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Abstract: The cost and effort of modeling existing
bridges from point clouds currently outweighs the per-
ceived benefits of the resulting model. There is a press-
ing need to automate this process. Previous research has
achieved the automatic generation of surface primitives
combined with rule-based classification to create labeled
cuboids and cylinders from point clouds. Although these
methods work well in synthetic data sets or idealized
cases, they encounter huge challenges when dealing with
real-world bridge point clouds, which are often unevenly
distributed and suffer from occlusions. In addition, real
bridge geometries are complicated. In this article, we pro-
pose a novel top-down method to tackle these challenges
for detecting slab, pier, pier cap, and girder components
in reinforced concrete bridges. This method uses a slic-
ing algorithm to separate the deck assembly from pier
assemblies. It then detects and segments pier caps using
their surface normal, and girders using oriented bound-
ing boxes and density histograms. Finally, our method
merges oversegments into individually labeled point clus-
ters. The results of 10 real-world bridge point cloud ex-
periments indicate that our method achieves very high de-
tection performance. This is the first method of its kind to
achieve robust detection performance for the four com-
ponent types in reinforced concrete bridges and to di-
rectly produce labeled point clusters. Our work provides
a solid foundation for future work in generating rich In-
dustry Foundation Classes models from the labeled point
clusters.
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1 INTRODUCTION

The global infrastructure market is poised for an explo-
sive adoption of bridge information modeling (BrIM),
which provides a shared knowledge resource for infor-
mation exchange to support a reliable basis for deci-
sion making during a bridge’s life cycle (Fanning et al.,
2014). The adoption of BrIM in the United States and
the United Kingdom has increased by 30% from 2015
to 2017 (Dodge Data & Analytics, 2017). However, the
produced models are mainly as-designed models of new
structures. The generation of as-is BrIM models for ex-
isting bridges is very limited, despite the widespread
adoption of laser-scanning for faster and better data
collection (Park et al., 2007; Park et al., 2015). This is
because the automatic generation of as-is models from
point cloud data (PCD) remains an unsolved problem.
The time required to manually create an as-is three-
dimensional (3D) solid model in a point cloud using cut-
ting edge modeling software typically is of the order of
10 times greater than that required to obtain the point
cloud (Trimble, 2014; Lu and Brilakis, 2017).

There is a pressing need to lower the cost and effort
required for modeling existing bridges. This is particu-
larly true for the highway infrastructure sector. There
are more than 600,000 highway bridges in the United
States and more than one in nine is classified as struc-
turally deficient (ASCE, 2017). According to an in-
house report (Network Rail, 2015), Network Rail and
other bridge owners manage more than 30,000 bridges
on the United Kingdom’s motorways and major A-
roads. Based on a 2-year inspection cycle, there is a need
for at least 315,000 bridge inspections per annum across
the United States and the United Kingdom. This ex-
plains why there is a huge market demand for less labor-
intensive bridge documentation techniques that can ef-
ficiently boost bridge management productivity.

In general, the from-PCD-to-BrIM model process
consists of two steps: (1) detecting bridge components in
point clouds in the form of labeled point clusters and (2)
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generating a geometric model by fitting Industry Foun-
dation Classes (IFC) entities and spatial relationships
in labeled point clusters. This study intends to automate
Step 1, that is, bridge-component detection in point
clouds. This step is currently largely achieved manually
using modeling software.

Major vendors such as Autodesk, Bentley, and
ClearEdge3D provide the most advanced software solu-
tions for Building Information Modeling. ClearEdge3D
can semiautomatically (a few clicks and adjustments are
required) fit geometric shapes embedded in the sub-
sets of a point cloud without segmenting beforehand.
However, ClearEdge3D is tailored for building and in-
dustrial environments and only standardized shapes,
such as rectangular walls, pipes, steel beams, and so
forth, can be recognized (ClearEdge3D, 2017). For most
of the other commercial applications, the shape fitting
is largely assisted by manually segmenting the point
cloud in advance. These solutions demand a signifi-
cant amount of attention when segmenting the target
objects. Modelers need to repeatedly rotate the point
cloud to various views and try to select regions of inter-
est using clipping polygons. Lu and Brilakis (2017) re-
port that, on average, 1.52 hours is needed to complete
just the bridge-component detection task for process-
ing a typical reinforced concrete (RC) highway-bridge
point cloud.

In this article, we propose a novel top-down method
for the abovementioned object detection problem. The
novelty of this method lies in the fact that it directly ex-
tracts the key components of RC bridges without gen-
erating low-level shape primitives.

We discuss the current state of research in Section
2 and we outline the proposed method in Section 3.
We then elaborate on the research methodology and
experimental results in Section 4. Finally, we conclude
in Section 5.

2 BACKGROUND

Existing software does not provide a fully automatic
solution for concrete object detection in point clouds.
Much effort has been devoted to automating this pro-
cess. We define “detection” in this context as the combi-
nation of clustering (point cloud-to-point clusters) and
classification (labeling the clusters). Current methods
of point cloud clustering generally follow a “bottom-
up” approach, which goes from points to surfaces or
patches followed by semantic labeling to derive objects.
Most point cloud classification methods follow a “top-
down” approach, which employs human visual percep-
tion such as relationships, contexts, and so forth to de-
tect specific instances embedded in a point cloud or

to infer the semantics of components in a geometric
model.

