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Abstract 

A new method of regularization of 1D and 2D NMR relaxation and diffusion 

experiments is proposed and a robust algorithm for its implementation is introduced. The 

new form of regularization, termed the Modified Total Generalized Variation (MTGV) 

regularization, offers a compromise between distinguishing discrete and smooth features 

in the reconstructed distributions. The method is compared to the conventional method 

of Tikhonov regularization and the recently proposed method of L1 regularization, when 

applied to simulated data of 1D spin-lattice relaxation, T1, 1D spin-spin relaxation, T2, 

and 2D T1-T2 NMR experiments. A range of simulated distributions composed of two 

lognormally distributed peaks were studied. The distributions differed with regard to the 

variance of the peaks, which were designed to investigate a range of distributions 

containing only discrete, only smooth or both features in the same distribution. Three 

different signal-to-noise ratios were studied: 2000, 200 and 20. A new metric is proposed 

to compare the distributions reconstructed from the different regularization methods with 

the true distributions. The metric is designed to penalise reconstructed distributions 

which show artefact peaks. Based on this metric, MTGV regularization performs better 

than Tikhonov and L1 regularization in all cases except when the distribution is known to 

only comprise of discrete peaks, in which case L1 regularization is slightly more accurate 

than MTGV regularization.  
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1. Introduction 

Measurements of spin-lattice relaxation, T1, spin-spin relaxation, T2, and diffusion 

coefficient, D, distributions have found applications in many areas. 1D T1 and T2 

distributions are used in obtaining the pore structure of rocks [1, 2] and probing water 

compartments in cells [3], while 1D distributions of D are used to characterize polymer 

molecular weight [4] and emulsion droplet size distributions [5]. These distributions can 

also be obtained jointly from 2D NMR correlation experiments. For example, T1-T2 

experiments are used in characterizing the pore structure of rocks [6], probing 

adsorbate-adsorbent interactions
 
[7], and discriminating between tissues in medicine [8], 

while T2-T2 experiments are used in probing exchange rates between different 

environments [9-13]. D-T2 experiments are used in characterizing fluids in porous 

media [14], correlating D and T2 with the viscosity of heavy oils [15], and in analysing 

pore geometry [16], while D-D experiments have found application in studying 

anisotropic diffusion in surfactant systems [17, 18] and drug delivery systems [19] and in 

distinguishing between restricted and bulk diffusion in porous media [20].  

Central to the processing of the NMR data in these experiments are the 1D and 2D 

Inverse Laplace Transforms. It is well known that these transforms are ill-conditioned; 

that is, slight variations in the acquired signal, caused by the random nature of noise, can 

lead to significantly different reconstructions of the required distributions. The challenge 

in processing the NMR data has attracted much attention [21-27]. The most common 

method of tackling the ill-conditioning has been to perform Tikhonov regularization [22] 

and successful algorithms have been proposed to invert this regularized 

problem [23, 24]. Although Tikhonov regularization is very stable to noise, its main 

disadvantage is the inherent assumption that the distribution is smooth; that is there is a 

gradual transition from one feature to another. Therefore, the method suffers from a low 

spectral resolution [28-30]. Indeed, the generally accepted limitation is that Tikhonov 

regularization cannot distinguish between features in the distribution which differ from 

each other by a factor of ~3 or less in the relaxation time constants or diffusion 

coefficients [28]. As a result, use of Tikhonov regularization is more appropriate if there 

is a prior knowledge that the true distribution is smooth. If the true distribution is 

expected to have only a few non-zero entries (sparse), a new form of regularization, L1 

regularization, has been recently proposed [31-34]. In particular, it was shown in the 

work of Reci et al. [34] that  L1 regularization can resolve components in the distribution 

which have relaxation constants and diffusion coefficients that differ by as little as 10%. 

However, the method does not perform well if the true distribution map is smooth. Both 

methods of regularization, Tikhonov and L1, depend on a prior knowledge of what the 

true distribution should look like. Therefore, choosing the most appropriate method to 

use will depend on what the distribution is expected to be. However, in many practical 

cases, such knowledge may not be available, or it is exactly what one is trying to find 

out. Therefore, imposing an incorrect prior knowledge can lead to choosing the incorrect 

method which will give an inaccurate reconstruction. 

We propose a new form of regularization, based on an adaptation of Total Generalized 

Variation (TGV) regularization [35], which will be termed Modified Total Generalized 

Variation (MTGV) regularization. TGV regularization has been successfully used in 

image denoising and deblurring, as well as MRI image reconstruction [36-39]. The 

regularization method proposed offers a compromise in distinguishing between smooth 

and discrete features in the distribution. Therefore, it is no longer required to know a 

priori whether the distribution is expected to be smooth or sparse, since MTGV 
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regularization will retain both features. We also introduce an algorithm that is robust in 

reconstructing the 1D and 2D distributions using MTGV regularization and provide 

some practical guidance in implementing it. 

