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Abstract

The transient spreading of a viscous fluid beneath an elastic sheet adhered to the substrate is

controlled by the dynamics at the tip where the divergence of viscous stresses necessitates the

formation of a vapour tip separating the fluid front and fracture front. The model for elastic-

plated currents is extended for an axisymmetric geometry with analysis showing that adhesion

gives rise to the possibility of static, elastic droplets and to two dynamical regimes of spreading;

viscosity dominant spreading controlled by flow of viscous fluid into the vapour tip, and adhesion

dominant spreading. Constant flux experiments using clear, PDMS elastic sheets enable new,

direct measurements of the vapour tip, and confirm the existence of spreading regimes controlled

by viscosity and adhesion. The theory and experiments thereby provide an important test coupling

the dynamics of flow with elastic deformation and have implications in fluid-driven fracturing of

elastic media more generally.
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I. INTRODUCTION

The geometry and propagation of fluid-driven fractures is determined by a competition

between the flow of viscous fluid, the elastic deformation of the solid and the energy re-

quired to create new surfaces through fracturing. These processes feature industrially in

the hydraulic fracturing of shale [2], but are also commonplace in nature, from magmatic

intrusions in the Earth’s crust [3, 4], to the propagation of cracks at the base of glaciers

[5]. The relationship between elastic deformation and adhesion energy has been successfully

considered for the development of stretchable electronics made from buckled nanoribbons

[6, 7]. Similarly, the coupling of viscous spreading and elastic deformation has been analysed

when looking at the dynamics of blisters spreading over a pre-wetted film [8] with applica-

tions to the flow of biofluids through deformable vessels [9] and the suppression of viscous

fingering in an elastic-walled Hele-Shaw cell [10]. However, the physical processes underlying

the dynamics of the fluid-driven fracturing of thin adhered elastica remain unexplored and

unobserved.

The transient spreading of a viscous fluid beneath an adhered elastic sheet is controlled

by the dynamics at the tip. The centrality of the physics at the contact line is directly

analogous to the capillary-driven spreading of a droplet, where elasticity plays the role of

surface tension. Near the front, a large negative pressure gradient is needed to drive the

viscous fluid into the narrowing gap of the fracture where the rate of viscous dissipation

diverges. This is the elastic equivalent of Huh and Scriven’s paradox [11], and theoretically

leads to the immobility of the contact line. In the context of a spreading droplet, microscopic

mechanisms such as a precursor film [12] and relaxation of the no-slip conditions at the

front [11] have been proposed to account for experimental observations. For the problem

of a viscous fluid spreading underneath an elastic sheet, a macroscopic precursor film has

been used to regularise this contact-line singularity [8], but this fails to explain fracturing

phenomena, as found in magmatic intrusions, where there is no evidence of a pre-wetted

surface.

We show through consideration of a simple lubrication model that a fluid lag, or vapour

tip, between the fluid front and the fracture front can be used to regularise the tip, Fig. 1.

The large negative pressure gradient at the tip is limited by the vapour pressure of the fluid,

and hence the fracture front travels faster (at the elastic wave speed in the solid) while the
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fluid lags behind. This physical process leads to emergence of a fluid lag that regularises

the dynamics at the tip [1]. Importantly we demonstrate an experimental system capable

of characterising this vapour tip, thereby confirming its presence and role in the transient

dynamics. A fluid lag has previously been invoked in other contexts, when modelling penny-

shaped cracks [13] and buoyancy-driven fractures [14], and has been observed in laboratory

experiments on the fracturing of elastic blocks [15–17] but has not been systematically char-

acterised. Our development of a theoretical model and consistent laboratory experiments

using thin elastica lead to a simpler analysis and treatment of fluid-driven fracturing and

provides a usefully reduced system in which to understand the dynamics of fluid-driven

fracturing, with direct biological and manufacturing implications.

To delaminate adhered elastica, the energy required to create new surfaces is ∆γ =

γ
(sheet)
SV + γ

(substrate)
SV − γSS, where γSV is the solid-vapour surface energy and γSS the solid-

solid surface energy. This imposes a curvature at the fracture front, or fracture criterion,

given by

κ =
√

2/lec, where lec = (B/∆γ)1/2 (1)

is the elastocapillary length scale, with bending stiffness B. This curvature condition is

obtained from an energy balance at the crack tip where the elastic strain energy in the

sheet is balanced by the creation of new surfaces [18, 19]. The quasi-static condition may be

derived by energy minimisation at the crack tip, and assumes a separation of scales between

the fast fracturing dynamics and the relatively slow fluid dynamics driving tip propagation.

The material strength of adhesion at the crack tip allows for the possibility of static solutions,

and controls the long-time behaviour of spreading.

