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Outlier analysis for a silicon nanoparticle

population balance model

Sebastian Mosbacha, William J. Menza, Markus Krafta,b,∗

aDepartment of Chemical Engineering and Biotechnology, University of Cambridge
New Museums Site, Pembroke Street, Cambridge CB2 3RA, United Kingdom

bSchool of Chemical and Biomedical Engineering, Nanyang Technological University
62 Nanyang Drive, Singapore 637459, Singapore

Abstract

We assess the impact of individual experimental observations on a multivari-

ate population balance model for the formation of silicon nanoparticles from

the thermal decomposition of silane by means of basic regression influence

diagnostics. The nanoparticle model is closely related to one which has been

used to simulate soot formation in flames and includes morphological and

compositional details which allow representation of primary particles within

aggregates, and of coagulation, surface growth, and sintering processes. Pre-

dicted particle size distributions are optimised against 19 experiments across

ranges of initial temperature, pressure, residence time, and initial silane mass

fraction. The influence of each experimental observation on the model pa-

rameter estimates is then quantified using the Cook distance and DFBETA

measures. Seven model parameters are included in the analysis, with five

Arrhenius pre-exponential factors in the gas-phase kinetic rate expressions,

and two kinetic rate constants in the population balance model. The analysis
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highlights certain experimental conditions and kinetic parameters which war-

rant closer inspection due to large influence, thus providing clues as to which

aspects of the model require improvement. We find the insights provided can

be useful for future model development and planning of experiments.

Keywords: Silicon, nanoparticles, population balance, regression influence

diagnostics

1. Introduction

Gas-phase synthesis in hot-wall reactors is a common way in which sili-

con nanoparticles are manufactured. Shock-tubes are another set-up in which

especially the early phase of formation of these particles can be studied. Typ-

ically, these synthesis processes begin with silane (SiH4) as a precursor, which

is transformed into the eventual nanoparticle product at high temperatures.

A variety of models have been proposed to describe this transformation [1].

These models usually contain unknown or low-confidence (kinetic) parame-

ters with large uncertainties associated to them. Systematic parameter esti-

mation techniques can then be employed to arrive at better values for these

quantities, based on available experimental data. One of the most elementary

parameter estimation methods is least-squares optimisation, i.e. minimis-

ing the distance between experimental observations and model prediction as

measured by a sum-of-squares objective function. The result of such an op-

timisation is a set of values, called (‘best’) estimates, for the selected model

parameters. Not all experimental data points may equally inform the optimal

value of the parameters, though – different parameters may be determined

to a varying extent by different observations. In order to assess which ex-
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periments are the most relevant in the optimisation, one can conduct what

may be called an omission-based regression influence analysis [2]: Firstly, op-

timise the model against the full data set, and then repeat the optimisation

with one of the data points removed, for each of the data points. Based on

the difference between the parameter estimates of the full optimisation and

the optimisations with an omitted data point, it is then possible to quantify

the influence of individual observations on the model overall or on individ-

ual parameters. Several such measures have been proposed [3, 4], the most

widely-used one being Cook’s distance [5], and applied to detect influential

data points, high-leverage points, and statistical outliers [6, 7].

An alternative approach to quantifying influence of experimental obser-

vations is uncertainty propagation [8], part of which is concerned with how

experimental measurement errors propagate into model parameters and re-

sponses. Some of these methods allow calculating the relative contribution

of each data point (and its error bar) to the uncertainty in each of the pa-

rameters. In particular, the Data Collaboration framework [9] exploits the

pairwise consistency of data set units to identify outliers.

Yet another approach, called perturbation of the optimum, has been de-

veloped for constrained optimisation [10, p. 34] and unconstrained least-

squares optimisation [11], which has found application in chemical kinet-

ics [12, 13, 2]. These methods allow calculating sensitivities of parameter

estimates with respect to any other quantity in the objective function (or

constraints), including in particular experimental data.

The purpose of this paper is to conduct an omission-based outlier analysis

of a selection of experimental data for silicon nanoparticles produced from

3
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a silane precursor in hot-wall flow reactors and shock tubes which are mod-

elled using a detailed population balance model. A main aim is to identify

those experimental conditions which are the most challenging for the model.