This work focuses on simulated 1D and 2D NMR signals used to obtain the distributions 

of the longitudinal relaxation time constant, T1, and the transverse relaxation time 

constant, T2. These distributions can be obtained either by performing dedicated 1D 

experiments or by performing a T1-T2 experiment and projecting the 2D distribution map 

in each dimension. The T1 and T2 distributions reconstructed from MTGV regularization 

are compared to the results obtained from Tikhonov and L1 regularization. Simulations 

are performed on a range of different input T1 and T2 distributions, differing with respect 

to the variance of the peaks in the distributions, and at three different signal-to-noise 

ratios (SNR) of 2000, 200 and 20. A new metric is proposed to compare the 

reconstructed distributions from each method with the input distributions, which allows a 

quantitative comparison to be made between Tikhonov, L1 and MTGV regularizations. 

The comparison of the different regularization techniques is performed with regards to 

simulated rather than experimental data because in experimental data the true 

distribution is not known. This renders the objective comparison between the different 

regularization techniques from experimental data impossible. 

The paper is structured as follows: In section 2, Tikhonov and L1 regularization methods 

are defined. In section 3, MTGV regularization is introduced and an overview of the 

algorithm proposed to solve the 1D and 2D MTGV regularized problems is given. 

Section 4 describes the simulations performed and the results are presented in section 5. 

2. Conventional methods 

The most common 1D NMR experiments used to measure the distribution of relaxation 

time constants T1 and T2 are, respectively, the Inversion Recovery (IR) and CPMG 

experiments, the signal from which can be formulated as: 

𝑆1(𝑡1) = ∫ 𝐹1(𝑇1)(1 − 2𝑒−𝑡1 𝑇1⁄ ) 𝑑𝑇1
∞

0
+ 𝐸1(𝑡1) ,   (1) 

𝑆2(𝑡2) = ∫ 𝐹2( 𝑇2)
∞

0
𝑒−𝑡2 𝑇2⁄  𝑑𝑇2 + 𝐸2( 𝑡2) ,  (2)

where F1, F2 are the distribution functions, t1, t2 are the time parameters varied during 

the experiments and E1, E2 represent the unknown noise assumed inherent in the signals. 

A 2D T1-T2 experiment stacks the 1D experiments in series and the signal acquired from 

such an experiment can be formulated as: 

𝑆(𝑡1, 𝑡2) = ∫ ∫ 𝐹(𝑇1,  𝑇2)(1 − 2𝑒−𝑡1 𝑇1⁄ ) 𝑒−𝑡2 𝑇2⁄  𝑑𝑇1 𝑑𝑇2 
∞

0

∞

0
+ 𝐸(𝑡1,  𝑡2) ,  (3) 

where F is the joint T1-T2 distribution. Individual T1 or T2 distributions can be obtained 

either by performing a 1D NMR experiment and inverting its signal or by performing a 

2D NMR experiment, inverting its signal and projecting the reconstructed 2D 

distribution in the appropriate dimension. 

In a discrete form, Eq. (1-3) can all be written as: 

𝑆 = 𝐾 𝐹 + 𝐸 ,  (4) 

where S is either the discretized vector of S1 or S2 or the discretized matrix of S, written 

in a vector form by stacking its column vectors (vectorization). F is either the discretized 

vector of F1 or F2 or the discretized matrix of F, vectorized. K is a kernel matrix and E is 



 

 

5 

 

either the discretized vector of E1 or E2 or the discretized matrix of E, vectorized. The 

reconstruction problem is formulated as: Given S and K, esimate F.  

The kernel matrix, K, is ill-conditioned because of the exponentially decaying functions 

that it is composed of. Therefore, tackling the reconstruction problem is challenging.  If 

the distribution F is expected to be smooth, the method of choice to tackle the 

ill-conditioning is to perform a Tikhonov regularization. This consists of estimating F 

from the following minimization problem: 

𝐹 = arg min 𝐹≥0 (
𝛼

2
‖𝐾 𝐹 − 𝑆‖

2

2
+

1

2
‖𝑅 𝐹‖

2

2
) ,   (5) 

where R is a regularization matrix and 𝛼 is a regularization parameter. The first term is 

called the fidelity term, while the second term is called the penalty term. For 1D 

experiments, R is typically a matrix that performs the second derivative of F, therefore 

constraining F to be smooth. This particular choice of R is sometimes referred to as the 

Phillips-Twomey method [40, 41]. For 2D experiments, R is typically the identity matrix, 

I, [42], constraining F to have a small Euclidean norm. This particular choice of R is 

made because of the difficulty of defining the second derivate of a matrix in both 

dimensions. Tikhonov regularization can only be reliably used if it is known a priori that 

F will be smooth. Otherwise, it tends to smooth features which are discrete. 