We show that two dynamical regimes are possible; viscosity dominant spreading controlled

by the pressure gradient driving fluid into the vapour tip and adhesion dominant spreading

controlled by interfacial adhesion. These two regimes are analogous to the limiting regimes

of propagation for a semi-infinite hydraulic crack in an elastic medium [13]. In the elastic

bending case considered here, we demonstrate an asymptotic model for propagation in the

adhesion and viscosity dominated limits by resolving the behaviour of the vapour tip.

We note that since submitting our manuscript for publication, we have been made aware

of a recent publication that presents a comparable analysis of the problem of fluid-driven

fracturing of adhered thin-elastica in which two regimes of propagation are described in the

context of near-surface hydraulic fractures [20]. This work complements the mathematical
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FIG. 1. (a) Schematic diagram of the theoretical model and experimental setup with the physical

parameters in the system. (b) Photograph of an experimental fluid front showing the lag between

the fluid front and fracture front.

approach taken here, where in addition the results of these analyses have been tested experi-

mentally, demonstrating the formation of a vapour tip and different regimes of propagation.

This paper is structured as follows. Section II presents the static blister shapes and

dynamic model demonstrating the transition from viscosity dominant to adhesion domi-

nant spreading within the thin elastica framework. Section III describes the experimental

setup and methods. Finally, the experimental results are analysed and compared with the

theoretical model in Sec. IV.

II. THEORETICAL MODEL

To examine the fluid-driven delamination of an adhered elastic sheet (see Fig. 1), a

volume of fluid of density ρ and viscosity µ is injected beneath an elastic sheet of thickness

d and density ρs initially adhered to a horizontal substrate with adhesion energy ∆γ. Here,

motivated by our experiments (discussed in Sec. III), we assume axisymmetric spreading

and elastic deformation. In all dynamic cases the fracture front, RN , extends beyond the

fluid front, RF , such that a vapour filled tip exists of length L = RN−RF . The contribution

to the pressure due to bending stresses dominates over contributions from tensional forces

when the vertical deflection of the sheet is smaller than the thickness, h(r, t)� d. Hence the

reduced pressure can be written as p̃ = p− p0 − ρsgd = B∇4h+ ρg(h− z), where tension is

neglected, p is the pressure in the fluid, and p0 is a reference pressure with bending stiffness

B = Ed3/12(1 − ν2), where E and ν are the Young’s modulus and Poisson’s ratio of the
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sheet respectively.

For large aspect ratios we may balance viscous drag with the hydrostatic and elastic

pressure gradients to describe the deflection of the sheet [24],

∂h

∂t
=

1

12µ

1

r

∂

∂r

[
rh3

∂

∂r

(
B∇4h+ ρgh

)]
, (2)

where global mass conservation gives

V (t) = 2π
∫ RF

0
hr dr. (3)

The balance between elastic stresses and gravity acting on the fluid gives rise to a natural

horizontal, elastogravity length scale, leg = (B/ρg)1/4, and hence characteristic height and

time scales may be defined as H0 = (12µQ/ρg)1/4 and T0 = H0l
2
eg/Q respectively, where Q

is a typical volume flux.

A. Static shapes

Adhesion of the sheet at the perimeter allows for the possibility of static solutions with no

vapour tip, RN = RF , analogous to the capillary sessile drop [21]. The potential energy of

the blister is balanced by the energy of adhesion between the elastic sheet and the horizontal

substrate. For a constant volume V , this gives rise to static shapes with uniform pressure

p̃. The potential energy of the blister has contributions from elastic deformation, and from

the gravitational potential. When the radius is smaller than the elastogravity length scale,

RF � leg, the pressure within the blister is dominated by bending stresses with p̃ ' B∇4h.

At the origin the imposition of zero slope and bending moment ensure that the mathematical

description of the height of the sheet does not diverge as r → 0. For static shapes the fracture

and fluid fronts coincide, and continuity with the adjoining adhered regions requires that

the height and gradient of the sheet are zero at the front, h = ∇h = 0 at r = RF . The

deflection reduces to the classic bell-shaped form [22, 23]

h(r) =
p̃R4

F

64B

(
1− r2

R2
F

)2

, (4)

see Fig. 2 (i) (inset). Global mass conservation (3) and the curvature condition at the

front due to adhesion impose V = πp̃R6
F/192B and κ = p̃R2

F/8B respectively, where κ =
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√
2/lec [7], and thus determine the radial extent and central deflection,

RF =
(

24V

πκ

)1/4

and h0 =
(

3κV

8π

)1/2

. (5)