2.1 Bottom-up detection

The bottom-up approach pieces together primitive fea-
tures like points to generate complex systems in succes-
sively higher levels until a top-level system is formed
(Borenstein and Ullman, 2008). The higher level fea-
tures are typically the surface normal (Sampath, 2010),
meshes (Marton et al., 2009), patches (Zhang et al.,
2015), and nonuniform B-Spline surfaces (Dimitrov
et al., 2016).

A large body of literature has been devoted to gen-
erating surface-based primitives, especially planar sur-
faces (Pătrăucean et al., 2015). Zhang et al. (2015)
present a sparsity-inducing optimization-based method
to detect parametric planar patches and define their
boundaries from noisy bridge point clouds. However,
this method can work only with planar-surface objects
and cannot detect pier patches when point densities of
these regions are low. Walsh et al. (2013) present a
region growing (RG) algorithm to detect objects in a
point cloud. RG starts with an initial set of small iter-
atively merged areas, followed by choosing a specific
seed and adding in neighboring points based on simi-
larity until an edge is reached. However, this method
cannot detect the edge between a pier cap and a pier in
a small portion of a bridge point cloud as shown in their
experiment. The segmentation was finally achieved af-
ter manually choosing key points. Likewise, Dimitrov
and Golparvar-Fard (2015) suggest an upgraded RG
method through which the seed is found adaptively.
This method can deal with curved surfaces and excels
when the input point cloud does not suffer from sub-
stantive occlusions. However, it oversegments objects
when occlusions are present. The persistent occlusion
problem in real point clouds was addressed by Xiong
et al. (2013) through a learning-paradigm that detects
occluded planar surfaces in building point clouds. How-
ever, their method cannot be applied in bridge settings
because the occluded surfaces in a bridge point cloud
do not follow a specific pattern as in a building point
cloud. Specifically, their algorithm detects rectangularly
shaped openings, such as windows and doorways, as-
suming there are many identical openings on a wall
and the rectangle is the predominant shape in most
buildings. Similarly, Laefer and Truong-Hong (2017)
develop a kernel density estimation–based method for
modeling steel members by simulating several possi-
ble occlusions. In contrast, the occluded regions do not
have such a repeated pattern in bridge point clouds.
Most of the occlusions are due to on-site vegetation
and long-distance scanning. Thus, the occlusions are in
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arbitrary locations and shapes. Schnabel et al. (2007)
detect basic shapes (e.g., spheres, cylinders) using Ran-
dom Sample Consensus (RANSAC) by random sam-
pling of minimal sets in a point cloud. Yet, given the
computationally expensive nature of RANSAC, it is un-
realistic to use it to detect complex geometries. Hence,
these methods tend to perform well in relatively sim-
plified scenarios and with synthetic data, but are not
ready to tackle the real bridge components whose as-
constructed and as-weathered shapes further increase
the as-designed complexity. To reduce computational
time, Xu et al. (2018) suggest an octree-based proba-
bilistic segmentation model for construction sites. The
authors partitioned the scene into voxels. However, the
segmentation accuracy of this method is quite sensitive
to the voxel size. This problem is discussed by Vo et al.
(2015) who propose an octree RG-based algorithm for
surface patch segmentation in urban environments. Al-
though their method can automatically adjust the voxel
size through an adaptive octree, it faces the difficulty of
patch generation for low point density regions.

2.2 Top-down detection

We contend that bottom-up detection is rarely suitable
for point cloud classification. Classification through sur-
faces is insufficient; local surfaces or patches can be la-
beled as such, but it is difficult to determine whether
they belong to the same instance. The intervention of
object-level information is required to overcome such
challenges (Pinheiro et al., 2016). The top-down ap-
proach is typically a heuristic approach for object de-
tection, which begins with a broad-picture view, and
then is broken into compositional sub-problems that
are easier to solve (Kokkinos et al., 2006). It usually
combines a set of engineering criteria and classifies ob-
jects in the point cloud that meet the criteria. Prior
studies show that knowledge-based classification meth-
ods are robust, as domain-specific information such as
object classes (Dore and Murphy, 2014), topological
relationships (Koppula et al., 2011), and known pa-
rameters (e.g., diameter) or constraints (e.g., direction)
(Ahmed et al., 2014) are invariant to factors such as
pose and appearance. Recent research relies on existing
as-designed documents to inform the top-down model-
ing strategy. This can simplify point cloud clustering and
classification tasks (Liu et al., 2012). Likewise, Belsky
et al. (2016) encapsulate domain expert knowledge in
the form of rule sets to enrich semantics for a building
model.

However, the methods developed in these studies
are tailored for buildings and indoor and industrial ob-
jects, and not tailored for use in bridge settings, as the
geometric properties of bridge components are quite

different than those objects. What is more, there are
few as-built or as-is models for existing bridges. Re-
cently, some studies have started to employ top-down
strategies to detect bridge components in point clouds.
Riveiro et al. (2016) use specific constraints to segment
masonry bridge point clouds into surfaces. However,
their algorithm is based on histograms that largely de-
pend on data quality. It is difficult to generalize this al-
gorithm to large RC bridges, as the real point clouds
usually suffer from occlusions and nonuniformly dis-
tributed points. Ma et al. (2017) leverage relationship
knowledge and shape features to classify bridge 3D
solid objects. First, the input of this method needs to
be a solid bridge model (i.e., not a bridge point cloud).
Second, the method assumes that the 3D solid model
is developed in a grid system, in ideal geometries and
that the pairwise relationship between two 3D solid ob-
jects is well defined. These assumptions are quite re-
strictive and make the method less feasible in real cases,
as bridges usually possess various curved horizontal and
vertical alignments and cross sections.