We apply a technique established in the field of regression influence diag-

nostics to quantify the influence of individual experimental observations on

kinetic parameter estimates for this purpose. We determine the influence of

the measurements on estimates of some Arrhenius pre-exponential factors in

the gas-phase kinetic mechanism as well as the population balance model for

the particle phase. Using a threshold for the influence values, specific mea-

surements are then highlighted for further analysis, providing further insight

into the model and potential improvements, as well as suggestions for future

experiments.

2. Background

We firstly describe the model, provide some background on omission-

based regression influence diagnostics, and how it can be used to identify

outliers.

2.1. Population balance model for silicon nanoparticle formation

We briefly summarise the main features of the model here. Full details can

be found in [1], and further in [16, 17, 18, 19, 20], noting that a closely related

model has been applied to soot formation in flames (see for example [21] and

references therein). It consists of two main parts, a gas-phase model, and a

particulate phase model.

4
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Table 1: The gas-phase kinetic mechanism. Values in bold correspond to parameters

chosen for the influence analysis. Units for the Arrhenius pre-exponential factors are cm,

mol, and s.

Idx. Reaction A β [-]
E [kcal/

Ref.
mol]

1
SiH4 (+M)
SiH2 + H2 (+M) 3.12×109 1.7 54.71 [14]

Low pressure limit: 3.96×1012 0 45.10 [15, 1]1

2
Si2H6 (+M)
SiH4 + SiH2 (+M) 1.81×1010 1.7 50.20 [14]

Low pressure limit: 5.09×1053 −10.37 56.03 [14]

3
Si2H6 (+M)
Si2H4B + H2 (+M) 9.09×109 1.8 54.20 [14]

Low pressure limit: 7.79×1040 −7.77 59.02 [14, 1]2

4
Si3H8 (+M)
SiH2 + Si2H6 (+M) 6.97×1012 1.0 52.68 [14]

Low pressure limit: 1.73×1069 −15.07 60.49 [14]

5
Si3H8 (+M)
Si2H4B + SiH4 (+M) 3.73×1012 1.0 50.85 [14]

Low pressure limit: 4.36×1076 −17.26 59.30 [14]

6
Si2H4B (+M)
Si2H4A (+M) 2.54×1013 −0.2 5.38 [14]

Low pressure limit: 1.10×1033 −5.76 9.15 [14]

7
Si2H4B + H2
SiH4 + SiH2 9.41×1013 0 4.09 [14]

Reverse coefficients: 9.43×1010 1.1 5.79 [14]

8
Si2H4B + SiH4
Si2H6 + SiH2 1.73×1014 0.4 8.90 [14]

Reverse coefficients: 2.65×1015 0.1 8.47 [14]
1A is from [1], β and E are from [15]. 2A is from [1], β and E are from [14].
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2.1.1. Gas phase

The gas-phase chemical kinetic reaction mechanism used is a modified

version of the one proposed by [14], and is summarised in Table 1. Two iso-

mers of Si2H4 are included: silene, i.e. H2SiSiH2, denoted by the suffix “A”,

and silylene, i.e. HSiSiH3, denoted by the suffix “B”. The first six reactions

are third-body reactions whose pressure-dependence is given in Lindemann

fall-off form. More details can be found in [1].

2.1.2. Particulate phase

The particle phase is described by a detailed, high-dimensional population

balance model [1] covering aggregate morphology and chemical composition.

In this model, each nanoparticle is represented as a list of primary particles,

together with a (triangular) matrix, called connectivity matrix, each entry

of which represents the common surface area for the corresponding pair of

primary particles. For each primary particle, the number of silicon and the

number of hydrogen atoms are stored. From this particle representation,

beyond elementary properties like mass and chemical composition, several

quantities of interest can be derived. These include for example, with some

additional assumptions, collision and mobility diameter of aggregates, surface

area, and sintering level.

The following processes which create or transform particles, or account

for interaction of the particles with the gas phase, are represented in the

model:

Inception: Any two molecules of any of the three species SiH2, Si2H4A,

and Si2H4B can collide to (irreversibly) form a new particle, which is assumed

to consist of a single, spherical primary whose diameter follows directly from

6
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its mass, i.e. numbers of atoms. The rate at which this happens is as-

sumed to be non-zero only if the diameter of the resulting particle exceeds a

temperature- and pressure-dependent critical nucleus diameter. If the latter

is the case, the inception rate is proportional to the product of the concentra-

tions of the collision partners and the transition regime coagulation kernel.

More details can be found in [1] and [16].