In contrast, for larger volumes when the radius is much greater than the elastogravity

length scale, RF � leg, gravity becomes important and the uniform pressure contains both

elastic and hydrostatic contributions, p̃ = B∇4h+ρgh. In the interior, the pressure is nearly

hydrostatic and hence the height is uniform, h ' h0, and the profiles are flat topped. Near

the front, on a length scale O(leg), the hydrostatic pressure is balanced by elastic stresses

due to bending the elastic sheet over the periphery. Adhesion at the fracture front imposes

the curvature of the sheet as it touches down, κ ∼ h0/l
2
eg, which thereby determines the

height of the static elastic droplet. (Note that for an axisymmetric blister the second radius

of curvature, ∼ 1/RF , does not play a role in fracturing as the tip may be considered roughly

two-dimensional for RF � h, d). An analytic solution can be found by matching the interior

profile of uniform height with the peripheral bending region, where p ' BhIV + ρgh. This

gives profile

h(r) = κl2eg
[
1− eX (cosX − sinX)

]
, (6)

where X = (r − RF )/
√

2leg, see Fig. 2 (ii) (inset). In this sessile, elastic limit the radial

extent and central deflection are

RF =

(
V

πκl2eg

)1/2

and h0 = κl2eg. (7)

Fig. 2 (a, b and c) shows the transition from bending dominant to gravitationally dominant

profiles, radial extent and central deflection with increasing volume (blue curves) along with

asymptotic scaling from Eqn. 5 and 7 (black dot-dashed lines).

These static shapes arise due to the balance between adhesion of the elastic sheet and the

substrate at the periphery and the hydrostatic and elastic potential energy of the blister.

In Sec. II B we will show that at late times, the dynamic spreading of the fluid blister

transitions through a series of quasi-steady equilibrium states given by these static solutions

with V = Qt.

B. Dynamic spreading

In contrast to the static case, dynamic inflation leads to the emergence of a vapour tip.

Viscous stresses diverge at the tip requiring a large pressure gradient to drive viscous fluid
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FIG. 2. (a) Plot of the static profiles for a constant volume V transitioning from bending to

gravitationally dominated regimes. Inset (i) shows numerical solution in the pure bending regime

(blue dots) plotted on top of theoretical profile Eqn. 4 (red curve), and (ii) the numerical solution

in the gravity dominant regime with a bending tip (blue dots) plotted on top of theoretical profile

Eqn. 6 (green curve). (b) Dimensionless radial extent with volume. (c) Dimensionless central

deflection with volume.

to the fracture front. The pressure in the fluid is limited by the vapour pressure, and hence

the fracture front travels faster (at the elastic wave speed in the solid) while the fluid lags

behind. This physical process regularises the dynamics at the tip by introducing a finite

fluid thickness at the fluid front [1]. An examination of the dominant length scales at the tip

reveal two possible behaviours when the volume V (t) = Qt; either the expansion of the fluid

blister is controlled by viscous dissipation, or by the requirement to overcome the energy of

adhesion.

At early times, RF � leg, the evolution of the blister is slow so that the viscous pressure

losses from the fluid input to the fluid front are small, and therefore the interior pressure

is nearly constant. The deflection of the sheet in this limit takes the bell-shaped form

described in (4). The rate at which the blister expands is determined entirely by processes

at the fluid front. Assuming that the radial extent of the fluid greatly exceeds the length

of the vapour tip, RF � L, we can treat the tip region as two-dimensional with reduced

pressure p̃T = pT − p0 − ρsgd = BhIV , where σ = −p̃T is large and the vapour tip pressure

pT is negligible compared with atmopsheric pressure p0 and the weight of the beam [1, 2].
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For large values of σ the regularisation is only felt over a small boundary layer near the

fluid front. Hence the interior profile can be given by the static solution, (4). As in the

static case, continuity at the tip requires the height and gradient to be zero h = h′ = 0 with

fracture criterion h′′ = κ at r = RN . The deflection of the sheet in the vapour tip may then

be written as

h(r, t) = − σ

24B
(RN − r)3(RN − r − L) (8)

+
h(RF , t)

L3
(RN − r)3 −

κ

2L
(RN − r)2(RN − r − L),

for RF , RN � h, d, which extends the vapour tip model ([1], equation (3.5)) to include

adhesion at the fracture front. From (8), it is apparent that the curvature at the fluid

front is imposed by adhesion and the dynamics of the propagating fluid interface, κF '

2h(RF , t)/L
2 ' κ+σL2/8B. This defines a natural length scale LC = (Bκ/σ)1/2 over which

the curvature due to adhesion is felt. A comparison of this length scale with the size of the

vapour tip, L, may be used to determine the dominant physics controlling spreading. When

L � LC the curvature at the fluid front is dominated by the viscous fluid dynamics and

spreading is in the viscosity dominant regime. In contrast, when L � LC the curvature at

the front is imposed by the adhesion criterion, and spreading is adhesion dominant.