2.3 Other detection methods

Data-driven, learning-based methods have been widely
applied to predict unknown instance labels based on
training feature sets and manually added labels that fa-
cilitate supervised learning. Xiong et al. (2013) propose
a probabilistic graphical model to label the extracted
planar surfaces for buildings. Zhang et al. (2014) use
surface features to train a multiclass classifier, which as-
signs bridge-component labels to surface primitives. As
in the previous cases, this method is designed for simpli-
fied bridge designs that do not contain skews, irregular-
ities, and complicated objects, which are often the cases
of real bridge components.

Numerous volumetric convolutional neural network
and deep learning frameworks are proposed by trans-
forming 3D points into voxel grids (Qi et al., 2017;
Tatarchenko et al., 2017) for object detection. The
major restrictions to apply these data-driven machine
learning schemes to bridge-component detection tasks
include (1) the lack of a sufficient number of labeled
large-scale real bridge point clouds to train a good clas-
sifier and (2) the high computational burden.

2.4 Gaps in knowledge

BrIM models are mainly represented using volumet-
ric primitives (Tang et al., 2010), whereas most existing
works focus on clustering point clouds through gener-
ating surfaces. These methods are not robust with re-
gard to occlusions and sparseness and are difficult to
transfer to the problem of object detection in a real
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bridge point cloud because bridge components are of-
ten skewed. In addition, none of the existing bottom-up
methods can directly output labeled bridge point clus-
ters. The few bridge-related studies that work well have
restrictive constraints. We therefore contend that the
problem of detecting bridge objects in the form of la-
beled point clusters from real bridge point clouds has
yet to be solved.

2.5 Objectives and research questions

We aim to (1) automatically segment an RC bridge
point cloud into mutually disjoint point clusters cor-
responding to the components making up the bridge
and (2) automatically assign correct semantic labels to
these point clusters. This will be done by answering
the following research questions: (1) how to effectively
segment a real RC bridge point cloud and (2) how
to efficiently and robustly classify major RC bridge-
component point clusters.

2.6 Hypothesis

A simple bottom-up method that generates low-level
primitives has not, to date, managed to solve the above-
mentioned research questions. In contrast, human ex-
pertise can facilitate the search for a specific object in
a scene because our guesses for the embedded objects
are best when we know what to expect in the point
cloud. Hence, we will investigate a brand-new top-down
method which directly extracts key components of RC
bridges without generating low-level shape primitives.

The hypothesis of this work is that the top-down
bridge-component detection approach is efficient and
reliable and there is no significant difference in detec-
tion performance for different RC bridges. We elabo-
rate this hypothesis in the following.

3 PROPOSED SOLUTION

3.1 Scope

This research only focuses on typical RC slab and beam-
slab bridges on motorways and major A-roads in the
United Kingdom, because 73% of the existing highway
bridges and 86% of the planned future bridges in Eng-
land are RC slab and beam-slab bridges (Kim et al.,
2016). These two types of bridges reflect the fundamen-
tal bridge-design rules that allow for natural introduc-
tion of geometric constraints, describing the relation-
ships that should hold between various components of
a bridge. The key components of RC slab bridges in-
clude slabs, piers, and pier caps, and for RC beam-slab
bridges, there are slabs, girders, piers, and pier caps

(Kim et al., 2016). Thus, this work deals with four very
important and highly detectable structural components
of a highway bridge, that is, slabs, piers, pier caps, and
girders, in line with Kedar’s (2016) first element identi-
fication evaluation category.

3.2 Overview

The general thrust behind our top-down approach is to
use the fundamental bridge design rules such as bridge
topological constraints, given the low level of variance
of the topological layout of RC slab and beam-slab
bridges.

Our method bypasses the stage of surface generation
altogether and directly obtains segmented and labeled
point clusters. It breaks down a large bridge point cloud
into sub-data sets through a recursive slicing algorithm.
That is, the method chops the point cloud by means of
a “virtual parallel scalpel” with a specified equal thick-
ness. This algorithm is repeatedly used with sub-data
sets until target objects are found and all small detec-
tion problems are solved. The key insight behind this
method is to formulate the geometric feature search to
explore shortcuts so that the target components can be
quickly located in the point cloud.

The workflow of the proposed method is illustrated
in Figure 1. Dashed frames refer to ambiguous compo-
nents that may or may not exist in a bridge point cloud.
Acronyms are used to present inputs, intermediate out-
puts, and final outputs of each step. For example, {B|A}
represents B is a subset of A. A is derived from a pre-
vious step and is the superset of B. {B|A} may also rep-
resent B is a property set of A (e.g., {xi |A} means the
x values of A). More precisely, “deck assembly” refers
to the areas which contain slab and girders (if they ex-
ist), “pier assembly” refers to the areas which contain
a transverse strip of slab, pier caps (if they exist) and
piers and “pier areas” refers to the subsets of pier as-
sembly which contain a small part of the slab strip, part
of the pier cap and individual pier.

The first two steps in our detection method are re-
cursive. The first step segments a whole aligned bridge
point cloud (i.e., DN ) into pier assembly (denoted αM )
and deck assembly (denoted αM

C ). The second and
third detect pier areas (denoted βmp) and pier caps (de-
noted PC ) in pier assembly and deck assembly. The last
step detects girders (denoted girders) and slab (denoted
slab) in a merged deck assembly. Note that pier caps
and girders may not exist in some bridge point clouds.

