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Abstract

In this work, the influence of the plastic size effect on the fracture process of
metallic materials is numerically analyzed using the strain-gradient plastic-
ity (SGP) theory established from the Taylor dislocation model. Since large
deformations generally occur in the vicinity of a crack, the numerical frame-
work of the chosen SGP theory is developed for allowing large strains and
rotations. The material model is implemented in a commercial finite element
(FE) code by a user subroutine, and crack-tip fields are evaluated thoroughly
for both infinitesimal and finite deformation theories by a boundary-layer for-
mulation. An extensive parametric study is conducted and differences in the
stress distributions ahead of the crack tip, as compared with conventional
plasticity, are quantified. As a consequence of the strain-gradient contri-
bution to the work hardening of the material, FE results show a significant
increase in the magnitude and the extent of the differences between the stress
fields of SGP and conventional plasticity theories when finite strains are con-

sidered. Since the distance from the crack tip at which the strain gradient
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significantly alters the stress field could be one order of magnitude higher
when large strains are considered, results reveal that the plastic size effect
could have important implications in the modelization of several damage
mechanisms where its influence has not yet been considered in the literature.
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Strain-gradient plasticity, Taylor dislocation model, material length scale,

crack-tip fields, finite element analysis

1. Introduction

Experiments and direct-dislocation simulations have demonstrate that
metallic materials display a strong size effect at the micro- and sub-micron
scales. Attributed to geometrically necessary dislocations (GNDs) associated
with non-uniform plastic deformation; this size effect is especially significant
in fracture problems since the plastic zone adjacent to the crack tip is phys-
ically small and contains strong spatial gradients of deformation. Since con-
ventional plasticity possesses no intrinsic material length, several continuum
strain-gradient plasticity (SGP) theories have been developed through the
years to incorporate some length-scale parameters in the constitutive equa-
tions. Most of them can be classified as a function of their approach as
phenomenological (Fleck and Hutchinson, 1993, 11997, 2001) or mechanism-
based (Gao et all, [1999; [Huang et al., 12000).

The experimental observation of cleavage fractures in the presence of
significant plastic flow (Elssner et all, 1994; [Korn et al., 2002) has aroused
significant interest in the influence of the plastic strain gradient on crack-tip

stresses (Wei_and Hutchinson, [1997;|Chen et all,[1999; Wei, 2001). |Jiang et al.



(2001) investigated the crack-tip field by a mechanism-based strain-gradient
(MSG) plasticity theory established from the Taylor dislocation model. Their
investigation showed that GNDs near the crack tip promoted strain-hardening
and that the GNDs led to a much higher stress level in the vicinity of the crack
than that predicted by classical plasticity. |Qu et all (2004) implemented the
lower-order conventional theory of mechanism-based strain-gradient (CMSG)
plasticity (Huang et all,2004) that does not involve higher-order stresses and
where the plastic strain gradient is involved through the incremental plastic
modulus. They showed that the higher-order boundary conditions have es-
sentially no effect on the stress distribution at a distance greater than 10 nm
from the crack tip, well below the lower limit of physical validity of the SGP
theories based on Taylor’s dislocation model (Shi et al., 2001).

However, the aforementioned studies were conducted in the framework of
the infinitesimal deformation theory, and although large deformations occur
in the vicinity of the crack, little work has been done to investigate crack-tip
fields under SGP to account for finite strains. Hwang et al! (2003) devel-
oped a finite deformation theory of MSG plasticity, but they were unable
to reach strain levels higher than 10% near the crack tip due to conver-
gence problems. |[Mikkelsen and Goutianos (2009) determined the range of
material length scales where a full strain-gradient-dependent plasticity simu-
lation is necessary in the finite strain version (Niordson and Redanz, 2004) of
the SGP theory of [Fleck and Hutchinson (2001). [Pan and Yuan (2011) used
the element-free Galerkin method to analyze the crack-tip stresses through
a lower-order gradient plasticity (LGP) model (Yuan and Chen, 2000) and

they showed that the known elastic-plastic fracture mechanics parameter G



can be directly applied to the crack assessment under strain-gradient plas-
ticity for both infinitesimal and finite deformation theories.