To determine the length of the lag region L and hence the spreading rate we look for a

travelling wave solution near the fluid front of the form h = hFf [ξ ≡ (r − RF (t))], which

satisfies (2),

−ṘFhFf
′ =

Bh4F
12µ

(
f 3fV

)′
⇒ −ṘF =

Bh3F
12µ

f 2fV , (9)

using mass conservation at the fluid front ṘF = limr→RF
−h2pr/12µ, where f ′ = ∂f/∂ξ, fV =

∂5f/∂ξ5 and pr = ∂p/∂r. This balance at the fluid front may be used to define a viscous

peeling length scale lp = (Bh3F/12µṘF )1/5 [8]. We solve (9), along with three unknowns

(RF , hF andL), subject to matching the deflection and its first four derivatives at the fluid

front (8), along with boundary conditions of constant interior curvature f ′′ → const, as

well as f ′′′, fV → 0 as ξ → −∞. In the viscosity controlled regime, the curvature is

κF ' 2hF/L
2 ' σL2/8B, where lp is the dominant length scale at the tip and hence L ' lp.

The viscous peeling length scale is then

lp =

(
212(12µ)B2ṘF

σ3

)1/7

(10)
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and demonstrates that spreading is viscosity controlled at early times providing ṘF is suf-

ficiently large, and hence L ' lp � LC . The fluid front exhibits a dynamic curvature that

can be defined without recourse to adhesion [24],

κF '
2hF
L2
' σL2

8B
'
(

23(12µ)2σ

B3

)1/7

Ṙ
2/7
F , (11)

and it is this curvature which initially controls the propagation. Hence, this gives an evolu-

tion equation for the fluid front given an interior curvature κint,

ṘF '
(

B3κ7int
23(12µ)2σ

)1/2

. (12)

Matching onto the interior curvature κint = 24Qt/πR4
F from (4) for a constant flux injection

an asymptotic model for the radial extent, central deflection and lag length in the viscosity

dominant regime can be found,

RF (t) = 1.52

(
Q7B3

(12µ)2σ

)1/30

t3/10, (13)

h0(t) = 0.41

(
(12µ)2σQ8

B3

)1/15

t2/5, (14)

L(t) = 1.19

(
(12µ)4B9Q

σ13

)1/30

t−1/10, (15)

(see the Supplemental Material [25]), where (13–15) are the axisymmetric generalisations of

the two-dimensional results provided in [1]. We emphasise that these initial solutions are

independent of the adhesion at the front.

At later times, t > (12µ)4/3Q1/3σ2/3/B2κ5, the decrease in the velocity ṘF , implies that

lp � LC , and there is therefore a transition to adhesion control where the viscous peeling

length scale no longer dominates the curvature at the tip. The curvature at the fluid front

is predominantly that imposed by adhesion, κF ' κ, and the blister transitions through a

series of quasi-static solutions, identical to those described by (5), now with V = Qt,

RF (t) =
(

24Q

πκ

)1/4

t1/4, (16)

h0(t) =
(

3κQ

8π

)1/2

t1/2. (17)

Importantly, these late time solutions are now independent of the fluid viscosity, as well as

the presence (and hence length) of a vapour tip.
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The lag length L may be calculated a posteriori by considering mass conservation at

the fluid front, ṘF ' h2Fσ/12µL, where there is a jump in pressure of O(σ) at the fluid-

vapour interface, and the curvature due to adhesion, 2hF/L
2 ' κ. Hence the lag length is

determined by the slow flow of a viscous fluid infilling a wedge whose geometry is governed

by adhesion,

L(t) = 0.82

(
(12µ)4Q

σ4κ9

)1/12

t−1/4. (18)

It can be shown that the assumptions of constant interior pressure and pure bending

(r � leg and h � d) are valid provided (12µB/Qσ2)1/2 � t � l4egκ/Q, d
2/Qκ by sub-

stituting the scalings for the two regimes into the original time evolution equation for the

deflection (2). For axisymmetric spreading the transition from viscosity dominant to ad-

hesion dominant spreading occurs at transitional horizontal, height and time scales RC =

(12µQ)1/3σ1/6/B1/2κ3/2, HC = (12µQ)2/3σ1/3/B7/15κ2, and TC = (12µ)4/3Q1/3σ2/3/B2κ5,

respectively. Note that these may occur before/after the transition to gravity.

In summary, dynamic spreading of a fluid beneath an elastic sheet is governed by a

competition between elastic deformation of the sheet and either viscous dissipation or the

energy required to overcome adhesion. At early times, the spreading is viscosity dominant,

controlled by the pressure gradients driving viscous fluid into the tip, and given by the

no-adhesion solution, [1]. When lp � LC , there is a transition to adhesion control, where

the lag length no longer plays a role in the propagation of the fluid front and spreading is

independent of viscosity of the fluid and pressure in the vapour tip. The regimes described

here have parallels with those described for a semi-infinite hydraulic fracture evolving from

a viscosity dominant to a toughness dominant crack in an elastic half-space [13], and, as

shown in the following section, can be readily observed in experiments on thin elastica.