3.3 Step 1—Pier assembly and deck assembly
detection

A bridge point cloud is given at an arbitrary posi-
tion and orientation. The pose of a bridge should be
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Fig. 1. Workflow of the proposed method.

Fig. 2. Aligned bridge point cloud.

normalized in advance as all features extracted in fur-
ther steps are in a canonical coordinate frame. We use
principal component analysis (PCA) to align a bridge
such that the horizontal alignment of the bridge is posi-
tioned roughly parallel to the global X-axis (Figure 2).
Approximate alignment at an early stage makes it pos-
sible to reformulate features employed for recursive
segmentation in the following steps. Therefore, the in-
put of Step 1 is a roughly aligned bridge point cloud
DN = {pi : i = 1, 2, . . . , N }, where each point is defined
as pi = (xi , yi , zi )T .

We aim to classify all the bridge points into two
groups: pier assembly group αM = {α1, α2 . . . , αm},

where m is the number of the pier assembly and deck
assembly group αM

C .
We chop DN into multiple slices along the X-axis

(Figure 3a). Let J be the number of slices, then we ob-
tain slices SX = {Sjx : j = 1, 2, . . . , J }, where x refers
to the axis of slicing. Define D j = {p ji } = {pi |Sjx } to
be the point set in slice Sjx so that we must have∑J

j=1

∑D j

i=1 p ji = DN , where p ji is the ith point in the
jth slice. Note that slicing might lead to an empty
slice where local points are missing or a slice with
just one single point. In this case, the geometric fea-
tures cannot be computed. Our slicing method can pre-
vent such situations from happening. By assuming the
slice thickness δ is constant, the initialized number of
slices J is proportional to the length of the bridge
(i.e., J ∝ |max{xi |DN } − min{xi |DN }|). Here, δ is set
to be 0.5 m. When the “virtual scalpel” encounters an
empty or a single-point slice, the method will infer the
geometric feature from the nearest “sound” slice: if
|D j | = ∅ or |D j | = 1, then Sjx

∼= Sj−ϕx , where ϕ is the
count of slices between Sjx and the closest nonempty
and non–single-point slice. This approximation is not
perfect but provides immunity to locally incomplete
data.

Then, we need a feature detector that can dis-
tinguish the pier assembly from the deck assembly.
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Fig. 3. (a) Slicing along X-axis; (b) deck assembly slice (blue) and pier assembly slice (red); (c) comparison between a deck
assembly slice and a pier assembly slice; (d) midplanes {sk j x }.

Each slice Sjx is bounded by a 3D axis-aligned-
bounding-box and a 2D skeleton sk jx is drawn for
each slice using the midplane of its bounding-box
(Figure 3b). According to bridge engineering knowl-
edge, piers support the deck against gravity, so they
should start from the ground. Therefore, the height
of a pier assembly slice should obviously be much
larger than that of a deck assembly slice (Figure 3b).
Thus, in each slice Sjx , we extract the geometric feature
range jz which is the height of Sjx . We classify Sjx as a
pier assembly slice if Equation (1) is satisfied; otherwise,
Sjx is considered a deck assembly slice:

if rangejz > ρ1 |max {zi|DN} −min {zi|DN}| (1)

then,

Sjx ← pier assembly

where ρ1 is a discrimination parameter that refers to
the thickness ratio of the deck assembly relative to the
height of the bridge, which should not be affected by
the varying elevation (Figure 3c). This assumption (see
Section 4.1, A1) will be experimentally justified in Sec-
tion 4.3.2. The adjacent slices with the same assembly
property are merged into a cluster (Figure 3c). Finally,
pier assembly αM and deck assembly αM

C (Figure 4a)
are acquired.

Fig. 4. (a) Deck assembly αM
C (blue) and pier assemblies αM

(red); (b) deck assembly DPCM (orange) and pier areas βM P

(red).

3.4 Step 2—Pier area detection in pier assembly

The inputs of Step 2 are the pier assemblies αM output
from Step 1. The outputs are deck assemblies DPCM =
{DPCm |αm} and pier area(s) βM P = {βmp|αm}, where αM

= DPCM ∪ βM P (Figure 4). Each pier assembly αm can
be considered a smaller scale of a bridge point cloud so
that Step 2 follows the same procedure as Step 1, except
that the slicing is performed along the Y-axis of αm to
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Fig. 5. Input/output flowchart of Step 3.

obtain slices SY = {Sjy|αm}. Again, the value of range jz

for each slice Sjy is extracted. The method classifies Sjy

as a pier area slice if the Equation (2) is satisfied; other-
wise, Sjy is considered a deck assembly slice:

if rangejz > ρ2 |max {zi|αm} −min {zi|αm}| (2)

then,

Sjy ← pier area

ρ2 is another discrimination parameter that is used to
separate the pier area from the rest in αm . For a pier
assembly without pier cap, ρ2 = ρ1; otherwise, ρ2 > ρ1.
This assumption (see Section 4.1, A2) will be experi-
mentally justified in Section 4.3.3.

3.5 Step 3—Pier cap detection

We illustrate the workflow of this step in Figure 5.
We attempt to detect pier caps using surface normal
through triangulation in the upper part of the pier area.
Triangulation can be computed efficiently for a rela-
tively small region without noticeably affecting either
computation time or memory overhead.

3.5.1 Step 3.1—Remove upper deck slab surface. In this
step, we aim to remove the upper slab surface points
from the pier area(s) {βmp} output from Step 2. The
void space between the upper and bottom slab surfaces
is used as a discriminator. This blank part is consis-
tent because the laser scanner can project laser beams
only onto an object’s external surface. According to the

Fig. 6. Upper slab surface range �λ in βmp .

