories, one for each
of these parameters. These inventories can be used to
determine priorities and assign responsibility, but cannot be
used to design mitigation plans or evaluate demand-side
changes, which depend on the interactions between different
inventories.
Interactions between three of these inventories (two different

economic sector classifications and GHGs) have previously
been connected in an informative Sankey diagram created by
the World Resources Institute (WRI).10 However, the design of
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this diagram, which is constrained by the structure of existing
emissions inventories, reveals options only by economic sector.
This usefully clarifies one form of responsibility, but the
development and evaluation of comprehensive mitigation plans
requires also that inventories be organized, structured, and
connected to reflect service demand, technology choice and
performance, fuel selection, land-use, and management
decisions.
Without this structuring, a number of problems can arise:

• The drivers of demand for the activities that lead to
anthropogenic emissions are related to final services
(such as warmth, commuting or food) which in turn arise
from the use of equipment. Without a consistent
inventory of emissions associated with these services,
predictions of the relative importance of different
demand reduction options may be confusing or
inaccurate. For example: cities are responsible for
approximately 70% of GHG emissions;14 17−32% of
GHG emissions are related to the production of food;15

the use of buildings accounts for 33% of GHG
emissions.16 Although, each of these statistics is true,
the allocation of emissions to final services can be
completed in such a way that a specific issue seems more
important.

• A mitigation plan comprises many actions whose
combined effect can only be predicted within a consistent
framework. This may not happen if direct, indirect,
fugitive, and non-CO2 emissions are incorrectly sepa-
rated; changes at a product level are scaled incorrectly to
national or global levels; the effect of a combination of
actions is anticipated to be the sum of their effects if
applied separately. For example, marginal abatement
curves may fail to consider interactions, use inconsistent
baselines and lead to double counting,17 and the difficulty
of defining boundaries for life cycle assessment studies
leads to both double-counting and the omission of
emissions.18

• The manner in which emissions inventories are
structured determines which technical opportunities

and potentials for mitigation they can reveal. For
example, technical efficiency studies can only be made
with an inventory of energy-using devices, and demand
reduction can only be evaluated relative to final services.
A study of integrated models used to anticipate transition
pathways and future equilibria arising from different
energy or carbon related price signals reports that at least
six different approaches are in use for assessing technical
mitigation opportunities.19

• Misinformation about mitigation options which influen-
ces public perception, business and policy decision
making, could be reduced by a consistent presentation
of all emissions. For example, efforts aimed at promoting
compact fluorescent light bulbs while prominent in
public consciousness, have little overall impact on global
emissions.20

This paper seeks to address these problems by developing
and presenting a comprehensive picture of global anthro-
pogenic GHG emissions, including the required transforma-
tions between a sufficient set of inventories, to allow the design
of credible mitigation plans. The resulting data structure will be
used to demonstrate how the limitations of existing approaches
may be overcome.

■ MATERIALS AND METHODS

Demand for the activities that lead to anthropogenic emissions
arises out of a need for a variety of services, driven in turn by
population and wealth. The services arising from energy are
provided by economic sectors (businesses) and technically
delivered through use of equipment, which contains a powered
device that converts a “final” form of energy to low-grade heat
in exchange for service provision. The final energy is created by
the energy industry from a fuel, whose combustion leads to
emissions. (Some industrial processes also lead to “process
emissions” related to chemical reactions.) The services arising
from agriculture and other land-use are also provided by sectors
(including subsistence agriculture) and delivered from an
allocated area of land. The way in which this land is managed

Figure 1. The accumulation of emissions data into global inventories.
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drives the release of emissions, either directly (for example by
forest clearing) or via biological processes. Thus

→ → → → → →
energy

service
sector equipment device

final
energy fuel emissions

(1)

→ → → → →land
service

sector land
use

land
management

processes emissions

(2)

Each stage of the chains in [1 + 2] defines a complete
inventory of emissions (e.g., Va), which should reflect decision
making through an appropriate level of disaggregation.
Adjacent inventories (e.g., Vb) must therefore be connected
by transformations (Vb = [A]·Va) which fully reallocate the
same total emissions, so the rows of A sum to unity. Existing
data do not match the inventories required in [1 + 2], and the
necessary transformation matrices have not previously been
created.
The most current and detailed data on global energy-related