III. EXPERIMENTAL METHODS

Experiments conducted to investigate the fluid-driven fracturing of adhered elastica con-

sisted of injecting a viscous fluid beneath an elastic sheet adhered to a horizontal substrate

(see Fig. 1). An elastic sheet of polydimethylsiloxane (PDMS) was used with diameter

917 ± 1 mm and thickness d = 9.8 ± 0.3 mm. The bending stiffness B = 0.18 ± 0.02 Pa m3

was measured using loop [26] and circular blister tests [27]. The PDMS sheet was manually

adhered to a horizontal glass table using TUFFBondTM Adhesive Mount Film of thickness
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FIG. 3. Images of an experiment with viscosity and volume flux µ = 2.12 Pa s, Q = 3.09 ×

10−7 m3s−1 respectively at t = 64 s taken from (a) underneath the experiment showing the radial

extent and lag region (N.B. the injection pipe is obscuring the left-hand side of the image), and

(b) above at an oblique angle φ to the horizontal showing the fluorescent line painted on top of

PDMS sheet with a filtered image showing the deflected line. (c) Expanded view of the edge of

the experiment shown in (a) filtered to demonstrate intensity contrast between vapour tip and

the substrate. Fluid front given by the black-dashed line with lag lengths given by pairs of red

dots. (d) Lag length with time for two experiments in the viscosity dominant regime with different

viscosities µ and volumes fluxes Q.

0.15 ± 0.01 mm. Glycerine-water solutions were injected between the glass table and com-

posite PDMS and adhesive sheet. Injection was through a 5.5 mm diameter aperture and

the flux was determined by measuring the volume injected on the table from the deflection

profiles.

The deformation of the PDMS sheet was measured by imaging a fluorescent line on
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top of the sheet at a known oblique angle φ, as shown in Fig 1. To improve the contrast

between the line and the background, the line was illuminated by a blue light and the blue

colour channel was isolated in the digital images acquired. A filtered image taken using this

method is shown in Fig. 3(b) demonstrating the contrast achieved. Deflections of the line

are determined by comparing with a reference image of the undeformed PDMS taken prior

to injection. A Gaussian was then fit to the intensity profile across the line in a strip of

pixels where the central peak was chosen as the centreline. To reduce scatter, an average

was taken every 10 pixels. The final profile for this sample snapshot is plotted in Fig. 4 for

time t = 64 s, viscosity µ = 2.12 Pa s and volume flux Q = 3.09× 10−7 m3s−1.

The fluid and fracture fronts were measured by imaging from underneath the glass sub-

strate using a mirror placed at 45◦ to the base (see Figs. 1, 3(a)). A high contrast between

the fluid and the substrate meant the fluid front could be computed directly from the image

using an edge-detection algorithm, as demonstrated in Fig. 3(c) by the black-dashed line.

Due to the small, non-axisymmetric deviations, a circle was fit to the points detected at the

fluid front to give radial extent RF at each timestep.

Partial internal reflection within the vapour tip allowed for distinction between the fluid

front and fracture front. This is demonstrated in Fig. 3(c) where the blue colour channel is

isolated and the contrast increased. The scatter in the brightness of the vapour tip meant

the fracture front could not be determined from an edge-detection algorithm. As a result,

the fracture front was manually tracked at 10 points around the edge of the blister. The

red dots in Fig. 3(c) show the edge-detected RF and manually picked RN . The lag length

is determined at each pair of points and an average is taken for each timestep. The results

of this procedure are shown in Fig. 3(d), with the error given by the standard deviation of

the 10 points measured at each timestep.

The adhesion energy ∆γ of the adhesive film was measured using a two-dimensional lift-off

experiment. A 30 cm×8 cm strip of PDMS was adhered to the glass table with the adhesive

film. One end of the strip was uplifted using a micrometer in 0.2 mm increments and the

resulting profile at each height determined by imaging a fluorescent line painted along the

length of the strip. By translating the fracture position, the profiles can be collapsed onto

one curve with the same tip structure. The curvature κ, and hence adhesion energy ∆γ, can

then be calculated by fitting a quadratic to the profiles (see Supplemental Material [25]).

From four independent experiments, the curvature is measured to be κ = 2.94 ± 0.15 m−1,
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and hence adhesion energy ∆γ = 0.78± 0.17 Jm−2. This adhesion energy is comparable to

values previously obtained for similar tapes [18].

IV. RESULTS AND DISCUSSION

Using the PDMS sheet described above, the elastogravity length scale of leg = 65 mm

restricts our experiments to a short radial range. Hence, in our current setup we cannot walk

from one regime to another without the influence of gravity. As such we look at the viscosity

and adhesion regimes separately. From our measurements of the adhesion energy and taking

an estimate of the reduced tip pressure σ = 101 × 103 Pa (which we will justify later when

describing the measured lag length) we can calculate the transition timescale TC . Table I

lists the series of experiments carried out in terms of viscosity µ and volume flux Q, where

experiments 1–6 have a large transition timescale, TC = 93.0−154.1 s, and experiments 7–12

have a small transition timescale, TC = 0.4−5.7 s. By equating the expressions for the radial

extent in the two regimes (13, 16), the time of transition tC = ((24/π)1/4/1.52)20 ' 6.0TC .