Moreover, identifying and quantifying the relation between material pa-
rameters and the physical length over which gradient effects prominently en-
hance crack-tip stresses is essential in rating their influences on crack-growth
mechanisms, and for rationally applying SGP theories to predict damage
and fracture. This has been done recently by [Komaragiri et all (2008) for
the phenomenological SGP theory of [Fleck and Hutchinson (2001) within
the small-strain theory. But, as the strain gradient increases the resistance
to plastic deformation thereby lowering crack-tip blunting, and consequently
avoiding the local stress triaxiality reduction characteristic of the conven-
tional plasticity predictions, it is imperative to quantify the distance ahead
of the crack tip where the plastic size effect significantly alters the stress
distribution accounting for finite strains.

In this work, the influence of the plastic strain gradient on the fracturing
process of metallic materials is numerically analyzed in the framework of
small- and large-deformations by the CMSG theory. An extensive parametric
study is conducted and differences in the stress distributions ahead of the
crack tip, compared with conventional plasticity, are quantified. Implications

of the results on fracture- and damage-modeling are thoroughly discussed.

2. Conventional theory of mechanism-based strain gradient

The conventional theory of mechanism-based strain-gradient plasticity
(CMSG) is based on the Taylor dislocation model but does not involve higher-

order stresses. Therefore, the plastic strain gradient appears only in the



constitutive model and the equilibrium equations and boundary conditions
are the same as the conventional continuum theories (Huang et all, 2004).
The dislocation model of [Taylon (1938) gives the shear-flow stress 7 in

terms of the dislocation density p as:

T = auby/p (1)

where p is the shear modulus, b is the magnitude of the Burgers vector,
and « is an empirical coefficient that takes values between 0.3 and 0.5. The
dislocation density comprises the sum of the density pg for statistically stored

dislocations and the density pg for geometrically necessary dislocations:

p = ps+ pa, (2)

with pg related to the effective plastic strain gradient n? by:

P

_ 7

where 7 is the Nye-factor that is assumed to be approximately 1.90 for
face-centered-cubic (fcc) polycrystals.

The tensile flow stress o0, is related to the shear-flow stress 7 by:

Uflow = MT, (4)

M being the Taylor factor, that equals 3.06 for fcc metals. Rearranging

Egs. (1-4) yields:
_np
O flow = Mapby/ ps + et (5)



ps can be determined from (5), knowing the relation in uniaxial tension
where n? = 0) between the flow stress and the material stress-strain curve
n )

as

ps = [over [(€")/(Maub)]?, (6)

where o0,.f is a reference stress and f is a non-dimensional function of
plastic strain e” determined from the uniaxial stress-strain curve. Substitut-

ing in (5), 0 fiow yields:

Oflow = Oref f2 (5p) + lﬁp (7>

where [ is the intrinsic material length that provides a combination of the
effects of elasticity (u), plasticity (o,.f), and atomic spacing (b) and is given
by:

[ = M?*ra? (L)z b= 1802 <L)2 b. (8)

Oref Oref

X

According to |Gao et _all (1999), the effective plastic strain gradient n® is

/1
n = Z??f}mﬁ}k 9)

where the third-order tensor nfjk is obtained by:

given by:

b __ P p p
Nijk = €ikj T Ejki — Cijik (10)

and the tensor for plastic strain equals:



eb = /ép»dt. (11)

To avoid higher-order stresses, [Huang et all (2004) used a viscoplastic
formulation that gives the plastic strain rate P in terms of the effective
stress o, rather than its rate .. Also, to remove the strain-rate- and time-
dependence, a viscoplastic-limit is used by replacing the reference strain with

the effective strain rate é&:

m

(12)

P =¢
Orep\/ f2(EP) + U
This procedure is merely for mathematical convenience and differences

are negligible for a large value of the rate-sensitivity exponent (m > 20).
Considering that the volumetric- and deviatoric- strain rates are related to
the stress rate in the same way as in classical plasticity, the constitutive

equation of the CMSG theory yields:

3 [ oo ™
7 = Képli +2u s & — - i 13
U] kkYij H { i 20@ Uflow UZ] ( )
As it is based on the Taylor dislocation model, which represents an aver-
age of dislocation activities, the CMSG theory is only applicable at a scale
much larger than the average dislocation spacing. For common values of

dislocation density in metals, the lower limit of physical validity of the SGP

theories based on Taylor’s dislocation model is approximately 100 nm.