Design Manual for Roads and Bridges (Highways Eng-
land, 2017), the general transverse maximum gradient
is defined to be 5% (1/20) so that the lower bound
of upper slab points is λmin = 5%Wβmp , where Wβmp is
the width of βmp (Figure 6) and the upper bound is
λmax = ρ1 Hβmp , where Hβmp is the height of βmp. Define
�λ to be the range where upper slab surface points
are located. There should be 5%Wβmp < �λ < ρ3a Hβmp <

ρ1 Hβmp , where ρ3a is the slab thickness ratio estimation
(see Section 4.3.3). The points in �λ are then removed
and the remaining points in pier area(s) are denoted as
{Pdmp} (Figure 6 upright).

3.5.2 Step 3.2—Pier cap detection at top of piers. This
step aims to detect pier caps {Pc|Pdmp}. The input is the
refined pier areas {Pdmp} output from Step 3.1. Pier caps
are underneath the slab, playing an important role in
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Fig. 7. Pier cap detection.

distributing concentrated loads from the superstructure
evenly over the area of the piers. For each pier assembly
αm :

Scenario 1. A single pier area is detected in the pier
assembly where it belongs to Equation (3), and the pier
area extends almost the full width of the pier assembly
(Equation 4):

if

⎧⎨
⎩

βM = 1 (3)
and
Wβmp

∼= Wαm (4)

where βM = {βm1, βm2 . . . βmp} (see Figure 4b). Then, we
consider αm is a wall-type-pier assembly as the single
wall-type-pier supports the whole deck assembly above.
As a result, a pier cap does not exist (see Section 4.1,
A3a).

Scenario 2. For a pier assembly with cap-and-column
pier (i.e., βM > 1) or, for a single detected pier area βmp,
but Wβmp 	 Wαm , in these two cases, the pier assem-
bly αm may or may not have a pier cap (e.g., multiple
columns without cap). This scenario is more complex
and requires further detection.

Given that pier caps are located on the top of the
pier, the upper part of Pdmp (i.e., the top ρ2) is used
to detect the pier cap (Figure 7a). We denote this part
as upperPdmp , which contains the deck assembly’s bot-
tom surface, the pier cap (if it exists) and a small part
of the pier (Figure 7b). Then, we generate the mesh
for upperPdmp and compute the normal of each trian-
gular surface. Estimating a normal per given triangle is
completed by the cross product of two vectors on this
triangle. Define {⇀nt (nx

t , ny
t , nz

t ) : t = 1, 2, . . . , T } to be
the normal vectors of the triangles. Normal indicates
the surface orientation. If a cluster of surface normal
is revealed in upperPdmp whose orientations are quasi-
parallel to Z-axis (i.e., downward- or upward-oriented
normal), where

−90◦ < actan (θt ) < −85◦

or

85◦ < actan (θt ) < 90◦, where θt = nz
t√

nx
t

2 + ny
t

2
(5)

and if those normal are found around the level ρ1

(max{zi |βmp} −min{zi |βmp}) (Figure 7c, red), then, the
points (i.e., feature points) constituting these surfaces
together with the points in upperPdmp that above the
feature points are classified as deck assembly. Other-
wise, the pier cap feature points are detected if a clus-
ter of downward- or upward-oriented normal is found
around the level ρ2 (max{zi |βmp} −min{zi |βmp}) (i.e.,
A3b, Section 4.1) (Figure 7c, green). The method it-
erates through {Pdmp} using the same procedure and
the pier caps {Pc|Pdmp} and the piers {pier |Pdmp} are
acquired.

3.5.3 Step 3.3—Pier cap extraction from deck assembly.
The detected pier caps in Step 3.2 imply that they should
also be present in DPCM , which is the deck assembly
output from Step 2. The pier cap parts from DPCM are
extracted in the following way, where DPCM = {DPCm }
(Figure 8a).

First, the points of DPCm are projected onto the YZ-
plane followed by generating density histograms along
the Y-axis through which the number of points is tallied
within multi-equal-width bins. The width of bin is deter-
mined using the square-root choice:

binw = |max {yi |Cluster} −min {yi |Cluster}|√
n

(6)

where Cluster represents DPCm and n is its point
count. Then, the bins are clustered using the gaps be-
tween them (Figure 8b), so that DPCm is segmented
(Figure 8c). Denote the segments as {γm(p+1)} and then
a slicing procedure along the X-axis of {γm(p+1)} is per-
formed. For γm(p+1), the pier cap area is detected if
range jz > ρ3b|max{zi |γm(p+1)} −min{zi |γm(p+1)}| (Fig-
ure 8d), where ρ3b = ρ1

ρ2
with ρ1 and ρ2 being determined

in Steps 1 and 2, respectively (see Section 4.1, A3c).
Next, the procedure is similar to Step 3.1 and Step 3.2.
The extracted pier cap area is considered a smaller scale
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Fig. 8. Extract pier cap from DPCM .

Fig. 9. Merge pier cap parts.

of βmp. The upper slab surface points are removed and
classified as deck assembly, followed by triangulation to
detect and classify the deck assembly’s bottom surface
points. The pier cap parts {Pc|DPCm } are finally acquired
(Figure 8f). In the end, both pier cap parts output from
Step 3.2 and Step 3.3 are merged (Figure 9).