Hence, we would anticipate experiments 1–6 to be in the viscosity dominant regime and

experiments 7–12 to be in the adhesion dominant regime.

A. Viscosity dominant spreading

In experiments 1–6 in the viscosity dominant regime, see table I, pure glycerine was used

with viscosities µ = 1.67−2.12 Pa s and volume fluxes Q = (1.43−3.09)×10−7 m3s−1. Fig. 4

shows the measured deflection for an experiment with viscosity µ = 2.12 Pa s and volume

flux Q = 3.09 × 10−7 m3s−1 for t = 64 − 130 s, with profiles plotted every ∆t = 6 s. From

Sec. II, Eqns. 13 and 14 describe the radius and central deflection at time t in the viscosity

dominant regime. By scaling the radius and height of the profiles in Fig. 4(a) by these

expressions for RF and h0, the profiles collapse on to a universal curve described by (4), see

Fig. 4(b). The black-dashed line shows the theoretical profile given by Eqn. 4 demonstrating

agreement with the collapsed dataset. This confirms that in the dynamic spreading case the

shape of the blister remains unchanged from the classic bell-shaped profile.

Because the pressure within the central blister was quasi-static, the position of the blister

with respect to the injection hole was only weakly constrained and hence was very sensitive
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Experiment µ (Pa s) Q (10−7 m3s−1) TC (s) κadh (m−1)

1 1.76 1.43 93.0 n/a

2 1.76 1.74 99.3 n/a

3 1.69 2.12 100.5 n/a

4 1.67 2.40 103.1 n/a

5 1.78 2.83 118.4 n/a

6 2.12 3.09 154.1 n/a

7 0.17 1.64 4.3 2.91 ± 0.25

8 0.16 4.81 5.7 3.04 ± 0.28

9 0.15 1.58 3.6 2.53 ± 0.15

10 0.11 3.12 3.0 2.48 ± 0.26

11 0.07 1.56 1.3 2.03 ± 0.17

12 0.03 1.60 0.4 1.42 ± 0.26

TABLE I. Experimental parameters for 12 experiments with varying viscosities µ and volume fluxes

Q. The transition timescale TC is calculated using bending stiffness B = 0.18 Pa m3, reduced

vapour tip pressure σ = 101 × 103 Pa and measured curvature κ = 2.94 ± 0.15 m−1. κadh is the

tip curvature measured during experiments in the adhesion dominant regime, and hence is not

applicable to experiments 1–6 in the viscosity dominant regime.

to initial experimental conditions. For example, the differing angle the injection pipe made

to the horizontal substrate, or small differences in the adhesion energy in the immediate

vicinity of the injection hole resulted in migration of the blister off-centre, see Fig. 3(a).

At the start of each experiment, the fluorescent line on the PDMS sheet was aligned with

the injection hole, and hence for the same experiments the detected deflection profile is of

a chord taken slightly off-centre. For these reasons, the magnitude of the measured radius

and height in Fig. 4(a) are less than the theoretical prediction for a profile through the

origin, i.e. the dimensionless radial extent and central deflection in Fig. 4(b) are less than 1.

However, providing the offset from the origin is sufficiently small, we would still anticipate a

bell-shaped profile given by Eqn. 4 as shown in the collapse of profiles in Fig. 4(b). Once the

injected volume is large enough, the influence of this non-axisymmetry subsides and hence

does not influence the dynamics analysed below.
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FIG. 4. Deflection profiles for an experiment in the viscosity dominant regime with viscosity

µ = 2.12 Pa s, volume flux Q = 3.09 × 10−7 m3s−1, σ = 101 × 103 Pa for t = 64 − 130 s, where

∆t = 6 s. (a) Measured deflection, and (b) deflection scaled with theoretical expressions (13, 14).

The black-dashed line shows the theoretical profile (4).

Fig. 5(a) shows the radial extent with time for six experiments with different volume

fluxes in the viscosity dominant regime. In Fig. 5(b) the radial extent is scaled with

(Q7B3/((12µ)2σ))1/30 from Eqn. 13. This scaling collapses the experimental data after the

initial transient close to a common curve with power law exponent 3/10, in line with the

theoretical scaling RF ∼ t3/10 in the viscosity dominant regime. The black-dashed line in

Fig. 5(b) corresponds to the best fit line RF/(Q
7B3/((12µ)2σ))1/30 = 1.40 t3/10, where the

prefactor is within 8% of the theoretical prefactor 1.52.