CO2 emissions is provided by the IEA for 2010,6 and is
organized by fuels and sectors. In parallel, the EDGAR v.4.2
2010FT data set8 includes, in addition, inventories for GHGs
omitted from the IEA data set (CH4, N2O and F-gases) and
also fugitive and transformation emissions. However the level of
disaggregation of data into fuels and sectors is not as detailed as
in the IEA data set. Supporting Information (SI) Table S1
combines the IEA and EDGAR data sets and allocates these to
each of the IEA sectors. The result is then reorganized in SI
Table S2 into the sector inventory proposed here, which
equates to the second stage of chain [1]. Judgement is required
to select the size of each inventory to reveal useful detail
without creating unhelpful complexity, and this analysis has
aimed to define approximately fifteen elements per inventory
while minimizing the “other” category.
The transformation matrices from sectors to equipment,

devices and final energy are closely related to those used by
Cullen and Allwood20 to allocate responsibility for energy use.
The matrices are provided as SI Tables S3−S7 with detailed
footnotes showing how each allocation ratio was derived from
16 sources5,6,8,11,20−32 using triangulation from multiple sources
where possible. In some cases, regional or national data, often
from developed countries, have been scaled up where global
figures were unavailable. The data sources used to create the
allocations in SI Tables S6−S7 included emissions by final
energy and by gas, which have been used as part of the
triangulation.
The structure of the chains is linear, but this requires

decisions about some coupled connections in the data, as
shown in the following three examples: (i) electricity
generation requires a conversion of energy that takes place in
a device and equipmentin coal burners, oil burners, and gas
turbinesbut these are not shown on the diagram; (ii) steel for
manufacturing trucks was allocated to freight service, but freight
(for delivery of iron ore) was not allocated to steel; (iii) biofuel
use should be counted as part of both land and energy systems,
but to avoid double counting, the responsibility of biofuels for
land-use change and fertilizer use was traced through its use in
equipment and devices in the energy system and then
connected to the source of its emissions in the land-use system.
SI Tables S1−S7 include rows showing “emissions in energy

from nonfossil fuel sources”, which are related to land-use or
industrial processing, and explained in more detail in SI Tables

S8−S10, derived from nine sources,8,33−36,38−41 as described
below.
Nonenergy related emissions from industrial production

include the release of CO2 during calcination of limestone for
lime and cement production, non-CO2 emissions in nonferrous
metals production, oxidation of hydrocarbons when not used
for energy purposes and F-gas leakages. Allocation of these
emissions to sectors is shown in SI Table S8, based on
EDGAR8 and U.S. Geological Survey lime statistics.33

The most consistent 2010 emissions data source related to
nonenergy GHG emissions is the EDGAR data set.8 U.S.
Environmental Protection Agency13 also offers a source of data
for non-CO2 emissions in agriculture and other sectors, sourced
where possible from national submissions of emission data sets
to UNFCCC. However, the most recent data is for 2005 and
excludes several of the nonenergy CO2 emissions covered by
EDGAR. SI Table S9 therefore shows the transformation of
EDGAR data into the land-management inventory of this
analysis. EDGAR uses a proxy for land-use change emissions,
based on satellite-derived fire data sets. This allows reporting of
estimates for recent years, but falls short of capturing the full
complexities of land-use change, better represented in estimates
by Houghton.12 SI Tables S9−S13 define the allocation
matrices to transform land system emissions from the
EDGAR data set into land- management, land-use, sector
emissions, biological processes where appropriate and final
emissions. These tables draw on data from six sour-
ces,34−36,39−42 with one-hundred year global warming poten-
tials from the fourth IPCC Assessment Report used to calculate
emission equivalents.43

Three different approaches were compared to estimate land-
use change emissions associated with biofuel use. First, the use
of indirect land-use change emissions implied by Edwards et
al.,37 in conjunction with the expansion of biofuel production
between years 2009 and 2012, based on IEA data5 gives the
highest estimate of 0.7 PgCO2. Second, the calculation of direct
combustion emissions from biofuels with no discount for short
cycling (biogenic) carbon, as previously suggested by Haberl et
al.,38 gives an estimate of 0.15 PgCO2. Finally, a similar estimate
is obtained if the total land-use change emissions are divided
between total global agriculture land-uses. Therefore, 0.15
PgCO2 was taken as the mean estimate.
The selection of final services is based on a well-established

body of research that attempts to measure energy and carbon
emissions per unit output of final service. Described as physical-
thermodynamic indicators by Patterson44 and specific energy
consumption (SEC) in the inverse form by Phylipsen et al.,45

the approach requires the final service to be measurable in
physical units, such as tonnes of steel or kilometres of travel.
Schenk and Moll46 argue that the use of physical units leads to
a better understanding of energy demand, although in practice
the availability of data often leads to the specification of final
services in a mix of physical and monetary units, as proposed by
Farla and Blok47 and Schipper et al.48 In contrast, the UK
Carbon Trust49 attributes UK carbon emissions from fuels to
services through six “carbon accounts”, ending with a set of
“high level consumer needs” which includes categories such as
“recreation and leisure” which are difficult to measure in
physical units.
In this paper, final services are selected to mark the start of