Condensation: An existing particle can grow through (barrier-free) de-

position of SiH2, Si2H4A, or Si2H4B molecules from the gas phase onto its

surface. It is assumed that the collision efficiency, i.e. the probability of

sticking, is unity. The rate is given by a free-molecular collision kernel.

Surface reaction: Apart from simply condensing, gas-phase species can

also react heterogeneously on the particle surface. Specifically, silanes (SiH4,

Si2H6, and Si3H8) can be integrated into the particle, with each step releasing

one, two, and three molecules of hydrogen, respectively. The rate is propor-

tional to the particle surface area and an Arrhenius expression with non-zero

activation energy. Rounding of adjacent primary particles caused by this

process is also taken into account.

Hydrogen release: In order to attain a stable crystal structure, particles

need to release some of the hydrogen acquired through each of the above

processes. The rate of desorption is proportional to an Arrhenius expression

and the coverage of hydrogen on the particle surface, which is approximated

by the ratio of hydrogen to silicon atoms within the particle. It is assumed

that the sintering level of adjacent primaries is unaffected by this process,

i.e. the connectivity matrix remains unchanged.

Coagulation: Two particles can collide and stick to each other at their

7
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point of contact. The rate is given by transition regime coagulation kernel,

which is the harmonic mean of the slip-flow and free-molecular kernels. The

transition kernel is valid across a wide range of Knudsen numbers, and thus

wide ranges of pressures and particle sizes (see [19] and [22] for more details).

Sintering : The sintering of any pair of adjacent primary particles is mod-

elled by an exponential decay of the excess of the joint surface area of the

primaries compared to the surface area of their equivalent sphere. In other

words, the corresponding entry in the connectivity matrix decreases expo-

nentially towards the equivalent spherical area of the primary particle pair.

2.2. Omission-based regression influence diagnostics

2.2.1. Parameter estimation

Given a set of N experimental observations ηexp
n , with n = 1, . . . , N . For

example, these could be, as in this work, means or modes of the particle size

distribution at given temperatures and pressures. Assuming we have a model

which depends on a vector ϑ of P model parameters, we denote its response

for the conditions of the nth experiment by ηn(ϑ). For simplicity, we restrict

ourselves in this work to a single response, but the generalisation of all that

follows to multiple responses is straightforward.

In order to quantify agreement between experiment and model, a measure

of the distance between the model response and experimental results needs

to be defined. We use the ordinary least-squares objective function

Φ(ϑ) :=
N∑
n=1

[
ηn(ϑ) − ηexp

n

]2
(1)

for this purpose. The term ‘ordinary’ refers to the fact that the covariance

matrix of the responses is the unity matrix, i.e. the responses are assumed

8
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to be uncorrelated and are subject to the same or very similar uncertainties,

meaning all the terms in the sum are equally weighted.

The vector ϑ̂ of parameter values which are optimal with respect to the

objective function can be obtained by minimising (1):

ϑ̂ := argmin
ϑ

Φ(ϑ) (2)

The best estimate of the model responses is then defined as η̂ := η(ϑ̂).

2.2.2. Influence measures

The basic idea underlying omission-based regression influence diagnostics

is to analyse the effect of deleting a single observation from the considered

set of data. In the following, we use a subscript “−i” to denote quantities

based on the data set with the ith observation removed. In particular, the

objective function (1) becomes

Φ−i(ϑ) :=
∑

n=1,...,i−1,i+1,...,N

[
ηn(ϑ) − ηexp

n

]2
, (3)

with the corresponding best parameter estimate

ϑ̂−i := argmin
ϑ

Φ−i(ϑ) (4)

and response estimate η̂−i := η(ϑ̂−i).

There are numerous ways of assessing how the optimum, i.e. the best

estimate of the parameters, is affected by removing a data point [7]. The

most elementary statistic is obtained by considering the difference between

the best estimate of the parameters and the best estimate with the ith data

point removed:

D∗ij := ϑ̂j − ϑ̂−i,j, (5)

9
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where ϑ̂−i,j is the value of the jth parameter obtained from the optimisation

with the ith experiment omitted. In the literature this is usually referred to

as DFBETAi [23, p. 13].