3. Crack-tip fields with infinitesimal strains

Crack-tip fields are evaluated in the framework of the finite element

method by a boundary-layer formulation, where the crack region is con-

7



tained by a circular zone and a mode-I load is applied at the remote circular

boundary through a prescribed displacement:

1
u(r,0) = K ;yﬂ / %COS (g) (3 —4v — cosb) (14)

o(r,0) = K> ;”, /%sm (g) (3 — 4v — cos) (15)

u and v being the horizontal and vertical components of the displacement

boundary condition, respectively; r and # the radial and angular coordinates
of a polar coordinate system centered at the crack tip, £ and v the elastic
properties of the material, and K the stress intensity factor that quantifies
the remote applied load.

The material model is implemented in the commercial finite element pack-
age ABAQUS via its user-material subroutine UMAT. Since higher-order
boundary conditions are not involved, the governing equations of the CMSG
theory are essentially the same as those in conventional plasticity. The plastic
strain gradient is obtained by numerical differentiation within the element:
the plastic strain increment is interpolated through its values at the Gauss
integration points in the isoparametric space and afterwards the increment
in the plastic strain gradient is calculated by differentiation of the shape
function. Another possible implementation scheme lies in using C° finite el-
ements incorporating the effect of the strain gradient as an extension of the
classical FE formulation (Swaddiwudhipong et all, 2006a/b).

Plane strain conditions are assumed and only the upper half of the cir-
cular domain is modeled because of symmetry. An outer radius of R=42

mm is defined and the entire specimen is discretized using 1580 eight-noded



quadrilateral plane-strain elements with reduced integration (CPESR). As
seen in Fig. 1, to accurately characterize the strain-gradient effect, a very
fine mesh is used near the crack tip, where the length of the smallest element
is approximately 10 nm.

To compare and validate our numerical implementation, we have em-
ployed the same material properties considered by IQu et all (2004) in the
present study. Thus, if the stress-strain relation in uniaxial tension can be

written as:

0 = 0yer f(€7) = oy (E)N (=" + %)N (16)

Oy

where oy is the initial yield stress and N is the strain hardening ex-
ponent. oy..; = oy (E/oy)" is the assumed reference stress, and f(e?) =
(e? 4 (oy/E))"; the material parameters being oy = 0.2% of E, v = 0.3,
N =0.2, m = 20,b=0.255nm, and o = 0.5, which give an intrinsic material

length of [ = 3.53 pum according to (8).

Figure 1: Finite element mesh for the boundary layer formulation

Fig. 2 shows the hoop stress ogy distribution ahead of the crack tip
(0 = 0°) under a remote load of K; = 17.30y+/I for both CMSG and



classical plasticity theories; gy is normalized to the material yield stress
and the distance to the crack tip r ranges from 0.1 pm, the lower limit of
CMSG plasticity, to 100 pm. As depicted in Fig. 2, the stress-field pre-
dicted by the CMSG theory agrees with the estimations of Hutchinson, Rice,
and Rosengren (HRR) away from the crack tip, but becomes much larger
within 1 gm distance from it. Indeed, the stress level in the CMSG theory
at r = 0.1 um is equal to 120y, which is high enough to trigger cleavage
fracture as discussed by IQu et al. (2004). Results agree with those obtained
by [Qu_ et al) (2004) and lJiang et al. (2001) for the CMSG and MSG theories,
respectively, proving that higher-order boundary conditions do not influence
crack-tip fields within its physical domain and thus validating the present
numerical implementation. Note that the crack-tip stress-elevation obtained
by the mechanism-based theory quantitatively agrees with the predictions of
the phenomenological approach, but with length parameters 4-5 times the
corresponding quantity in the Fleck-Hutchinson theory: [y 56 ~ (4 — 5)lsq
(see [Wei and Qiu, 2004).