For the viscosity dominant regime, we manually measured the lag length using the meth-

ods described in Sec. III, see Fig. 3(c). Fig. 3(d) plots the lag length for two experiments

with volume fluxes Q = (1.43, 2.40)×10−7 m3s−1, where L is the average of the measured lag

lengths and the error bars are one standard deviation above and below the mean. The over-

lapping error bars for the two experiments suggest there is no measurable difference between

the lag lengths which is supported by the negligible dependence on the volume flux, Q1/30,

in Eqn. 15. The black dashed and dot-dashed lines in Fig. 3(d) are Eqn. 15 plotted with

σ = 101×103, 60×103 Pa respectively. If the vapour tip produces a vacuum pressure at the

front the vapour tip pressure would be zero, pT = 0, and hence σ = p0+ρsgd−pT ' 101×103

Pa. The magnitude of the lag length observed suggests the tip pressure is non-negligible.
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FIG. 5. Radial extent with time in the viscosity dominant regime. (a) Measured radial extent,

and (b) radial extent scaled with (Q7B3/((12µ)2σ))1/30. Black-dashed line corresponds to best fit

RF /(Q
7B3/((12µ)2σ))1/30 = 1.40 t3/10.

Either some small amount of air may have been trapped when placing the adhesive sheet

onto the glass substrate. These bubbles may act to increase the pressure at the tip and

hence explain the smaller value of σ required to fit the lag length observed. Alternatively,

some of the aqueous glycerine solution may have evaporated into the tip, suggesting that

the pressure in the vapour tip is approximately equal to the vapour pressure.

The measured lag length also appears to be smaller at early times, in contrast to our

theoretical prediction. However, it should be noted that Eqn. 8 has been written in the

limit RF � L, which may be violated at early times. As a result, when fluid is first injected

the elastic sheet is clamped at the radius of the injection hole, and the sheet is lifted up by

the injection of fluid with a small lag length at the front. As the blister begins to propagate

beyond this radius the lag length first increases as it relaxes to the dynamically determined

extent. This transient behaviour can be seen in Fig. 5(b) where the radial extent does not

collapse at early times and in Fig. 3 where the lag length increases initially, and continues

until the pressure decreases to that given by the elastic pressure i.e. until the blister is large

enough that the initial pressure build up is negligible. The constant lag length observed at

late time during the viscosity dominant spreading is then consistent with the slowly varying

lag length L ∼ t−1/10 predicted by the theoretical model.
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B. Adhesion dominant spreading

In experiments 7–12, see table I, in the adhesion dominant regime, glycerine-water solu-

tions were used with viscosities µ = 0.03− 0.17 Pa s and volume fluxes Q = (1.56− 4.81)×

10−7 m3s−1. Fig. 6(a) shows the measured radial extent with time. Under the assumption

that the adhesion energy is constant and with fracture front curvature given by measured

value κ = 2.94±0.15 m−1, we scale the radial extent by Q1/4 from Eqn. 16 and find that the

prefactor c, where RF = c(Qt)1/4, is dependent on the glycerol-water content of the injected

fluid. From Eqn. 16, c is a constant set by the curvature imposed by adhesion at the fracture

front. Hence, we find that the curvature at the fracture front, which is constant for any given

experiment, differs from the measured static value κ and varies with the fluid viscosity. The

curvature, or equivalently the adhesion energy, is therefore a function of the glycerol-water

content, with blistering a sensitive measure of the effective surface energy of the adhesive

tape in response to interaction with a fluid. We independently measure the curvature κadh

for each experiment by fitting a quadratic to the tip region of the detected deflection pro-

files, see table I. This demonstrates a decrease in curvature from the static measurement

κ with decreasing viscosity. Fig. 6(c) (inset) plots the measured curvature κadh against

the prefactor c for the six experiments (see the Supplemental Material [25]). We find that

c = c(κadh) where c = 1.45κ
−1/4
adh , black-dashed line, where the exponent of κadh agrees with

the static scaling given by Eqn. 16. In Fig. 6(b) the radial extent is scaled by (Q/κadh)1/4

using the measured values of κadh. This shows a collapse of the experimental data after the

initial transient onto a common curve with power law exponent 1/4, in line with theoretical

prediction, where the black-dashed line is best fit RF/(Q/κadh)1/4 = 1.45 t1/4. The prefactor

is within 13% of theoretical prefactor 1.66; this discrepancy is largely due to the inherent

limitations in the measurement of experimental curvature κadh.

Unlike in the viscosity dominant regime, in the adhesion dominant regime no measurable

lag region was observed during experiments, however condensation droplets were seen when

pulling off the adhesive tape. This suggests that the vapour tip was present and at low

enough pressures to exsolve gas from the glycerine-water mix but was of sufficiently small

scale such that it could not be distinguished from the fluid front during experiments using

our optical technique. Substituting the experimental parameters µ, Q and κadh, and taking

σ = 101 × 103 Pa, into the expression for the lag length in the adhesion dominant regime
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FIG. 6. Radial extent with time in the adhesion dominant regime. (a) Measured radial extent. (b)

Radial extent scaled with (Q/κadh)1/4. Black-dashed line corresponds to best fit RF /(Q/κadh)1/4 =

1.45 t1/4. (c) (inset) Measured curvature κ plotted against measured prefactor c, where RF =

c(Qt)1/4. Black-dashed line given by c = 1.45κ
−1/4
adh .