each chain [1 + 2] and each service can be quantified using
physical units. The emissions invested to create industrial
materials and food are treated as embodied and allocated onto
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final services, as is land-use change. SI Table S14 defines this
allocation based on seven sources,50−56 mostly trade associa-
tions, such as World Steel Association, and statistical agencies,
who report production volumes or market shares. The
inventory of Final Services is disaggregated into the categories
defined in Table 1, which includes an estimate of current global
service demand quantified in physical units, based on 6
sources.20,39,54,57−59 SI Tables S15−S18 describe the disag-
gregated categories for all the inventories across chains [1 +
2].60,61

■ RESULTS AND DISCUSSION
The inventories and transformations defined by the structure of
the chains [1 + 2] have been used to create the Sankey Diagram
of Figure 2, which demonstrates how service demand on the
left eventually drives emissions on the right, via a combination
of business activity, technical systems, energy or land selection
and conversion. The lines on the diagram are clustered into
groups frequently used in policy analysis with color used to
emphasize key relationships.
The diagram draws attention both to scales of responsibility

and opportunities for improvement. The combination of
energy, process and land-related emissions emphasizes the
significance of Food Production and Construction as drivers of
global GHG emissions, among which cement, livestock, rice
paddy fields, and fertilizer make notably large contributions.
(Emissions associated with fertilizer arise both from its energy-
intensive production within the chemical industry and from
N2O release from its application shown in the land-manage-
ment inventory.)
The figure demonstrates that improving the efficiency of

electricity generation would be an effective technical
innovation, however this has already had considerable
attention, while the demand for energy in buildings and the
production of a few basic materials both cause greater
emissions, and could be addressed without innovation by
under-deployed solutions for building envelopes62 and material
efficiency.63 Treating industrial materials as services gives some
indication of the relative effects of use and embodied emissions,
although the use-phase emissions relate to a total stock of
products, not just one year’s additions to stock. Emissions

allocated to several of the sectors in Figure 2 are higher than in
some previous reports, due to the inclusion of indirect
emissions associated with upstream fuel conversions, fugitive
emissions, and industrial processing. The new data structure
presents emissions inventories data in a way which is similar to
the inner structure of some energy system models and
integrated assessment models. These models frequently include
energy transformations from fuels to devices, sectors, and
energy demands. The diagram of Figure 2 shows these
transformations in a fully transparent way.
To demonstrate the application of the new data structure,

Figure 3 compares estimated per-capita emissions of global
average, U.S. and Chinese consumers based on their demand
for the physical units of service in Table 1. The left-hand bar of
Figure 3 is identical to the left side of Figure 2, scaled
only by global population. Data from 21 referen-
ces5,6,20,21,26,27,39,54,57,59,64−72 were used to estimate per capita
service demand in the U.S., China, and the world in SI Table
S19. Final service demands for travel, illumination, communi-
cation, food, and waste were calculated using either directly
recorded country-based emissions or country-based emissions
intensities, whereas country-level data for final energy use was
used to calculate thermal comfort and washing. For industrial
activities the analysis is more complicated because emissions
embodied in products must be reallocated when products are
traded between countries. Trade data shows that for cement
production, food processing, chemicals, paper, other industry
and new settlements, production is mostly indigenous (i.e.,
emissions occur in the country where these products are
consumed) so the trade issue is avoided. For steel, aluminum,
textiles, and food, we correct for international trade by using
country-based emissions intensities for indigenous production
consumed within the country and an average global emissions
intensity for imported products, before reallocating these
materials to final service demand in SI Table S20. The physical
trade statistics used do not account for trade in final products
made of steel, aluminum and plastics, an area where further
research is required. Figure 3 predicts that emissions per person
in the U.S. are more than two-and-a-half times those in China.
Travel services and services delivered in buildings (such as
washing and thermal comfort) drive most of the additional

Table 1. Flows of Emissions Included in Each of the Final Services

final service included emission sources physical units (annual flows)

travel passenger transport for holiday, visiting family, shopping, sport; associated material production (steel, aluminum,
plastics) and manufacturing of cars

16 × 1012 passenger kilometres

commuting passenger transport for work, business and education; associated material production (steel, aluminum, plastics) and
manufacturing of cars