3.6 Step 4—Girder detection

Step 4 aims to detect girders in the deck assembly. This
is achieved in two substeps: (1) segment the deck assem-
bly into several segments {deckω} and (2) detect girders
in each segment {girders|deckω}.

3.6.1 Step 4.1—Segment the whole deck assembly into
several segments. To begin with, we conduct a merg-

ing process to build up a whole deck assembly cluster,
which is composed of slab and girders (if they exist).
This involves piecing together all point clusters classi-
fied as deck assembly in the previous steps (Figure 10).

For a beam-slab bridge, the length of the girder (i.e.,
beam) depends on the span, which is the distance be-
tween the two intermediate supports (Wai-Fah and
Lian, 2014). We need to split the whole merged deck
assembly into several segments to find the appropriate
length of span. The best cutting planes are not necessar-
ily orthogonal to the horizontal alignment of the bridge
(i.e., X-axis of the deck assembly), but rather depend
on the orientation of the expansion joints. This is be-
cause two adjacent deck assembly segments must be in-
terconnected by the expansion joints as per the High-
way Agency’s BD 33 design code (Highways England,
1994). The choice of joint depends on many factors, in-
cluding imposed loadings, anticipated movement, tem-
perature range, deck shortening, and deck rotation. Pier
clusters and pier caps are then oriented based on the
joints. Hence, the problem of finding the best cutting
planes is transformed into orientation determination
of the pier clusters or pier caps (Figure 11). We em-
ploy a 3D oriented-bounding-box (OBB) to capture the
orientation property. OBB is the tightest oriented box
depicting a given 3D point set. All bridges have piers,
but not all of them have pier caps. So, a pier cluster
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Fig. 10. Merging to acquire the whole deck assembly.

Fig. 11. Best cutting planes.

is used to create an OBB. Only its bottom-half is used
to avoid retained boundary points from the pier cap as
those points might lead to a shifted OBB.

OBB replaces a point set with a parallelepiped
of 12 edges and 8 vertices. Let {d1, d2, d3, d4} and
{p1, p2, p3, p4} be the four upper vertices of the merged
deck assembly Deck and the bottom-half part of a
pier cluster, respectively (Figure 12). Let M1, M2
be the midpoints of linep1p2 and linep3p4. MP1 and
MP2 are two orthogonally projected points of M1
and M2 onto the plane pld1−d3. Then, d5 and d6 are
two intersection points of lined1d2 & lineM P1M P2 and
lined3d4 & lineM P1M P2, respectively. Deck is cut along
the plane consisting of d5, d6, M1, and M2 so that the
plane plM P1−M2 is deemed the best cutting plane. Next,

the method examines whether each point of the deck
assembly is inside the Convex Hulld1d4d6d5:

if ∀ pi ∈
{
pix,y|Deck x,y

}

is inside Convex Hulld1d4d6d5: {pi |Deck} ∈ deck1;
otherwise,

{pi |Deck} ∈ deckC
1

This process is recursively performed until the en-
tire deck assembly is segmented into multiple segments
{deckω : ω = 1, 2, . . . (m + 1)}, where m is the number
of pier clusters (equals to number of pier assemblies)
(Figure 13).

3.6.2 Step 4.2—Girder detection in the deck assembly
segment. We now detect girders in each deck assembly
segment. We start by rotating deckω around its Y-axis
until deckω reaches the best projection view, because the
original projection results of deckω might be “muddy”
due to a curved bridge elevation. Rotation is conducted
through a grid search in a range of angles {ξ}, where {ξ}
= [−3.4°, 3.4°], deduced from the general longitudinal
maximum gradient (6%) (Highways England, 2017). A
density histogram HZ along the Z-axis is employed for
evaluating if a best rotation is reached. The best rotation
angle is determined using:

�

ξ = argmax{stdHZ (deckω)} (7)

where stdHZ (deckω) is the standard deviation of the point
counts in the bins. Empirical studies revealed that the
best projection determination is not sensitive to the bin



Detection of bridge components in point clouds 11

Fig. 12. Find the best cutting plane.

Fig. 13. Split the whole deck assembly into {deckω}.

Fig. 14. Best rotation found vs. different bin size.

size (varies from #bin = 10 to #bin = 1000, μ = 2.70°,
σ = 0.05°) (Figure 14). The bin size is then derived us-
ing Equation (6). stdHZ (deckω) is a stronger indicator than
simply the maximum point count bin, because the ele-
vation of girder depends on that of the slab. The best
projection may not necessarily be given by the bin with
the maximum point count resulting possibly from a con-
centration of unevenly distributed points. The best pro-

jection view can be found once the standard deviation
of histogram bins on the Z-axis reaches its maximum.
Figure 15 demonstrates an example where the best ro-

tation (
�

ξ= 2.7◦) is obtained when the biggest stdHZ (deckω)

(1,178) returns.
Next, only the bottom ρ4 (%) points of deckω(ξ̃) (de-

noted bdeck
ω(

�
ξ )

) are used for girder detection, where ρ4 =
ρ1−ρ3a

ρ1
, with the thickness of deck assembly as well as

that of the slab being estimated to be roughly ρ1 (ob-
tained from Step 1) and ρ3a (obtained from Step 3.1),
respectively. The removal of the deck assembly’s up-
per part (top (1 −ρ4)) is crucial as many more points
are captured from deck external surface, overpower-
ing the girder points and make the geometric features
uninformative. The extremities of deckω(ξ̃) are also ex-
cluded to avoid noise from bridge accessory compo-
nents. Density histograms HY are drawn along the Y-
axis of bdeck

ω(
�
ξ )

using Equation (6) (Cluster ← bdeck
ω(

�
ξ )

)

followed by generating the normalized probability of
the point density (Figure 16). The density probability is
uniformly distributed with significantly lower variance
when there is no girder (i.e., slab bridge) whereas sig-
nificant peaks can be observed in the distribution with
non-trivial variance when girders exist (i.e., beam-slab
bridge). For the latter, a binary list (0, 1) is created after
thresholding out all small counts (small-count bin← 0,
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Fig. 15. Best rotation search in deckω.

