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Abstract—This paper presents a multimodal approach to in-
vehicle classification of driver glances. Driver glance is a
strong predictor of cognitive load and is a useful input to
many applications in the automotive domain. Six descriptive
glance regions are defined and a classifier is trained on video
recordings of drivers from a single low-cost camera. Visual
features such as head orientation, eye gaze and confidence
ratings are extracted, then statistical methods are used to
perform failure analysis and calibration on the visual features.
Non-visual features such as steering wheel angle and indicator
position are extracted from a RaceLogic VBOX system. The
approach is evaluated on a dataset containing multiple 60
second samples from 14 participants recorded while driving in
a natural environment. We compare our multimodal approach
to separate unimodal approaches using both Support Vector
Machine (SVM) and Random Forests (RF) classifiers. RF
Mean Decrease in Gini Index is used to rank selected features
which gives insight into the selected features and improves the
classifier performance. We demonstrate that our multimodal
approach yields significantly higher results than unimodal
approaches. The final model achieves an average F1 score of
70.5% across the six classes.

1. Introduction

Driver distraction has emerged as one of the leading
causes of vehicle related accidents [10], [13], [15], [16],
[19]. The increasing adoption of digital interactions inside the
vehicle threatens to aggravate this issue [7]. Driver distraction
can be modelled by considering factors such as orientation,
duration and history of the driver’s gaze. This can then
be used for notification scheduling and other safety related
applications.

Liang et al. [13] published research on the 100-Car
Naturalistic Driving Study comparing 24 driver distraction
algorithms. These algorithms relied heavily on three char-
acteristics: glance location, duration and history. Although
based on limited manually-labelled data, the research high-

lights the theoretical importance of differentiating the glance
locations as categories rather than raw angles. This is since
driving related glances such as side mirrors are less risk
inducing than glances at in-vehicle systems [13]. The research
demonstrates the importance of considering a short window
(less than three seconds) of off-road glances to predict crash
risk. This motivates the need for a qualitative classifier versus
a quantitative one.

We propose a qualitative 6-class driver glance classi-
fication system. The labels Forward, Down, Left, Right,
Left Blind Spot, and Right Blind Spot are chosen as useful
descriptors of the driver’s glance. A baseline glance classifier
is first implemented that classifies the glance direction
based on the yaw and pitch of the driver’s head. This
baseline model assumes a perfect head tracker and linearly
separable regions. However due to poor calibration, visual
noise and limitations of the tracker, more predictors are
required to determine the driver’s glance accurately. We
propose a multimodal approach combining visual cues with
non-visual car parameters to classify driver glances. Visual
features such as head position, orientation, confidence and
eye gaze orientations are extracted. Statistical methods are
implemented to filter, calibrate and extrapolate the visual
information. Non-visual car parameters such as steering
wheel angle and indicator position are extracted from CAN
(Controller Area Network) data collected by a RaceLogic
VBOX system.

The main contributions of this paper can be summarised
as follows:

1) Proposing a multimodal approach for driver glance
classification that combines driver’s facial features
with car parameters.

2) Demonstrating that our multimodal approach per-
forms significantly better than single modalities.

3) Presenting a ranking of predictive importance of the
visual and non-visual features considered, which
informs future work in this field.

This paper will begin with a discussion of the related
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Figure 1. Overview of the process in generating the driver glance classifiers.

work in Section 2. In Section 3, the construction and
preprocessing of the dataset is described. In Section 4, a
comparison of four designed classifiers will be given followed
by a discussion. Lastly in Section 5, conclusions will be
drawn from the results and suggestions for future work will
be given.