We note that such an analysis requires ϑ̂−i to be calculated for all i =

1, . . . , N , each requiring one optimisation. This can become computation-

ally prohibitively expensive if the model itself is expensive or there are many

experimental observations. If the considered model is linear, at least approx-

imately, then it is possible to derive a formula which allows calculating the

entire set of D∗ij based on only a single optimisation [2]. This, however, is

not an option if the model responses are strongly non-linear or are subject

to numerical or statistical noise. The model considered in this work is by

nature a stochastic model and its responses do exhibit non-negligible noise.

In order to compare or rank different parameters against each other with

respect to their influence, due to different physical dimensions and/or or-

ders of magnitude, it is essential to consider non-dimensionalised diagnos-

tic measures. Belsley et al. [23, p. 13] recommend to normalise by the

square root of an estimate of the variance of each parameter (with the ith

data point removed). This allows assessing the influence of data points on

each parameter in relation to their uncertainty. Specifically, they propose

to measure the influence of the ith experiment upon the jth parameter using

DFBETASij := D∗ij/(Var ϑ̂j)
1/2 (see also [24]), where Var ϑ̂j refers to the vari-

ance of the jth parameter. In some situations, the parameter variance may

not be readily available, such as in this work where we directly optimise the

model while progressively excluding experiments. Hence, we simply use here

parameters which are normalised by (logarithmically) mapping them to the

10
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interval [−1, 1].

Cook’s distance [5], one of the most widely-used influence diagnostics,

can be a useful tool for assessing the influence of an experimental data point

during an optimisation. In the special case we consider in this work, i.e. that

of uncorrelated responses with similar uncertainty, it can be defined as [7]

Ci :=

∑N
n=1

[
η̂n − η̂−i,n

]2
Ps2

, (6)

where η̂−i,n is the value of the model response for the conditions of the nth

experiment obtained using the best parameter value estimates determined

through optimisation with the ith observation omitted (i.e. ϑ̂−i), and where

s2 is an estimate of the mean square error, given by

s2 =
1

N − P

N∑
n=1

(
ηexp
n − η̂n

)2
. (7)

Large values of Cook’s distance Ci occur if deleting case i causes large dif-

ferences in the parameter estimates.

The motivation for definition (6) stems from the notion of joint confidence

regions for the parameters. Joint 100(1 − α)% confidence ellipsoids for the

model responses can be defined as

(η̂ − η)>Σ−1(η̂ − η) ≤ Ps2F (P,N − P, 1 − α), (8)

with s given by (7), and F (P,N−P, 1−α) the 1−α point of the F -distribution

(consult [25, pp. 94 & 108] and [26] for more details). Σ is the covariance

matrix of the responses. Cook introduced his original measure [5, 27] for

ordinary least squares, i.e. unity covariance matrix, and later generalised it

to weighted least squares [3, p. 209]. As mentioned above, if the responses

11
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are uncorrelated, of equal dimension, and of similar order of magnitude and

uncertainty, Σ can be assumed to be the unit matrix.

Definition (6), like (5), involves one optimisation per experimental data

point. As mentioned above, in situations where this is too computationally

expensive, there may be the option of conducting a linearised analysis. For

linear models, one can derive an expression for Cook’s distance (6) which

requires only a single regression for all observations. Whether or not a linear

approximation is appropriate can be decided for example by means of local

curvature [28, 29], but this is beyond the scope of the paper.

It is noted that Cook’s distance measures only the overall influence of an

observation, in contrast to (5), which assesses parameters individually. More

generally, while in this work we consider the influence of single observations

only on either single parameters or the model as a whole, this can be gen-

eralised to the influence of subsets of observations on subsets of parameters

in the model (see for example [24, 7]). As the original notions, however,

the measures tend to be applicable to linear models only, and may require

additional regressions.

It is furthermore noted that, unlike (5), the Cook distance (6) is dimen-

sionless by definition – a necessary property in order to achieve a generic

classification of data points.

In a wider context, recall that a more traditional way to examine the

influence of a data point on parameter estimates would be to conduct a sen-

sitivity analysis of the best estimates with respect to the measured data [12],

also known as perturbation of the optimum [30] (see also [2]). That is, con-

sider ∂θ̂j/∂η
exp
n , with (2) and (1). However, approximating such derivatives

12
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by finite differences is problematic for stochastic, or otherwise noisy models,

such as in this application, as mentioned above. Additionally, omitting a

data point is not local in the sense that it causes a finite step-change in the

objective function rather than a small continuous change resulting from a

small perturbation of the data point, as is implied by the use of derivatives

in a sensitivity analysis.