Fig. 16. Girder segmentation.

big-count bin← 1). This list is further denoised through
a simple k-NN filter, which works as a voting scheme. It
checks the label of neighboring bins, and then assigns a
candidate label to the investigated bin. This process is it-
eratively performed until optimal clusters are returned,
meaning the “1” chunks have similar length because the
girder section type is identical in a specific span (see Sec-
tion 4.1, A4). The bottom flange can infer a collection of
possible girder section types (e.g., Y, U, or SY beams).
We then use the web depth (i.e., girder’s height) ex-
tracted along the best projection view to decide a spe-
cific girder type so that the girders can be separated ac-
cordingly from the slab.

All the over-segments from Step 1 to Step 4 are
merged as per their class labels. The 4-step top-down
recursive detection method then terminates.

4 RESEARCH METHODOLOGY

4.1 Assumptions

According to national standards (Highways England,
2017), the proposed method is feasible in the context
of RC bridge modeling under the following conditions,
which are also confirmed in our experiments.
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A1. Pier assembly and deck assembly can be separated
using the ratio ρ1.

A2. Pier area and deck assembly can be separated using
the ratio ρ2.

A3a. A pier assembly does not contain a pier cap if a
single pier area is detected in the pier assembly and
the width of the pier is almost the same as that of the
pier assembly.

A3b. Surface normals are distinct features that can be
used to distinguish a pier cap part apart from a pier.

A3c. Pier cap parts can be extracted from the deck as-
sembly using the ratio ρ3b = ρ1

ρ2
.

A4. The density histograms along the best view can
be used to segment the girders in the deck assembly
segment.

In particular, A1 and A2 are validated experimentally
in Section 4.3.3 whereas A3a–c and A4 are validated in
Section 4.4. We also assume an RC bridge satisfies the
following conditions:

A5. The piers are quasi-vertical.
A6. The on-site clutters and irrelevant points are prop-

erly removed manually.

4.2 Data and methods

To test our hypothesis, we used a FARO Focus 3D X330
Terrestrial Laser Scanner (ranging error ±2 mm at 10
m, self-leveling: accuracy 0.015° (range ±5°)) to collect
PCD of 10 RC highway bridges around Cambridgeshire,
United Kingdom (Figure 17). The locations (GPS), ver-
tical clearance (denoted VC), and other bridge data in-
formation are given in Table 1. The large size of the ex-
cluded data (i.e., nondata) is mainly due to the manual
removal of the on-site traffic noise, trees, large ground
surfaces, ramps, and abutments.

The samples we used to test our detection method
are bridge components. The sample size depends on
the standard normal deviation, error limit, and category
proportion. As the calculated sample size decreases, the
margin of error grows, so theoretically, more bridge
data (�20) is needed to achieve a good confidence level
(CL = 90%) with a relatively small error limit (EL =
0.2). However, the cost and risk of data collection is ex-
tremely high, as researchers must operate a laser scan-
ner next to a live carriageway and face significant traf-
fic hazards. We therefore consider this proof of concept
study validated if we achieve a low performance vari-
ance over the 10 bridge data sets (CL = 90%, EL =
0.3). To our best knowledge, this study has the largest
collection of real-world RC bridge point clouds.

We took an average of 17 scans per bridge. The dis-
tance between the captured scan points was set to be in

Fig. 17. Four examples of RC bridge point clouds.
Note: The on-site traffic, trees, and vegetation are removed.

7.67 mm over a scan distance of 10 m (except for inac-
cessible standpoints). We registered all raw scans using
the FARO Scene software. On average, the registration
time was 10.6 hours per bridge. Note that several factors
may affect the measuring accuracy, such as low temper-
atures, which may condense elements inside the scan-
ner. As the data-collection work was conducted during
the cold winter season, we warmed the scanner up be-
fore every task until its internal temperature stabilized.
We also used the built-in inclinometer to store the incli-
nation of the leveled scanner.

The relative accuracy achieved (denoted acc in
Table 1) was estimated from the averaged fraction be-
tween pair reference-point distance in the registered
scan data and the corresponding on-site pair-point dis-
tance using a measuring tape, independent of other
error sources. The spatial completeness of the data
sets was computed based on rough estimation of the
occlusion-data ratio (Table 1).

Our analyses consist of two parts. The first part is to
experimentally define the optimal values of the two pa-
rameters (ρ1 and ρ2) at the level of individual point clus-
ters in Steps 1 and 2, respectively. Then, we derived the
optimal values of the other three hyperparameters (ρ3a,
ρ3b, and ρ4). The second part is to assess the proposed
method at the level of bridge structural components us-
ing both bounding-box-wise (inspired from the outline
evaluation suggested in Truong-Hong and Laefer, 2015)
and point-wise performance metrics.
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4.3 Activities

4.3.1 Data preparation. We developed a user-defined
bounding-box functionality to manually delete irrele-
vant points such as the on-site traffic, vegetation, ground
surface, and so on. This is the only required manual
work. The proposed four-step object-detection method
is fully automatic without any human intervention, be-
cause it is easier for a human modeler to delete irrele-
vant points than a computer, because the latter requires
a sophisticated algorithm to identify which points are ir-
relevant or are noise. On the contrary, it is difficult for
a human modeler to precisely segment a point cloud of
complex geometries on 2D computer monitor.