2. Related Work

The problem of modelling driver distraction using mul-
tiple modalities such as visual cues [9], [13], [17], audio
[1], CAN data [11], biometric sensors [18] and GPS [4] has
been investigated widely in recent years. However, attempts
to classify driver glance generally depend on specialised
equipment. For example, Sodhi et al. [17] used a head-
mounted eye-tracking device to evaluate driver distraction
based on eye positions and pupil diameters. Kutila et al. [11]
utilised a stereo camera set-up combined with lane-tracking
data in order to predict cognitive workload. They classified
driver glance into four categories: “Road Ahead”, “Left
Mirror”, “Right Mirror”, “Windscreen”. However the total
cost of this system was reported to be around e35 000. Ji et
al. [9] used a configuration of infrared LEDs to illuminate
the driver’s pupils for better head and gaze tracking. Their
system also consisted of two cameras and extracted additional
visual cues such as eyelid movement. The use of infrared
LEDs enabled accurate eye gaze tracking, but the range of
head movement was still limited. Our proposed approach
focuses on using a single, low-cost camera without depth
information combined with CAN-Bus data.

3. Methodology

In this section the dataset, feature extraction methods,
and evaluation methods are described.

3.1. Dataset

Trials were performed in a Land Rover Discovery fitted
with a standard, uncalibrated USB Mobius camera monitoring
the driver’s face and a RaceLogic VBOX. A driving route
was specified of about 60 minutes. Multiple sixty seconds of
naturalistic driver footage from 14 drivers were selected
at 30 frames per second and processed at a resolution
of 640x360 where significant head turning was naturally
exhibited. Segments were selected where head turning was
naturally exhibited, as drivers predominantly faced forward
which was not useful in training the classifiers. The VBOX
system recorded car information at only 10 frames per second.
The frames were annotated with CowLog 3.0.2 [8] serving as
the ground truth. The class labels Forward, Down, Left, Right,
Left Blind Spot, Right Blind Spot relative to the camera’s
perspective were chosen as significant regions which can
then be further expanded on by other vehicle applications.
The front car pillars and base of the windscreen were chosen
as the separating boundaries. These regions are visualised in
Figure 2. It must be noted that some classes were difficult
to disambiguate during fast head turns as well as slight eye
changes near the boundaries. As noted by Langton et al. [12],
the head orientation is expected to have a large influence on
the perception of a person’s glance location.

This yielded a total of 50 400 samples. In order to
synchronize car information with the driver camera, the
audio of the two devices were matched.

3.2. Feature Extraction

3.2.1. Visual Features. Over the past decade, many head
and eye tracking methods have been proposed. In this paper,
the Cambridge Face Tracker developed by Baltrušaitis et al.
[2] was selected for visual feature extraction. This was chosen
due to its real-time operation and focus on performance in the
presence of poor lighting conditions, occlusions and extreme
poses. The method locates facial landmarks as a function



Figure 2. Top view allocation of driver glance regions. The directions are
relative to the camera positioned to the right of the right-seated driver.

of spatial relationships and certainties of other detected
landmarks. The system works from a single simple camera
without a depth sensor, generalises well to different faces
and returns a confidence measure which is useful in our
subsequent analysis.

The framework extracted the following features from
the data: Head Position (Horizontal, Vertical, Depth), Head
Orientation (Pitch, Yaw, Roll), Head Orientation Confidence,
Eye Orientations (X1,X2,Y1,Y2,Z1,Z2) and an Eyes De-
tected Flag.

3.2.2. Non-Visual Features. The non-visual data was cap-
tured at 10 frames per second with a RaceLogic VBOX. Each
VBOX instance was duplicated twice in order to match the
visual frame rate. The following features were selected from
this system: Velocity, Accelerator Pedal Position, Brake Pres-
sure, Steering Wheel Angle, Indicator Position, Gear Lever
Position. These features are hypothesized to be correlated
with driver glance behaviour.

3.3. Tracker Failure Analysis

Despite the tracker’s robustness, it often lost track of its
target. The success rate is further limited by the detectable
range of head orientations. The tracker provided a probabilis-
tic confidence measure for each head tracking estimation.
Out of all the recorded frames, 16.6% had confidence levels
of less than 50%. A low pass filter was implemented to
determine the local head rotational velocity in order to
extrapolate missing and low confidence (tuned to a threshold
of 9%) values. The low pass filter was required to smooth
out the noise in the readings that could otherwise forecast
spurious values.