A parametric study covering several material properties, applied loads,
and constraint conditions is conducted as a function of physical inputs to
determine the influence of the strain gradient on crack-tip fields. As shown
in Fig. 2, with the aim of quantifying the size of the region that is affected
by the plastic size effect, the distance over which the stress is significantly
higher than that predicted by conventional plasticity (ccmse > 1.50mgrR)
is defined by rggp. Differences between the stress field obtained at a given
point in the crack-tip region, for the CMSG theory (ocumsa), and the HRR

field (o rr) Will depend on the following dimensionless terms:
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Figure 2: gy distribution ahead of the crack tip for both CMSG and classical plasticity
theories in small strains, r being the distance to the crack tip in log scale for K; =

17.30y V1, oy =0.2% of E, v =10.3, N = 0.2 and | = 3.53 um
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The material properties considered in Fig. 2 are taken as reference val-
ues and to avoid confusion as its corresponding variables are denoted with
an asterisk. Also, to quantify the plastic size effect under different crack-
tip constraint conditions, the stress-fields are evaluated through a modified

boundary layer (MBL) formulation where the remote boundary is also de-

pendent on the elastic T-stress (Betegon and Hancock, 1991):

2
u(r,&):Kll_EFV,/%cos (g) (3—4V—COS¢9)—|—T(1 EV )R0059 (18)

11



o(r,6) = K- ;V\/;sm (g) (3—4v—cos)—T (@) Rsinf (19)

Fig. 3a shows the size of the domain influenced by the strain gradient
plotted as a function of the applied load for the same configuration and ma-
terial properties as above with rggp normalized to the outer radius R and
the normalized applied stress intensity factor going from K; = 3003}\/1_* to
K; = 300035\/7* . The trend described by rsgp could be justified by the in-
fluence of geometrically necessary dislocations on plastic resistance. Since,
as can be seen in (7) and (13), the plastic strain gradient n” is an inter-
nal variable of the constitutive equation of the CMSG theory which acts to
increase the tangent modulus, hence reducing the plastic strain rate. There-
fore, the plastic size effect translates into an additional hardening law, which
causes an increase of the stress level that is enhanced as the applied load in-
creases. Maintaining small-scale yielding (SSY) conditions, three load levels
are considered in the analysis of subsequent parameters: K; = 0.120§\/§,
K; = 0.603VR and K; = 1.205VR.

Fig. 3b shows the plots for the normalized relation between rggp and
the material elastic properties for different values of the yield stress oy. The
results show that as the value of the yield stress increases, the length of the
domain where crack-tip fields are influenced by the size effect decreases. This
is due to the fact that a higher value of oy causes a reduction in plastic defor-
mation, hence downsizing the interval in which the strain gradient influences
the tangent modulus. Note also that while an increase in the value of oy
translates into a higher o;,,, in conventional plasticity, the magnitude of the

term accounting for the strain-gradient effect in (7) is independent of the

12
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Figure 3: Distance ahead of the crack tip where the strain gradient significantly influences
the stress distribution in small strains as a function of (a) applied load K7y, (b) yield stress
oy, (¢) strain hardening exponent N, (d) Poisson’s ratio v, (e) intrinsic material length !

and (f) T-stress.



material yield stress since the intrinsic material length [ (8) also depends on
Oy.

Fig. 3c illustrates the normalized distance over which the strain gradi-
ent significantly influences the stress distribution as a function of the strain
hardening exponent N, with N values varying between 0.1 and 0.4. As seen
in Fig. 3c, the higher the work-hardening degree of the material the lower
the extension of the influence of the plastic size effect on crack-tip fields.
Since, as shown by IShi et al. (2001) for the MSG theory and unlike the HRR
field, the power of stress-singularity in CMSG plasticity is independent of V.
This is because the strain gradient becomes more singular than the strain
near the crack tip, and it dominates the contribution to the flow stress in (7),
implying that the density of geometrically necessary dislocations pg around
the crack tip is significantly larger than the density of statistically stored
dislocations pg.