If the distribution F is expected to be discrete, the recent trend is to use another form of 

regularization, L1 regularization. This consists of obtaining the distribution F from the 

following minimization problem: 

𝐹 = arg min 𝐹≥0 (
𝛼

2
‖𝐾 𝐹 − 𝑆‖

2

2
+ ‖𝐹‖

1
) .  (6) 

||F||1 refers to the L1 norm of the distribution, where the Lp norm of a vector A, with 

entries a1, a2, …, an is defined as: 

𝐿𝑝(𝐴) = ‖𝐴‖
𝑝

= (∑ |𝑎𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝⁄  .  (7) 

The inclusion of the L1 penalty term gives sparser reconstructions of F. The L1 

regularization is only suitable when it is known a priori that F will be discrete. For 

distributions which are smooth, it gives artefacts in the reconstructed distributions. 

3. Proposed method 

The motivation for the present work is to develop a method of processing 1D and 2D 

NMR relaxation and diffusion data which does not rely on prior information of whether 

the distribution is discrete, smooth, or contains both types of features. 

1.  

2.  

3.  

In order to deal with such cases, a new regularization method is proposed which is based 

on an adaptation of Total Generalized Variation (TGV) regularization, termed the 

Modified Total Generalized Variation (MTGV) regularization. It consists of estimating 

the distribution 𝐹 from the following minimization problem: 

(𝐹,𝑊) = arg min 𝐹≥0, 𝑊 (
𝛼

2
‖𝐾 𝐹 − 𝑆‖

2

2
+ ‖𝐹 − 𝑊‖

1
+ 𝛽 ‖𝐷2 𝑊‖

1

∗

) ,  (8) 
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where W is an auxiliary vector and D2 is a matrix that performs some form of second 

derivative of the vector it is applied on. The ||(…)||1
*
 norm is the L1 norm for 1D NMR 

experiments. The definition of  the ||(…)||1
*  

norm for 2D NMR experiments is slightly 

different in order to take into account the fact that the second derivative of a matrix can 

be taken in different directions; the proper definition is given in the appendix.  

In overview and with reference to section 2, it is seen that the penalty term in MTGV 

regularization is composed of two parts: the first one enforces discrete features in the 

reconstructed distribution, while the second term enforces smooth features , with the 

weight between these two terms controlled by the regularization parameter β. Therefore, 

MTGV regularization offers a compromise between discrete and smooth features.  The 

trade-off between fidelity and regularization is controlled by the other regularization 

parameter, α. In the original application of TGV regularization [35], the term that 

enforced sparsity was ||D F - W||1, where D performs the first derivative of F. This was 

done because the workers were interested in obtaining piece-wise constant images, 

which is sparse in the first derivative domain. However, in NMR relaxation and diffusion 

experiments, the emphasis is in discrete distributions, which are sparse themselves,  

hence the formulation as proposed in Eq. (8). A similar approach exists for the L1 

regularization of 2D NMR correlation experiments [31-34]. 

The overview of the steps involved in the development of an algorithm, accompanied by 

a pseudocode to numerically solve Eq. (8) for both 1D and 2D NMR data is given in the 

appendix. The algorithm is based on the Primal-Dual Hybrid Gradient Method 

(PDHGM) [43]. The appendix also contains practical considerations about the 

implementation of the algorithm.  

4. Simulations  

The performance of Tikhonov, L1 and MTGV regularization in the reconstruction of 

individual T1 and T2 distributions are compared to each other by performing the 

following numerical experiments:  

a) Tikhonov regularization applied to 1D NMR T1 and T2 data, referred to as 1D 

Tikhonov regularization. 

b) L1 regularization applied to 1D NMR T1 and T2 data, referred to as 1D L1 

regularization. 

c) MTGV regularization applied to 1D NMR T1 and T2 data, referred to as 1D 

MTGV regularization. 

d) Tikhonov regularization applied to 2D T1-T2 data, with the reconstructed map 

projected in each dimension, referred to as 2D Tikhonov regularization. 

e) L1 regularization applied to 2D T1-T2 data, with the reconstructed map projected 

in each dimension, referred to as 2D L1 regularization. 

f) MTGV regularization applied to 2D T1-T2 data, with the reconstructed map 

projected in each dimension, referred to as 2D MTGV regularization. 

In order to investigate the performance of the different regularization methods, 7 

simulated 2D T1-T2 distributions and their corresponding T1 and T2 projections were 

used. All these distributions were 32 × 32 logarithmically spaced maps that had two 

lognormally distributed peaks of the same magnitude and centred at T1 = T2 = 0.05 s and 

T1 = T2 = 0.15 s. The distributions, labelled A-G, are illustrated in Fig. 1. For 

distributions A-F both peaks were of similar smoothness, with the level of smoothness 

increasing from distributions A to F. Distribution G is an example of a distribution 
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where one of the peaks is discrete and the other is smooth. The lognormal distribution 

details for all of the peaks are given in Table 1.  