6 × 1012 passenger kilometres

freight freight transport fuel use; material production (steel, aluminum, plastics) and manufacturing of trucks and ships 47 × 1012 tonne kilometres

washing hot water detergents, cosmetics and pharmaceuticals, incl. some packaging; energy use in washing machines and
dishwashers; manufacturing of washing machines and dishwashers

1.5 × 1012 m3K (hot water)
2.8 × 1018 Nm (mechanical work)

thermal comfort heated and cooled space 30 × 1015 m3K (hot/cold air)

illumination energy used by light devices 480 × 1018 lm.s

communication energy in use and manufacturing of electronics; writing and printing paper 1.80 × 1021 bytes

textiles textile industry energy use; production of polymer fibres; fertilizer for cotton (energy and N2O emissions) 71 × 106 tonnes (fiber)

industrial
equipment

production of some steel and aluminum; energy use by the industrial machines production sector 1.9 × 106 tonne (steel/aluminum)

construction of
buildings and
infrastructure

production of steel, aluminum and chemicals for construction and furniture uses; cement production; energy use in
construction and quarrying industries; energy use in the wood industry incl. land-use change emissions; emissions
from vegetation clearing for settlements

15 × 109 m3MPA2/3

food energy use for cooking; energy cost of fertilizer production (part of the chemical industry); energy use in the food
processing industry; energy use in chemical, aluminum and paper industries associated with food and drink
packaging; energy use on farms (tractors, irrigation systems); N2O emissions from fertilizer use; CH4 from rice,
livestock and manure management; land-use change for agriculture

30 × 1018 J (food)

waste CH4 emissions from waste and wastewater 840 × 106 tonnes
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emissions in the U.S., whereas Chinese per capita demand for
steel and cement currently exceeds that of the U.S. Using this
approach provides a physical-based alternative to input-output
based methods used for allocating responsibility to con-
sumption at a national level, where the conversion from
monetary to physical units can lead to errors.73

A mitigation plan comprises many actions whose combined
effect can only be predicted within a consistent framework, but
this is not always achieved. For example, the technical options
that make up a marginal abatement curve are typically only
considered in isolation, leading to overestimates of the
abatement potential, and the focus on individual products in
life cycle assessment requires definition of an arbitrary
boundary around the impacts associated with a single product.
The structure of Figure 2 allows resolution of these

problems. To demonstrate this, Figure 4A is an extract from
Figure 2, reporting the emissions associated with commuting.
Table S21 presents five illustrative options to mitigate these
emissions: (i) car sharing, (ii) a switch to train, (iii) car light-
weighting, (iv) technology switch to diesel, and (v) engine

improvements. Each of these illustrative options has the
potential to reduce 20% of car commuting emissions if applied
alone (with the exception of technology switch to diesel, where
the potential is 12%). These individual potentials are smaller if
compared to overall commuting emissions due to issues
associated with embodied emissions and trade-offs. For
example, if passengers take the train instead of driving, the
emissions from trains will rise.
Figure 4 shows how the underlying interactions between

these options affect the combined mitigation potential.
Applying all the abatement options from SI Table S21 gives a
combined mitigation potential of 51%, much less than a simple
sum of individual potentials. A demonstration of a combined
mitigation potential in SI Table S21 requires an arbitrary order
of implementation, while Figure 4A and B better illustrates the
dynamic relationships and trade-offs between mitigation
optionsas one option is implemented the baseline for all
the other emission changes. If multiple options are considered,
it is not possible to define the technical mitigation potential of
any option separately, as it is conditional on a particular state of
the system. By combining direct and indirect emissions and
always considering the total set of global emissions, the
structure of Figure 2 provides a self-consistent allocation of
emissions to the chosen set of final services. It could therefore
be interpreted as a set of high-level life cycle analyses without
double-counting or omissions due to imperfect selection of the
boundaries of analysis.
Designing and evaluating emissions mitigation plans remains

an art as well as a science. There are two key sources of
uncertainty in the data used in this analysis. As Figure 1 shows,
all national or international emissions data are estimates not
measurements. Some ranges of uncertainties for these estimates
are provided in the literature9,43,74 giving high confidence
(±5%) in estimates of CO2 emissions from fossil fuels and
cement production but high uncertainty for emissions from
land-use change (±70%).43 These estimated uncertainties have
been applied in Table 2, to make confidence predictions for the
estimates of emissions associated with final services in this
analysis. A second source of uncertainty relates to allocations of
emissions from one inventory to another. Typically, these
uncertainties are larger for inventories with fewer available data,

Figure 3. Per capita emissions in different countries derived from
physical service demand.

Figure 4. The technical potentials of a portfolio of options to mitigate the emissions of commuting.
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in particular for Final services, Equipment and Device
inventories.
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