2.2.3. Outlier detection

One way of identifying potential outliers is by means of a threshold: A

data point is deemed to require further attention if the corresponding value of

the chosen diagnostic measure exceeds the threshold. Naturally, the choice of

any such threshold is ultimately arbitrary, which is reflected in the fact that

a range of them has been suggested in the literature. For example, Bollen

and Jackman [31] propose

Ci ≥ 4/N. (9)

This threshold is very conservative in the sense that it tends to highlight too

many points as outliers. On the other hand, Cook and Weisberg [32, p. 345]

suggest

Ci ≥ 1, (10)

i.e. approximately the median of the F distribution with P and N − P

degrees of freedom (see Eqn. (8)). Irrespective of which value is chosen, it

needs to be emphasised that this method can give only a rough indication,

which should be interpreted merely as a suggestion of which data points

warrant closer investigation. The main reason for this is that the method does

not automatically distinguish between errors and highly influential points
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which potentially point towards genuine model improvements. Therefore,

highlighted points should not necessarily be excluded from the analysis, as

one may lose valuable information. Furthermore, whether or not a data

point is deemed an ‘outlier’ by this method, is by definition dependent on

the chosen model. That is, a data point labelled an outlier with respect to

one model, may or may not appear as an outlier with respect to another

(possibly better) model. As there is no consensus in the literature as to

which cut-off should be used, in this work we consider both (9) and (10).

3. Experimental data

As in previous work [1, 20], a total of nineteen experimental data points

were selected from six different studies, spanning a range of process condi-

tions and reactor configurations. Reactor types include hot-wall flow reactors

and a shock tube, for each of which different temperatures, pressures, res-

idence times, and initial silane mole fractions are covered. The particular

selection of studies, an overview of which is given in Table 2, was motivated

by covering a range of conditions. This choice is, however, arbitrary amongst

large amounts of literature (too much to review here comprehensively), which

include further works on hot-wall reactors [39, 40, 41, 42], microwave reac-

tors [43, 44, 45], and plasma reactors [46, 47], to name but a few.

The study of Körmer et al. [33] is focused on synthesising silicon nanopar-

ticles with narrow size distributions in a hot-wall flow reactor. In this setup,

it turns out that most of the precursor is lost to deposits on the reactor wall,

and therefore the initial composition is adjusted to account for this particle

deposition [48]. As in [49], an initial silane mass of about 6 × 10−5 kg/m3 is

14
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Table 2: Experimental data sets with process conditions used to model them. XSiH4

denotes the initial silane mole fraction, and τ denotes the residence time.

Idx.
Reference

Reactor Bath XSiH4
T [K]

P τ d µ µexpi

i type gas [%] [kPa] [ms] type type [nm]

1

Ar

4.0 873-1373

2.5

80

dpri

Mode 26.7

2 4.0 873-1373 192 Mean 26.0

3 12.0 873-1373 192 Mean 38.0

4
Körmer Hot-wall

12.8 873-1373 80 Mode 31.0

5
et al. [33] flow reactor

2.0 873-1373 80 Mode 41.0

6 8.0 873-1373 80 Mode 24.0

7 4.0 873-1373 420 Mode 32.5

8 4.0 673-1173 420 Mode 21.2

9 4.0 773-1273 420 Mode 28.5

10
Frenklach

Shock tube Ar 3.3

1089

49

2.6

dpri Mode

11.0

11
et al. [34]

1320 2.1 11.0

12 1580 1.8 15.0

13
Wu Hot-wall

N2 1.0 770-1520 101 1000 dmob Mode 127
et al. [35] flow reactor

14
Flint

Laser-

Ar

21.4 923-1270

20

5.2

dpri Mean

43.4

15
et al. [36]

driven 9.0 1023-1483 18 55.4

16 flow reactor 0.6 1023-1400 53 23.0

17 Nguyen and Hot-wall
N2

0.1
770-1080 101 900 dmob Mode

89.0

18 Flagan [37] flow reactor 0.04 51.0

19
Onischuk Hot-wall

Ar 5.0 853 39 870 dpri Mean 52.0
et al. [38] flow reactor

assumed. The amount of mass expected for a partial pressure of 1 mbar of

silane at 1024 K is about 3.8×10−4 kg/m3 indicating that only about 16% of

the precursor are available to form particles. The initial silane fractions listed

in Table 2 for this data subset are adjusted accordingly for our simulations.