From the 1D and 2D distributions, noiseless 1D and 2D NMR signals were simulated 

according to Eqs. (1-3). 32 logarithmically spaced t1 steps and 256 linearly spaced t2 

steps from 0 to 0.75 s were used. Random Gaussian noise was then added to the signals 

such that 2D NMR experiments at SNR values of 2000, 200 and 20 were studied. For the 

respective 1D signals, the standard deviation of the noise was chosen according to the 

method described by Celik et al. [44]. Before processing, the 2D NMR data were 

truncated according to the standard technique described by Venkataramanan et al. [45]. 

The distribution maps were then reconstructed from the noisy simulated signals using the 

different regularization methods. 

In order to compare the reconstructed distributions with the true distributions, the 

following metric is proposed: If Ftrue,i is the true distribution’s i-th entry and Frec,i the 

reconstructed distribution’s i-th entry, then a metric of how close the reconstructed 

distribution is to the true distribution is: 

𝜒 = ∑
(𝐹rec,𝑖−𝐹true,𝑖)

2

max(10−4, 𝐹true,𝑖)
𝑖  .       (9) 

One reason for choosing such a metric instead of the more commonly used mean square 

error or peak-signal-to-noise ratio (PSNR) is that the latter do not give any structural 

information. In particular, any extra peaks in the reconstructed distribution, as compared 

to the true distribution are not heavily penalized. This issue is addressed in the proposed 

metric by the division operation. A threshold of 10
-4

 was used for the division process, in 

order to account for distribution entries with Ftrue,i ≈ 0. Simulations showed that reducing 

the threshold further made no difference to the calculation of χ. The proposed metric is 

similar to the goodness of fit measure which is used in hypothesis testing in 

statistics [46]. The smaller the value of χ, the closer the reconstructed map is to the true 

distribution. The perfect reconstruction has χ = 0. 

For Tikhonov and L1 regularization, χ was estimated for a range of the regularization 

parameter α, from 10
-4

 to 10
4
 and the smallest value (corresponding to the best 

reconstruction) was recorded. For MTGV regularization, χ was estimated for a range of 

the regularization parameter α, from 10
-7

 to 10
2
 and a range of the regularization 

parameter β, from 10
-10

 to 10
-1

 and the smallest value was recorded. A comparison of the 

lowest χ from the different regularization methods is then a comparison of their 

performance, with the best method being the one with the smallest χ. 

5. Results and discussion 

The reconstructed T1 and T2 distributions from the different regularization methods, 

Tikhonov, L1 and MTGV are compared to each other using the metric χ. Initially, the 

comparison is performed on distributions A-F which contain two peaks that are of 

similar smoothness, with smoothness increasing from distribution A to F. Three values 

of SNR:  2000, 200 and 20 are investigated. The results are shown in Figs. 2-4. In each 

case, the smaller the value of χ, the better the reconstruction of the distributions by that 

particular regularization method. 

Comparing the performance of Tikhonov and L1 regularization with MTGV 

regularization in processing the 1D NMR T1 or T2 data at SNR = 2000 in Fig. 2, it is 

clearly seen that MTGV regularization is always superior, apart from the case when the 
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true distribution is very discrete (distribution A), in which case L1 regularization is 

slightly more accurate. This is valid for both T1 and T2 distributions. Further, applying 

MTGV regularization to 2D NMR T1-T2 data is always superior to applying Tikhonov or 

L1 regularization to 2D NMR T1-T2 data, apart from the case when the distribution is 

very discrete (distribution A), in which case L1 regularization is again slightly more 

accurate. 

The same conclusions can be drawn for the reconstructions obtained at lower signal -to-

noise ratios shown in Fig. 3 (SNR = 200) and Fig. 4 (SNR = 20). At all levels of noise, 

MTGV outperforms Tikhonov and L1 regularization when processing 1D or 2D NMR 

data, apart from when the distribution is very discrete, in which case L1 regularization is 

slightly more accurate. 

The results in Figs. 2-4 also confirm the well-known strengths of Tikhonov and L1 

regularization; it is seen that when the true distribution is discrete (distributions A and 

B), L1 regularization (whether performed on 1D or 2D data) performs better than 

Tikhonov regularization. When the true distribution is smooth (distributions C to F), 

Tikhonov regularization performs better than L1 regularization. It is also seen that when 

Tikhonov regularization is applied to the T1-T2 discrete distributions A and B and the 

reconstructed maps are projected in each dimension, this gives better results than 

applying Tikhonov regularization to the individual 1D data. Therefore, 2D experiments 

give a better spectral resolution than 1D experiments, when processed with Tikhonov 

regularization. This is in agreement with the observations made by Celik et al. [44]. 