3.4. Calibration

Each driver was positioned differently relative to the
camera. In order to regularize different driver positions
and rotations, the average head position and rotation for
each driver is subtracted from the readings. This average is
acquired by considering a sliding window of 60 seconds from
which to calibrate the data. Furthermore only frames with a

high head tracking confidence (tuned to a threshold of 60%)
are considered in the calibration calculations to compensate
for spurious readings. This ensures that the calibration is
user-independent and adjusts with driver position changes.

4. Evaluation

In this section, the implementation details are discussed
followed by a comparison of the different constructed non-
linear classifiers. Visual and non-visual modalities are first
considered separately. The multimodal approach then con-
siders the combination of these features. For each classifier,
both Support Vector Machines (SVM) [6], [14] and Random
Forests (RF) [3], [5] classifiers are trained. The individual
class F1 scores are reported as well the arithmetic mean.

4.1. Implementation Details

Two methods were chosen to train the classifiers. Random
Forests were chosen as they provide variable importance
techniques and are simpler to optimise. Support Vector
Machines were chosen as they generally perform better on
smaller datasets.

In order to design a classifier that generalises to unseen
drivers, the system is trained with Leave-One-Out Cross
Validation. For each combination, the classifier is trained on
13 drivers and tested on the remaining one.

The number of features was optimised by stepwise
backward elimination feature selection guided by Random
Forest Mean Decrease in Gini Index. In both classifiers
the objective function was chosen to be the cross-validated
arithmetic mean of the test class F1 scores. This function
ensures that the size of the classes do not affect their
weighting in the optimisation function. Class sub-sampling
is performed before training the classifiers due to the largely
imbalanced label frequencies.

The Radial Basis Function was chosen as the SVM kernel.
The model parameters were chosen by an iterative logarithmic
grid search to optimize the cross-validated objective function.
The RF model was tuned by first maximising the cross-
validated objective function by adjusting the allocated number
of features per candidate split, then adjusting the number of
decision trees in the forest via a linear search.

4.2. Baseline algorithm

As a baseline we chose a Rule-based classifier using
the visual yaw and pitch of the drivers head, since head
pose is a good proxy for gaze direction. Without knowledge
of the shortcoming of available trackers, one might expect
this classifier to be sufficient. For example, if the head
pitch exceeded a threshold, the frame would be labelled
as Down. The process was then continued for the remaining
classes using the head yaw. Threshold values were chosen
by inspection from annotated training footage and class
distributions. Calibration is omitted, but failure analysis
is performed so that blind spots can be extrapolated. The
performance of the classifier is tabulated in Table 1.



TABLE 1. F1 SCORES [%] FOR EACH GLANCE CLASS FOR THE BASELINE, SVM AND RF CLASSIFIERS.

Algorithm Modalities Forward Down Left Right Left Blind Spot Right Blind Spot Mean
Baseline Visual 71.1 44.1 72.8 19.2 14.3 22.7 40.7

SVM Visual 72.4 54.9 86.0 54.7 65.8 48.0 63.9
RF Visual 76.0 63.7 87.7 61.3 69.4 48.0 67.7

SVM Non-Visual 57.5 27.4 35.6 11.9 20.4 33.6 31.1
RF Non-Visual 57.2 31.8 34.8 14.0 14.1 37.9 31.6

SVM Multimodal 74.8 59.3 83.2 56.8 63.7 47.9 64.3
RF Multimodal 76.9 65.0 88.9 60.7 75.0 56.7 70.5

The baseline approach struggles to differentiate between
the Left and Left Blind Spot given the head yaw and pitch.
It assumes a linear separable boundary and does not account
for the noise present in the features. The other approaches
use machine learning methods that build more sophisticated,
non-linear boundaries between the classes that account for
the presence of noise and the additional available features.