The Flint et al. [36] data refers to their cases 630S, 631S, and 654S,

respectively. The experiment is described in detail in [50, 51, 52], includ-

ing how to convert flow rates into residence times and initial compositions.

15
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Further work from the same group includes [53, 54].

4. Results and discussion

Both reactor types occurring in the set of experiments (Table 2), i.e.

flow reactor and shock tube, are modelled as homogenous batch reactors.

The shock tube is modelled as a constant temperature, constant pressure

reactor. For the flow reactors, plug-flow is assumed, and the experimentally

measured temperature profile, where available, is imposed. In case 19 [38],

no temperature profile is available, so a constant temperature is assumed,

and the residence time given refers to the approximate time spent in the

‘hot-zone’, i.e. at that temperature.

As software to carry out the necessary optimisations, we use the Model

Development Suite (MoDS) [55] – a software tool for conducting various

generic tasks to develop black-box models. Such tasks include parame-

ter estimation and uncertainty quantification [56], Design of Experiments

(DoE) [57], and global sensitivity analysis [20].

Each optimisation involved in the Cook distance and DFBETA analysis is

performed in two stages: Firstly, a quasi-random global search is conducted

using Sobol low-discrepancy sequences [58]. Secondly, starting from the best

point identified in the first stage, a local optimisation is carried out using

the Simultaneous Perturbation Stochastic Approximation (SPSA) [59, 60]

algorithm. The SPSA method estimates the local gradient based on only

two objective function evaluations, and can be shown to obey the traditional

gradient descent on average. It is designed for problems where stochastic

noise is present. The motivation for the first stage is to avoid becoming

16
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trapped in local minima or valleys on the objective function surface, which

could happen with a method purely based on the local gradient. Chem-

ical kinetic objective functions are widely reported to exhibit a complex,

highly structured surface with multiple local minima and/or valleys (see for

example [26]). Regarding the second stage, the reason for not choosing a

more conventional method utilising the local Jacobi matrix or Hessian is the

stochastic noise in the model response. While the procedure adopted here

cannot guarantee to find the global minimum, based on previous experi-

ence [56], a low-lying minimum can be found at a manageable computational

expense. On an objective function surface with multiple local minima, there

is then of course the risk of selecting the ‘wrong’ optimum, i.e. not the global

one. Any conclusions derived from perturbations such as those induced by

omission of data points may change depending on the chosen minimum and

the local geometry surrounding it.

Table 3: The seven model parameters considered in the influence analysis, all Arrhenius

pre-exponential factors (see Table 1), with optimal values resulting from optimisation

against the complete data set.

Idx. Param. Opt. value Unit Phase Role

1 A1,LP 2.87× 1012

cm3/mol/s Gas

Low-pressure limit of reaction #1

2 A2,LP 2.11× 1035 Low-pressure limit of reaction #2

3 A3,LP 4.90× 1039 Low-pressure limit of reaction #3

4 A5,LP 2.98× 1068 Low-pressure limit of reaction #5

5 A8,rev 1.48× 1014 Reverse of reaction #8

6 ASR,SiH4
4.47× 1033 cm/mol/s

Particle
Surface reac.: silane addition, H2-release

7 AH2 1.88× 1018 1/s H2-release from particle

Here, seven parameters were adjusted which represent key gas-phase and

heterogeneous growth rates identified through sensitivity analysis [1]. We

17
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note that this choice is consistent with reports in the literature [15] which

suggest that it is the low-pressure limit that is of interest to the conditions

considered in this work. Details are given in Table 3. Thus, the vector of

model parameters to be optimised is given by

ϑ = (A1,LP, A2,LP, A3,LP, A5,LP, A8,rev, ASR,SiH4
, AH2).

The optimal values for the parameters resulting from optimisation against

the full data set are also given in Table 3. The differences in these values as

compared to [1] and [20] are due to the fact that different sets of responses

are being considered.

For the optimisation against the complete data set, 800 Sobol points were

generated, followed by 240 SPSA points. Recall that each point involves one

evaluation of the objective function (Eqn. 1), and that every objective func-

tion evaluation involves 19 model evaluations. For all subsequent optimisa-

tions, i.e. those of Φ−i (Eqn. 3) with i = 1, . . . , 19, the model evaluations

performed as part of the original set of Sobol points can be re-used, as all

that is required is for each i to calculate the different objective function Φ−i

for all of the points. For each of the Φ−i optimisations, 120 SPSA points were

used. In total, this corresponds to about 3300 CPU-hours of computation.