However, it is observed that  when the true distribution is smooth (distributions C to F), 

this conclusion is no longer valid, and 1D experiments processed with Tikhonov 

regularization perform better than 2D experiments processed with Tikhonov 

regularization and then projected in each dimension. 

Considering the implementation of the MTGV regularizer in more detail, it was 

discussed in section 3 that the regularization parameter 𝛽 controls the relative amount of 

smoothness and discreteness imposed in the reconstruction. A method for choosing the 

regularization parameter β is now introduced. This method constrains β to be a function 

of the other regularization parameter α. Therefore, MTGV regularization becomes 

effectively a one-parameter regularization method, similar to Tikhonov and L1 

regularization. In Figs. 2-4, the value of the metric χ quoted for the MTGV 

regularization was that obtained by varying α and β independently in Eq. (8) and finding 

the minimum χ obtained in this process. In addition to recording this minimum χ, the 

values of α and β at which this minimum is obtained were also recorded. Fig. 5 shows 

these values of 𝛼 and β for all the 1D and 2D MTGV regularization data displayed in 

Figs. 2-4.  It can be observed that while the optimal α and β vary from one experiment to 

the other, there seems to be a correlation between log(α) and log(β), and a relationship of 

the form β = cα is proposed, where c is a constant. The value of c is expected to depend 

mainly on the type of distribution (discrete or smooth) and the noise level in the data. 

Fig. 5 shows that c = 2×10
-5

 for 1D MTGV regularization and c = 0.3 for 2D MTGV 

regularization are a good estimate for a range of distributions and noise levels. 

Therefore, similar values of c are expected when MTGV regularization is applied to 

other 1D and 2D NMR relaxation and diffusion data. The choice of the only remaining 

free regularization parameter, α, can be done in similar ways to the methods that exist for 

choosing the regularization parameter in Tikhonov regularization [42]. 

In order to investigate the effect that constraining β has on the performance of MTGV 

regularization, similar simulations to the ones described in section 4 were performed on 
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distributions A-F by constraining the regularization parameter β to β = 2×10
-5
α in 1D 

MTGV regularization and β = 0.3α in 2D MTGV regularization. An example of the 

comparison between the performance of Tikhonov, L1 and MTGV regularization (with 

constrained β) at SNR = 20 is shown in Fig. 6 for both T1 and T2 distributions. A 

negligible difference is observed between the results in Fig. 6 and the results in Fig. 4, 

which compared the performance of Tikhonov, L1 and MTGV regularization for an 

unconstrained β at SNR = 20. Similar conclusions can be made at SNR = 2000 and 

SNR =200; the simulation results for these cases are not shown here. These results 

indicate that rendering MTGV regularization as a one-parameter regularization method 

by constraining β does not change any of the conclusions made in this work when β was 

considered a free parameter. 

The comparison between the different regularization techniques has so far been made on 

distributions A-F, which contain two peaks of similar smoothness, with the degree of 

smoothness increasing from A to F. An example of the comparison between Tikhonov, 

L1 and MTGV regularization for a distribution which contains a mixture of discrete and 

smooth features is shown in Fig. 7. Fig. 7 compares the reconstructions of the T1 and T2 

distributions of the true distribution G, illustrated in Fig. 1, at three different SNR: 20, 

200 and 2000. MTGV regularization reconstructions were performed with a constrained 

regularization parameter β. It is clearly seen that 1D MTGV regularization always 

outperforms 1D Tikhonov and 1D L1 regularizations and 2D MTGV regularization 

always outperforms 2D Tikhonov and 2D L1 regularizations. 

The results presented in this section suggest that MTGV regularization gives the best 

reconstructions of 1D and 2D NMR relaxation data, regardless of the type of distribution 

and the SNR in the NMR data. The only exception is the case when the true distribution 

is known to only comprise of discrete peaks, in which case L1 regularization gives 

slightly more accurate reconstructions. 

Although in this paper the capabilities of MTGV regularization have been shown with 

respect to 1D and 2D NMR relaxation data, the methods can be easily adapted to 1D 

NMR diffusion data [4, 5] and 2D NMR correlation experiments which are diffusion 

encoded [14-20].  