Fig. 3d shows the variation of the normalized magnitude of the domain
influenced by the size effect for different values of the Poisson’s ratio v (0.2-
0.45). The results show that an increase in the Poisson’s ratio leads to a
reduction in the extension of the differences caused by the plastic size effect.
This is a result of the Poisson’s ratio influence on plastic deformation and its
weight on the intrinsic material length (8).

In Fig. 3e the normalized distance ahead of the crack tip, where the
strain gradient influences the stress distribution, is plotted as a function
of the intrinsic material length [. A range of values for [ of 0.1-100 pm is
considered, since the scale at which the plastic size effect is observed is on the

order of microns (Fleck and Hutchinson, [1993), and corresponds to the range
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of values that can take [ according to (8) for material properties common to
metals. As expected, higher values of [ also result in higher values of rsgp
since the influence of the term associated with the strain gradient inside the
square root in (7) increases.

Fig. 3f shows the variation of the normalized size of the domain influenced
by the strain gradient for different constraint situations. As can be seen,
rsgp decreases as the constraint level increases because of the plastic-zone
size dependence on the elastic T-stress (Wang, [1991). However, the length
of the domain where crack-tip fields are influenced by the size effect shows
very low sensitivity to different crack-tip constraint conditions since changes
on the T-stress value entail the same effect in both CMSG and HRR fields:
negative T-stresses lead to a significant downward shift in the stress fields

whereas positive values of T slightly increase the stress level near the crack.

4. Crack-tip fields with finite strains

Stress distributions in the vicinity of the crack are obtained in the frame-
work of the finite deformation theory. Rigid body rotations for the strains
and stresses are conducted by the [Hughes and Wingetl (1980) algorithm and
the strain gradient is obtained from the deformed configuration since the
infinitesimal displacement assumption is no longer valid.

The initial configuration and the background mesh of the boundary layer
formulation are shown in Fig. 4. A very fine mesh of 6134 CPESR elements
is used to obtain accurate results. As seen in Fig. 5, the hoop stress oy dis-
tribution ahead of the crack line is obtained for both the CMSG and classical

plasticity theories for the same material properties and loading conditions as

15



in Fig. 2.
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Figure 4: Finite element mesh for the boundary layer formulation under large deforma-

tions: (a) complete model and (b) vicinity of the crack

In classical plasticity (McMeeking, 1977), large strains at the crack tip

cause the crack to blunt, which reduces the stress triaxiality locally. How-
ever, because of the strain-gradient contribution to the work-hardening of

the material, this behavior is not appreciated when the plastic size effect

is considered. As proved by McMeeking (1977), in conventional plasticity

the crack-opening stress reaches a peak at approximately the same distance
from the crack tip as the onset of the asymptotic behavior of the plastic-strain
distribution. Therefore, as seen in Fig. 5, the strain gradient influences the
stress distribution of the CMSG theory at approximately the same distance
where a maximum of ogg is obtained in conventional plasticity, significantly
increasing the differences between the stress distributions of the SGP and
classical plasticity theories; the magnitude of the distance where these dif-
ferences occur: rsgp is one order of magnitude higher than that presented
in Fig. 2.

To quantify the domain of influence of the strain gradient under large

deformations, a parametric study is conducted. Furthermore, with the aim
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Figure 5: ogp distribution ahead of the crack tip for both CMSG and classical plasticity
theories in large deformations, r being the distance to the crack tip in log scale for K =

17.30yV1, oy =0.2% of E, v =0.3, N =0.2, and | = 3.53 um

of establishing a comparison, results are obtained in the framework of the
infinitesimal deformation theory; mimicking material properties and loading
conditions. The variation of the normalized distance over which the strain
gradient significantly influences the stress distribution-as a function of mate-
rial properties, constraint conditions, and the applied load-is plotted in Fig.
6. Following the works by IMcMeeking (1977), a relation between the crack
tip and outer radii (R/r = 10°) is considered and a sufficiently higher upper
bound for the load range (K; = 1.20%+v/R) is chosen to ensure a final blunt-
ing five times larger than the initial radius. Since the same range of values
used for each parameter in section 3 is also considered in this case, results
obtained can be compared with those shown in Fig. 4.