Eqn. 18 gives L ' 0.8 − 1.2 × 10−3 m. This is consistent with a lag length which was

below the image resolution as demonstrated in Fig. 3. We hypothesise that the decrease in

curvature (and hence decrease in adhesion energy ∆γ) with viscosity can be explained by a

chemical interaction between the fluid and adhesive material when the lag length becomes

small. This weakens the adhesive strength, and hence reduces the curvature.

V. CONCLUDING REMARKS

Our theoretical model describes fluid-driven fracturing of adhered elastica by the intro-

duction of a vapour tip separating the fracture and fluid fronts. Coupled with a fracture

criterion imposed at the tip, this leads to the possibility of static shapes where the poten-

tial energy of the blister balances the energy required for fracture. For dynamic inflation,

spreading can be split into two distinct regimes: viscosity dominant spreading controlled by

the pressure gradient driving fluid into the vapour tip, and adhesion dominant spreading

controlled by interfacial adhesion. Experiments using thin elastica adhered to a horizon-

tal substrate have yielded consistent comparisons with theoretical predictions in the two

regimes. The experimental techniques developed have also provided further evidence for

the formation of an experimental vapour tip, again consistent with that proposed by the
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theoretical model. However, the nature of the tip region in terms of its small size have made

measurement of the time evolution of the vapour tip difficult. In addition, the complex-

ity of the adhesive due to the interaction with the glycerine-water solutions have made it

challenging to characterise. This highlights that more work needs to be done to concretely

nail down the role the tip plays in the dynamics. In particular, considering how alternative

combinations of the injected fluid and adhesive tape could (a) make the tip easier to mea-

sure, and (b) reduce the interaction between the fluid and the adhesive. Nonetheless, these

experiments provide a simple setup to investigate fluid-driven fracturing of elastic media

and observe the formation of a fluid lag, previously only observed in laboratory experiments

on the fracturing of elastic blocks [15–17].

Static blister tests have long been used as a measure of the strength of adhesion between

two materials [7, 28]. The coupling of viscous fluid delaminating adhered elastica has moved

concentration towards the study of blister dynamics [1, 8] with application in a wide range

of biological and industrial settings. These include the flow of biofluids through deformable

vessels [9] such as the reopening of the pulmonary airways [29]; and the manufacturing

of stretchable electronics [6] made from buckled film on an elastomeric substrate [30]. The

experiments described in Sec. IV have highlighted that blister dynamics could again usefully

be applied to understanding the strength of adhesion with blistering providing a sensitive

measure of the effective surface energy of the adhesive tape in response to interaction with

a fluid. In addition, the treatment of using thin elastica coupled with an adhesive sheet has

provided a simple, new approach to understanding fluid-driven fracturing in an experimental

setting. Hence, this experimental setup could lend itself to investigating other outstanding

problems such as the effect of inhomogeneity in adhesive strength on the dynamics of fluid-

driven fractures.

In Sec. II we described the static shapes for a given volume V and the dynamic spreading

regimes for a constant flux injection, V = Qt. One can think of connecting these two

cases by considering the evolution of a blister once injection has stopped at time t = T , or

equivalently the dynamic spreading of a constant volume V = QT . As the in the constant

flux case, spreading can be separated into two regimes: viscosity dominant spreading and

adhesion dominant spreading. An evolution equation for the fluid front in the viscosity

dominant regime can be found by substituting the interior curvature κint = 24QT/πR4
F
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from (4) into (12). Hence the fluid front is given by

RF (t) = 1.68

(
(QT )7B3

(12µ)2σ

)1/30

t1/15, (19)

where the lag length decreases more rapidly than in the constant flux case with

L(t) = 0.97

(
(12µ)4QTB9

σ13

)1/30

t−2/15. (20)

In the adhesion dominant regime, the blister reaches the static shape (4) with constant

radial extent and central deflection (5), where V = QT , with no lag between the fluid

and fracture fronts. Equating these two expressions gives transitional timescale TCV
=

12µ(QT )1/4σ1/2/B3/2κ15/4. Hence, for a constant flux injection, if the injection is stopped

at some time t = T < TCV
the blister will continue to propagate slowly in the viscosity

dominant regime with radial extent (19) and decreasing lag length (20). When t > TCV
,

there will be a transition to adhesion control where the fracture front becomes stationary.

Conversely, if T > TCV
the fracture front will become stationary when the injection is

stopped. This provides a mechanism for stopping a fluid-driven fracture, something that is

often overlooked when considering the propagation, say, of magmatic intrusions rather than

requiring solidification.
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