6. Conclusions 

In this paper, a new method of regularization of 1D and 2D NMR relaxation and 

diffusion data was proposed, termed Modified Total Generalized Variation (MTGV) 

regularization. Unlike other methods of regularization of Tikhonov and L1, MTGV 

regularization offers a compromise between preserving smooth and discrete features in 

the reconstructed distributions. This eliminates the requirement of knowing a priori what 

the distribution should look like before selecting the appropriate regularization technique 

to process the data. The improvements offered by MTGV regularization were 

demonstrated by applying it to simulated 1D T1, 1D T2 and 2D T1-T2 NMR data. MTGV 

regularization always outperforms Tikhonov and L1 regularization, apart from the case 

when the true distribution is known to only comprise of discrete peaks, in which case L1 

regularization performs slightly better. 
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Appendix: 1D and 2D MTGV regularization algorithm 

An algorithm is presented for the MTGV regularization of 1D and 2D NMR data. The 

steps involved in the development of the algorithm are similar for the 1D and 2D cases; 

the main difference is in the handling of derivatives and norms of vectors and vectorized 

matrices. The overview of steps involved in the development of the algorithm is 

presented below. Where applicable, differences between the 1D and 2D MTGV 

regularization implementations are emphasized.  

a) For the 1D MTGV algorithm, the 1D NMR signal is collected in a p × 1 vector, 𝑆. K 

is a p × n kernel matrix and F is the n × 1 distribution vector to be found. W is an 

n × 1 auxiliary vector. 

For the 2D MTGV algorithm, the 2D NMR signal is collected in a p × q matrix and its 

column vectors are stacked into a pq × 1 vector, 𝑆. K is a pq × mn kernel matrix and F  

is an mn × 1 vector to be found. Once F is found, it will be reshaped into an m × n 

matrix by the inverse process of stacking; this is the reconstructed distribution. W is 

an mn × 1 auxiliary vector. In order to make the explanation easier, it will be assumed 

that m = n. 

b) For the 1D MTGV algorithm, define D2 as the n × n matrix that performs the second 

derivative of a 1D n × 1 signal. D2 is a tri-diagonal matrix with entries 1, -2 and 1 in 

diagonals -1, 0 and 1. Neumann boundary conditions were used, which practically 

translates into the last two rows of D2 being composed only of zeros. This ensures that 

the derivative is performed within the domain of the vector it acts upon. 

For the 2D MTGV algorithm, define D1 as the n × n matrix that performs the first 

derivative of a 1D n × 1 signal and In be the n × n identity matrix. D1 is a bi-diagonal 

matrix with entries -1 and 1 in diagonals 0 and 1. Neumann boundary conditions were 

used, which practically translates into the last row of D1 being composed only of 

zeros. Then, Dv = In ⊗ D1 is an n
2
 × n

2
 matrix that performs the first derivative in the 

vertical direction of a vectorized n
2
 × 1 matrix, while Dh = D1 ⊗ In  is an n

2
 × n

2
 

matrix that performs the first derivative in the horizontal direction of a vectorized 

n
2
 × 1 matrix. As a result, the 2n

2
 × n

2
 matrix D = [Dv

T
 Dh

T
]

T
 performs the 1D 

derivatives of a vectorized n
2
 × 1 matrix in both directions and stores the result in a 

2n
2
 × 1 vector. Define the 3n

2
 × 2n

2
 matrix G: 

𝐺 =

[
 
 
 −𝐷v

T 0

−𝐷h
T −𝐷v

T

0 −𝐷h
T
]
 
 
 

 .  (A1) 

The 3n
2
 × n

2
 matrix D2 = G D performs the symmetrical second order derivative of a 

vectorized n
2
 × 1 matrix and stores it in a 3n

2
 × 1 vector. 

c) For the 1D MTGV algorithm, define ||A||1
*
 for an n × 1 vector A as the L1 norm, 

according to Eq. (7). 

For the 2D MTGV algorithm, define ||A||1
*
 for a 3n

2
 × 1 vector A with entries a1, a2, 

…, a3n2 as: 

‖ 𝐴‖
1

∗
= ∑ √∑ 𝑎𝑖+𝑗𝑛2

22
𝑗=0

𝑛2

𝑖=1  .  (A2) 

d) For the 1D MTGV algorithm, let Y1 and Y2 be n × 1 vectors, while for the 2D MTGV 

algorithm, let Y1 be a n
2
 × 1 vector and Y2 be a 3n

2
 × 1 vector. It can be shown that for 

both 1D and 2D MTGV regularization algorithms, Eq. (8) is equivalent to: 
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(𝐹,𝑊, 𝑌1, 𝑌2) = arg min 𝐹≥0, 𝑊   max 𝑌1,𝑌2
(

𝛼

2
‖𝐾 𝐹 − 𝑆‖

2

2
+ 𝑌1

T(𝐹 − 𝑊)+𝑌2
T𝐷2 𝑊 −

ℎ (𝑌1) − ℎ (
𝑌2

𝛽
⁄ ))  , (A3) 

where h(Y1) is the indicator function [47] defined as: 

ℎ (𝑌1) =  {
0      ‖𝑌1‖

∞
≤ 1 

+∞    ‖𝑌1‖
∞

> 1    
.  (A4) 

The problem in Eq. (A3) is a primal-dual problem, which was chosen to be tackled by 

the Primal-Dual Hybrid Gradient Method [43]. A pseudocode of the algorithm 

implemented is described in the following paragraph. In the pseudocode: 

reshape(A, n1, n2) reshapes the n1n2 × 1 vector A into an n1 × n2 matrix; sum(A, i) sums 

the column or row vectors of matrix A along the i-th dimension; and repmat(A, k, i) 

stacks k copies of A in the i-th dimension. 