The trends shown in Fig. 6 for both large (solid lines) and small (dashed

17
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Figure 6: Distance ahead of the crack tip wHe¥e the strain gradient significantly influences
the stress distribution under small (dashed lines) and large (solid lines) strains as a function
of (a) applied load K7y, (b) yield stress oy, (¢) strain hardening exponent N, (d) Poisson’s
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in Fig. 2 are considered as the reference values (x).



lines) strains are the same as those obtained for the parametric analysis in
section 3. However, significantly higher values of rggp are obtained in all
cases when large deformations are considered. These results reveal that even
in the case of a very small load (K; = 0.120;\/?), accounting for large
strains brings a relatively meaningful influence of the strain gradient. These
differences with respect to the predictions that could be expected from the
classical plasticity theory are much higher for load levels relevant to fracture
and damage in metals (K; = 0.60%v/R and K; = 1.20%v/R). Moreover,
the results show a high sensitivity of the plastic size effect to the material
properties and the applied load, so that a parametric study within the finite
deformation theory is essential to rationally assess the need to incorporate

an intrinsic material length in the continuum analysis.

5. Discussion

The parametric study shows that higher values of the applied load and
the intrinsic material length increase the influence of the strain gradients on
crack-tip fields, whereas the opposite is true for the yield stress; the strain
hardening exponent and the Poisson’s ratio, being rsop less sensitive to the
latter parameter. Results concerning the yield stress are especially relevant
since the hydrostatic stress follows the same trends. Therefore, the plastic
size effect could strongly influence the process of hydrogen embrittlement,
which severely degrades the fracture resistance of high strength steels. This is
due to the central role that the stress field close to the crack tip plays on both
hydrogen concentration and interface decohesion (Lee and Gangloff, 2007).

Also, while results obtained within the infinitesimal deformation theory show
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Previous works established that the domain where SGP effects can sig-
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nificantly elevate stresses over the HRR result for small strains was con-
fined to distances less than 10 pm from the crack tip (Komaragiri et al.,
2008). However, results shown in section 4 reveal that, when finite strains
are considered, stress elevations persist to distances that could be one order
of magnitude higher than those obtained within the infinitesimal deforma-
tion theory. This could have important implications on fracture and damage
modeling of metals since the area where the strain gradient would signifi-
cantly alter the crack-tip fields could span several voids ahead of the crack,
and therefore influence various damage mechanisms that are characteristic
of ductile fracture. Thus, results obtained from this work reveal that in
the presence of a crack, near-tip stress-elevation that are predicted by SGP
theories could significantly influence the probability of cleavage fracture in
ductile-to-brittle transition analyses (Betegon et all, [2008), the prediction of
stress-controlled nucleation of voids at large inclusions (Chu and Needleman,
1980), the value of the parameters intrinsic to micromechanical failure mod-
els (Gurson, [1975; [Tvergaard and Needleman, 1984) when fitted through a
top-down approach, or the onset of damage in stress-related coalescence cri-
teria (Thomason, 1990). This is unlike previous studies on cleavage fracture
and void growth, which did not consider the influence of the plastic strain
gradient in modelization.

Results concerning the MBL formulation (Figs. 3f and 6f) reveal that the
aforementioned influence of the strain gradient on crack-tip fields remains
under different constraint conditions since the size of the domain where sig-
nificant differences between the stress fields of the SGP and the conventional

plasticity theories arise is almost insensitive to changes in the T-stress value.
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6. Conclusions

In this work, the influence of SGP theories on the fracture process of
metallic materials has been numerically analyzed for both small and large
deformations. The extensive parametric study conducted relates material
properties, constraint scenarios, and applied loads with the physical distance
ahead of the crack tip where the strain gradient significantly influences the
stress distribution, thus identifying the conditions where the plastic size effect
should be included in crack-tip damage modeling.

Moreover, the incorporation of large strains and finite geometry changes
in the numerical model reveals a meaningful increase in the domain influenced
by the size effect, which may indicate the need to take consider the influence
of the plastic strain gradient in the modelization of damage mechanisms,

which has not been considered so far in the literature.
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