4.3. Visual Classifier

For this classifier additional visual information is in-
corporated from the tracker such as the remaining head
rotation value, eye information, confidence values and head
angular velocities. Failure analysis is included to extrapolate
missing values and calibration is applied to account for
driver posture changes. Feature selection is performed to
remove insignificant features. The resulting performance of
the classifiers are tabulated in Table 1.

As expected from the baseline approach assumptions,
the head yaw and pitch are the most important variables.
The eye orientation X1 component also scores highly as
expected since the glance classification can shift solely on
the change in eye positions. The horizontal head position
scores well on the list due to a tendency of drivers to
translate horizontally when turning their head. The confidence
level aids the classification since it is likely to be inversely
correlated to the angle between the drivers glance and the
camera’s principle axis.

4.4. Non-Visual Classifier

This classifier is trained purely on non-visual VBOX data.
The performance of the classifiers are tabulated in Table 1.
The non-visual classifier performs surprisingly well given
the features and limited training data. This indicates the
importance of non-visual CAN data in glance estimation.
Furthermore, these features do not require any failure analysis
or calibration and contain negligible noise.

4.5. Multimodal Classifier

This classifier merges the non-visual information from
the CAN data with the visual information. The performance
of the classifiers are tabulated in Table 1.

The variables considered and their variable importances
were ranked in order of RF mean decrease in Gini index as

TABLE 2. CONFUSION MATRIX FOR THE MULTIMODAL CLASSIFIER.
ROWS REPRESENT THE PREDICTED VALUES. COLUMNS REPRESENT THE

GROUND TRUTH VALUES.

PPPPPPP
GT F D L R LB RB Precision

F 3329 175 227 416 9 44 79.3
D 635 1841 100 427 11 155 58.1
L 183 64 3523 72 109 30 88.5
R 300 383 33 2070 12 473 63.3

LB 0 0 110 0 413 0 79
RB 0 15 0 443 25 661 57.8

Recall 74.9 74.3 88.2 60.4 71.3 48.5

shown in Figure 3. The larger the mean decrease, the more
valuable it is in constructing accurate decision trees. The
features following the Gear Lever Position did not improve
the cross-validated optimisation function.

4.6. Discussion

As can be seen from the Table 1, the RF multimodal
approach surpasses all of the other classifiers considered.
The significance is verified with a paired samples t-test. The
multimodal RF results for each driver were significantly
more accurate than the unimodal visual RF results (t(13) =
1.95, p < 0.05) with a Cohen’s D of 0.52.

The main bottleneck for the performance of the classifiers
is the success rate of the tracker. Tracking failure increased
with the angle of the driver glance to the camera principle
axis. Augmenting the visual features with the CAN data
helped to achieve better performance in these cases. The size
of the dataset was limited given the time consuming task
of data collection and labelling. It is expected that a larger
dataset could further improve the classifiers.

By inspecting the confusion matrix for our RF multi-
modal classifier in Table 2, we can see that neighbouring
classes are often confused, whereas glances that are distant
are less likely to be mistaken.

5. Conclusions and Future Work

We have presented a novel multimodal approach to
classify driver glance behaviour into six classes. We demon-
strate that augmenting the visual features with vehicle CAN
data outperformed the separate single modality alternatives.
Visual features such as head and eye gaze orientation are
successfully combined with non-visual features such as
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Figure 3. Variable importance ranking determined by the RF mean decrease in Gini index for the multimodal classifier.

steering wheel angle and gear lever position. The multimodal
RF classifier returns F1 scores of 76.9%, 88.9% and 75.0%
for the Forward, Left and Left Blind Spot regions respectively.
This demonstrates the potential of classifying driver glance
direction using a single camera enhanced with the use of
auxiliary vehicle CAN data.

For future work, we would like to investigate the addition
of a Rear View Mirror class given more data. As for non-
visual modalities, we would like to incorporate GPS data in
order to consider the expected behaviour given the driver
location.
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