Step 1. Choose algorithm step parameters 𝜏, 𝜎 and the regularization parameters, 𝛼, 𝛽.  

Step 2. Set the convergence tolerance, 𝑇𝑂𝐿. 

Step 3. Calculate 𝐵 = (𝐼 + 𝜏 𝛼 𝐾T𝐾)
−1

. 

Step 4. Initialize 𝑌1
(0) = 𝑌2

(0) = 0, 𝐹(0) ≠ 0,  𝑊(0) ≠ 0, 𝐹̃(0) = 𝐹(0) and 𝑊̃(0) = 𝑊(0). 

Step 5. Initialize count number, 𝑘 = 1 and convergence tracker, 𝜖(0) = 1. 

Step 6. while  𝝐(𝒌−𝟏) > TOL do 

a. 𝑌1̃
(𝑘)

← 𝑌1
(𝑘−1) + 𝜎 (𝐹̃(𝑘−1) − 𝑊̃(𝑘−1)) 

b. 𝑌1
(𝑘) ←

𝑌1̃
(𝑘)

max(1,|𝑌1̃
(𝑘)

|)
                  All operations in this step are element-wise. 

c. 𝐹(𝑘) ← 𝐵 (𝐹(𝑘−1) − 𝜏 𝑌1
(𝑘) + 𝜏 𝛼 𝐾T𝑆) 

d. 𝐹(𝑘) ← max  (0, 𝐹(𝑘))              All operations in this step are element-wise. 

e. 𝑌2̃
(𝑘)

← 𝑌2
(𝑘−1) + 𝜎 𝐷2 𝑊̃

(𝑘−1)  

f. The actions in this step are element-wise and differ between algorithms 

i. 𝑋 ← √sum(𝑌2̃
(𝑘)

)
2

               1D MTGV algorithm 

ii. 𝑋 ← √sum (|reshape ((𝑌2̃
(𝑘)

)
2

, 𝑛2, 3)| , 2)      2D MTGV algorithm 

g. The actions in this step are element-wise and differ between algorithms 

i. 𝑌2
(𝑘) ← 𝑌2̃

(𝑘)
/max(1,

𝑋
𝛽⁄ )                            1D MTGV algorithm 

ii. 𝑌2
(𝑘) ← 𝑌2̃

(𝑘)
/max(1,

repmat(𝑋, 3,1)
𝛽

⁄ )        2D MTGV algorithm 

h. 𝑊(𝑘) ← 𝑊(𝑘−1) + 𝜏 (𝑌1
(𝑘) −  𝐷2

T 𝑌2
(𝑘)) 

i. 𝐹̃(𝑘) ← 2𝐹(𝑘) − 𝐹(𝑘−1) 
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j. 𝑊̃(𝑘) ← 2𝑊(𝑘) − 𝑊(𝑘−1) 

k. 𝜖(𝑘) ←
||𝐹(𝑘)−𝐹(𝑘−1)||2

||𝐹(𝑘−1)||2
       

l. 𝑘 ← 𝑘 + 1 

               end while 

The condition for the convergence of the MTGV algorithm is similar to the condition for 

the TGV algorithm to converge, as has been discussed by Valkonen et al. [48]. The 

condition depends primarily on the choice of the two algorithmic parameters, τ and σ, 

which are described in the pseudocode. Although there is a relationship that they must 

obey, the particular choice of τ and σ is largely heuristic. The choice of τ = σ = 0.1 was 

found to offer a good compromise between convergence speed and stability in our 

particular application. The values of τ and σ will depend slightly on how the NMR signal 

is scaled, determined by the largest data point in the acquired signal. To avoid this, it is 

best to normalize the signal to a maximum of 1. In the present work, the number of 

iterations required to arrive at a reasonable convergence was 10,000. The time in which 

this convergence was achieved for a 1D 32 × 1 distribution map with a 2.0 GHz Intel® 

Core™ i5-4590T CPU and 16.4 GB RAM, was approximately 6 s, while the speed 

required to achieve this convergence for a 2D 32 × 32 distribution map was 

approximately 23 s. 
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Figure captions 

Fig. 1. T1-T2 input distributions used in simulations. The distributions in figures (a)-(g) 

will be labelled accordingly A-G. All peaks are lognormally distributed and the details 

are described in Table 1. 