The Cook distance analysis was conducted for all of the 19 experiments

in Table 2, and results are shown in Fig. 1. In this figure, the responses

are grouped by the particular experimental papers from which they were ob-

tained. Both of the two outlier thresholds, Eqn. (9) and Eqn. (10), are shown.

While several of the observations exceed the lower threshold (9), only two of

them exceed the upper one (10) (with one of them only marginally). This

is consistent with reports that (9) is too conservative in that it has a ten-

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Experiment index i [-]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
oo

k
di

st
an

ce
C
i

[-]

Ci = 4
19

Ci = 1

Körmer et al. (2010)
Frenklach et al. (1996)
Wu et al. (1987)
Flint & Haggerty (1986)
Nguyen & Flagan (1991)
Onischuk et al. (2000)

Figure 1: Overall influence of each of the experimental observations in Table 2 as measured

by Cook’s distance Ci (Eqn. 6). Each of the thresholds (9) and (10) are indicated through

dashed horizontal lines.

dency to highlight too many observations, as mentioned in subsection 2.2.3.

We conclude that observation i = 5 requires further attention, as its Cook

distance exceeds both thresholds and is significantly larger than all the oth-

ers. This indicates that this experimental point most strongly affects the

objective function Φ (Eqn. 1), which in turn affects the parameter estimates,

i.e. the optimal values ϑ̂ of the parameters (Eqn. 2). It could furthermore

suggest that this particular observation might be an outlier with respect to

the present model, or, more likely, that the model describes it inadequately.
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(a) Influence of observation i = 5

by Körmer et al. [33] on each of the con-

sidered model parameters.
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Parameter index j [-]
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D
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(b) Influence of observation i = 10

by Frenklach et al. [34] on each of the

considered model parameters.

Figure 2: DFBETA D∗
ij (Eqn. 5), for the two most influential experimental observations

as identified in Fig. 1 (see also Table 2), for each of the parameters in Table 3.

Additionally, a DFBETA analysis was conducted to assess how the experi-

mental observations affect the values of the parameters which are determined

through the optimisation (Fig. 2). In terms of highlighting individual obser-

vations, the DFBETA analysis agrees with the Cook distance analysis: The

values of D∗ij for i = 5 and i = 10 are at least two orders of magnitude

larger than those obtained for any other experiment. The DFBETA values

for these experiments are shown in Figs. 2a and 2b respectively. We notice

that the best estimate of parameter 4, i.e. the pre-exponential factor in the

low-pressure limit of reaction 5 (Table 1), is influenced most by both of the
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considered experimental observations.

In principle, there are two possible reasons for why an observation stands

out in a Cook distance or DFBETA analysis: errors associated with the ex-

periments, and errors associated with the model. Regarding experimental

errors, we assume here that all experimental data are both correct and ac-

curate. Considering model errors, these can be further categorised into the

following: errors arising from the solution methodology, i.e. numerical algo-

rithms, and flaws in the model. Specifically in this case, the latter include

reactor model errors, and deficiencies in the gas or particulate phase sub-

models.

Figure 3 shows particle size distributions for those experiments in Table 2

for which they have been measured. Two sets of model results are shown –

one for the optimisation against the complete data set, and one for the data

set with the 5th experiment omitted. As expected, if the 5th experiment

is omitted, the corresponding response deteriorates significantly (Fig. 3e).

Recall that only the means or modes of the distributions are optimised, not

the widths or any other characteristic. This is most obvious in cases 7-

9 (Figs. 3g-i) for example, where the modes agree reasonably well but the

model distributions are noticeably wider than the experimental ones. Note,

however, that adding, say, the standard deviation of the distributions as

optimisation targets by itself, i.e. without adding further degrees of freedom

in terms of model parameters to be optimised, will not ‘improve’ the fit in

any way. The fit can only improve if model parameters are included in the

optimisation which are suitable in the sense that they affect the width of the

distributions independently of the mean, provided such degrees of freedom
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(a) Case 1 [33].

0 10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

Diameter [nm]

P
ro

ba
bi

lit
y 

de
ns

ity
 [1

/n
m

]
(b) Case 2 [33].
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(c) Case 3 [33].

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Diameter [nm]

P
ro

ba
bi

lit
y 

de
ns

ity
 [1

/n
m

]

(d) Case 4 [33].
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(e) Case 5 [33].
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(f) Case 6 [33].
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(g) Case 7 [33].
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(h) Case 8 [33].
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(i) Case 9 [33].
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(j) Case 10 [34].
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(k) Case 11 [34].
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(l) Case 12 [34].
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(m) Case 13 [35].
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(n) Case 17 [37].
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(o) Case 18 [37].

Figure 3: Particle size distributions for those experiments for which they were measured.

Solid lines: model optimised against the complete data set. Dashed lines: model optimised

against the data set with the 5th experiment omitted. Points: experiment.
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exist in the model.

The i = 5 experiment refers to the case of lowest initial silane concen-

tration (0.5 mbar partial pressure) reported by Körmer et al. [33]. In this

hot-wall reactor experiment, a modal size of 41 nm was obtained for the pri-

mary particles, larger than that obtained for higher concentrations: 1 mbar

partial pressure yielded 27 nm primaries, 2 mbar yielded 24 nm primaries,

rising again to 31 nm at 4 mbar, all at the same residence time (and total

pressure). This inverse relationship for the smaller initial concentrations is

not captured by the model, thus indicating that this aspect requires fur-

ther development. More specifically, this suggests that the ratio between

the inception and condensation rates should be revisited, as this directly

controls the size and number of primary particles. Given that the incep-

tion mechanism in particular remains an active area of research, with several

fundamental open questions, this might be the most natural starting point.

In order to investigate further the kinetic role of initial silane concentra-

tion and total pressure, we conducted flux analyses of Si, time-integrated as

well as instantaneous, for a range of concentrations and pressures, covering

the conditions of all experiments in Table 2. At high dilutions, the impor-

tance of unimolecular reactions is expected to increase relative to bimolecular

ones. However, we found that, for the mechanism used, whilst the pressure

dependence of the net fluxes can be significant, their dependence on dilu-

tion is relatively minor within the range considered. Besides, we note that

even though experiment 5 is the most dilute amongst the ones by Körmer

et al. [33], experiments 13, 16, 17, and 18 are more dilute, some significantly

so (case 18 by a factor of 50), with the model agreeing well especially with
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the latter three. Therefore, irrespective of the performance of the gas-phase

mechanism at low silane concentrations, this alone is insufficient to explain

the overall model behaviour for experiment 5.
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Figure 4: Ratios of model responses to experimental values for each of the 19 experiments

in Table 2. Squares: model optimised against the complete data set. Circles: model

optimised against the data set with the 5th experiment omitted.

Figure 4 shows ratios of model responses to experimental ones for all ex-

periments. Again, two sets of results are shown – one for the optimisation

against the complete data set, and one for the data set with the 5th exper-

iment omitted, and the most obvious feature is again the worsening of the

response corresponding to the 5th experiment. Even though some responses,

such as for cases 10 and 11 (Figs. 3j and k), have deteriorated, one should

note that the value of the overall objective function (Eqn. 3) is still lower

for the omitted set than the full set. This is mainly due to responses 18

and 19, and also 13, improving and their absolute values being much larger
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than those of responses 10 and 11. Referring again to Table 2, this hints

at a competition or trade-off between two very different scenarios which the

model is not capable of capturing simultaneously: the short residence-time

regime with early, nucleation-stage particles, versus the longer residence-time

regime with mature, larger aggregates.

5. Conclusions

We determined optimal values of seven parameters in a population bal-

ance model for the formation of silicon nanoparticles by means of least-

squares optimisation against a set of 19 experiments. The influence of each of

those measurements on the values of the considered kinetic model parameters

was then quantified using Cook’s distance and DFBETA – two basic omission-

based measures popular in the field of regression influence diagnostics. An

outlier analysis was then conducted by applying standard thresholds in or-

der to identify the most important experimental datasets in the optimisation.

This highlighted one particular experimental condition for further scrutiny.

We emphasise again that, in general, a particular measurement exceeding

an outlier threshold does not necessarily imply that there is a problem with

that measurement or more generally the experiment. In the first instance,

one should thoroughly examine whether there are shortcomings in the model

which are responsible for the disagreement with the measurement. This in-

forms future model development [57] by helping to identify aspects of the

model which require improvement. Furthermore, if one regards the model as

a formal representation of the best current knowledge about the experiment

or system under consideration [61], then the methods can be thought of as
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giving an indication as to which measurements are most informative.
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