Fig. 2. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 2000. Distributions A-F are shown in Fig. 1 and the metric χ is 

defined in Eq. (9). 

Fig. 3. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 200. Distributions A-F are shown in Fig. 1 and the metric χ is 

defined in Eq. (9). 

Fig. 4. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 20. Distributions A-F are shown in Fig. 1 and the metric χ is 

defined in Eq. (9). 

Fig. 5. Variation of the best α and β for (a) 1D MTGV regularization and (b) 2D MTGV 

regularization in the experiments described in Figs. 2-4. The line of best fits (a) 

β = 2×10
-5
α and (b) β = 0.3α are estimated by fitting a straight line with gradient 1 to the 

data set log10β against log10α. 108 points are plotted in both maps but some of them are 

not distinguishable because they overlap with other points.  

Fig. 6. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 20. Distributions A-F are shown in Fig. 1 and the metric χ is 

defined in Eq. (9). The value of β for MTGV regularization is constrained to (a) 

β = 2×10
-5
α for 1D MTGV and (b) β = 0.3α for 2D MTGV regularization. 

Fig. 7. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for the true distribution G shown in 

Fig. 1 at three SNR: 20, 200 and 2000. The metric χ is defined in Eq. (9). The value of β 

for MTGV regularization is constrained to (a) β = 2×10
-5
α for 1D MTGV and (b) 

β = 0.3α for 2D MTGV regularization. 
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Tables 

 

Table 1: Details of the peaks of distributions A-G shown in Fig. 1. Each distribution is 

composed of two peaks; the peak at the lower relaxation times is referred to as peak 1 

while the peak at the higher relaxation times is referred to as peak 2. The distribution in 

each dimension, T1 or T2, is described by lognpdf(Ti,μ1,σ1) + γ lognpdf(Ti,μ2,σ2), for 

i = 1, 2, where μ, σ refer to the mean and standard deviation of each peak. Distributions 

A-F were designed to have the same area under each peak in a logarithmic scale. 

Distribution G was designed such that both peaks have the same maximum amplitude 

when projected in each dimension. 

 

distribution μ1 (s) σ1 (s) μ2 (s) σ2 (s) γ 

A 0.050 0.003 0.150 0.010 10 

B 0.050 0.005 0.150 0.016 10 

C 0.050 0.008 0.150 0.025 10 

D 0.050 0.013 0.150 0.040 10 

E 0.050 0.020 0.150 0.063 10 

F 0.050 0.032 0.150 0.100 10 

G 0.050 0.032 0.150 0.010 2 

 



Fig. 1. T1-T2 input distributions used in simulations. The distributions in figures (a)-(g) will be labelled 

accordingly A-G. All peaks are lognormally distributed and the details are described in Table 1. 



Fig. 2. Comparison of the performance of the different regularization techniques in reconstructing (a) the T1 

and (b) T2 distributions for a range of smooth and discrete true distributions at SNR = 2000. Distributions A-F 

are shown in Fig. 1 and the metric χ is defined in Eq. (9). 



Fig. 3. Comparison of the performance of the different regularization techniques in reconstructing (a) the T1 

and (b) T2 distributions for a range of smooth and discrete true distributions at SNR = 200. Distributions A-F 

are shown in Fig. 1 and the metric χ is defined in Eq. (9). 



Fig. 4. Comparison of the performance of the different regularization techniques in reconstructing (a) the T1 

and (b) T2 distributions for a range of smooth and discrete true distributions at SNR = 20. The distributions 

A-F are shown in Fig. 1 and the metric χ is defined in Eq. (9). 



Fig. 5. Variation of the best α and β for (a) 1D MTGV regularization and (b) 2D MTGV regularization in the 

experiments described in Figs. 2-4. The line of best fits (a) β = 2×10-5α and (b) β = 0.3α are estimated by 

fitting a straight line with gradient 1 to the data set log10β against log10α. 108 points are plotted in both maps 

but some of them are not distinguishable because they overlap with other points. 



Fig. 6. Comparison of the performance of the different regularization techniques in reconstructing (a) the T1 

and (b) T2 distributions for a range of smooth and discrete true distributions at SNR = 20. Distributions A-F 

are shown in Fig. 1 and the metric χ is defined in Eq. (9). The value of β for MTGV regularization is 

constrained to (a) β = 2×10-5α for 1D MTGV and (b) β = 0.3α for 2D MTGV regularization. 



Fig. 7. Comparison of the performance of the different regularization techniques in reconstructing (a) the T1 

and (b) T2 distributions for the true distribution G shown in Fig. 1 at three SNR: 20, 200 and 2000. The metric 

χ is defined in Eq. (9). The value of β for MTGV regularization is constrained to (a) β = 2×10-5α for 1D 

MTGV and (b) β = 0.3α for 2D MTGV regularization. 