After randomly downsampling, an RC bridge point
cloud with the key components contains less than 1
million points. The reason for downsampling is that the
original size was not used for manual detection as the
commercial software is difficult to handle large data
sets. Next, we aligned the cropped bridge point cloud
using PCA so that the major axes of the bridge are posi-
tioned roughly parallel to the global axes X-Y-Z (none
of the bridges can be positioned exactly parallel to the
axes due to their real-world skewed geometry).

We created three ground-truth (GT) data sets (op-
timal desired output to compare against) by manually
conducting Step 1 (i.e., GT A), Step 2 (i.e., GT B), and
the entire solution (i.e., GT C):

GT A: For a given bridge point cloud input, we seg-
mented it into two clusters, namely, deck assembly and
pier assembly and assigned them corresponding point-
wise labels.

GT B: For a pier assembly point cloud input, we seg-
mented it into two clusters, namely, deck assembly and
pier area and assigned them corresponding point-wise
labels.

GT C: For a given bridge point cloud input, we seg-
mented it into individual point clusters as per their se-
mantic class—that is, structural components, including
slab, piers, pier caps (if they exist), and girders (if they
exist). Each of these point clusters was bounded by an
oriented-bounding-box (hereafter GTBBox). We also
assigned the points in each cluster their corresponding
point-wise labels. Both GTBBox and manually labeled
points were served as reference for comparison.

4.3.2 Implementation. We implemented the so-
lution into a robust software prototype Gygax
(https://github.com/ph463/Gygax) as a proof of concept
in a desktop computer (Intel Core i7-4790K 4.00GHz
CPU, 32 GB RAM, Samsung 500GB SSD). Gygax is an
open research platform in C#. It uses a sparse wrapper
to allow the usage of PCL and other open libraries.

4.3.3 Estimation of hyperparameters. We estimated the
two hyperparameters ρ1 and ρ2 and compared the re-
sults against GT A and GT B, respectively.

Denote “S” as a specific point cluster, where S ∈
{αM , αM

C} in Step 1 and S ∈ {DPCM , βM P} in Step 2. We
defined the following point-wise performance metrics
Precision (Pr), Recall (R), and F1-score (F1) as:

Prs = TPs

TPs + FPs

= # of correctly labeled points in cluster s
total # of points in cluster s

(8)

Rs = TPs

TPs + FNs

= # of correctly labeled points in cluster s
total # of points in ground truth cluster s

(9)

F1s = 2× Prs ×Rs

Prs +Rs
(10)

The values of ρ1 and ρ2 vary for different bridge con-
figurations. To learn how sensitive the outputs of the
first and the second steps of our proposed method is
to ρ1 and ρ2, we conducted grid-search over the en-
tire range of values of ρ1 as well as ρ2 within the value
space (0, 1), and computed the empirical receiver op-
erating characteristic (ROC), which depicts the trade-
off between true positive rate (TPR) and false positive
rate (FPR). The TPR (Equation (11)) is known as sen-
sitivity of detection—that is the equivalent of the Recall
whereas the FPR (Equation (12)) is known as probabil-
ity of false alarm (1-specificity), where:

TPRs = sensitity = TPs

TPs + FNs
(11)

FPRs = 1− specificity = FPs

FPs + TNs
(12)

A too small or too big (close to 1) ρ1 may lead the
method to consider a whole RC bridge as either pier as-
sembly or deck assembly. By intuition, a relative big ρ1,
for example, 0.5, can be used to extract pier assemblies
in Step 1 because normally, the height of pier should be
much larger than that of the deck. Yet, to keep a nec-
essary vertical clearance, the thickness of the deck is al-
most impossible to be as thick as 0.5 times of the height
of pier assembly. We therefore should find a reasonable
value of ρ1, which is both theoretically and realistically
sound. We identified the optimal ρ∗1 and ρ∗2 when the
distance to the perfect classification in the ROC (i.e.,
FPR = 0, TPR = 1) was minimized:

ρ∗k = argmin (dρk ) (13)
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Fig. 18. ROC of detector range jz of pier assembly and pier
area (example of Bridge 1).

Table 2
ρ∗1 determination

Bridge ρ∗1

1 0.31
2 0.25
3 0.25
4 0.25
5 0.25
6 0.25
7 0.31
8 0.20
9 0.30

10 0.30
ρ∗1 0.27
S 0.03

where dρk =
√

(1− sensitivity)2 + (1− specificity)2, for
k ∈ {1, 2}, k represents the number of the step.

The optimal thickness ratio ρ1 for each bridge was
then found using Equation (13). Figure 18 shows an ex-
ample of ROC curve of Bridge 1. Assume the samples
follow a t-distribution with 9 degrees of freedom (i.e.,
n − 1, where n = 10), the 95% confidence interval (CI)
critical value was derived from the t-table as 2.262 for
calculating the true sampling distribution mean μρ∗1

. The
optimal ρ1 was then computed as 0.27 ± 0.03, that is,
ρ∗1± t(s/

√
n), where ρ∗1 is the sample mean and s is the

sample standard deviation (Table 2). We also computed
μρ∗1

using the bootstrapping technique which resamples

the data by replacement with a same sample size of 10
followed by repeating 1,000 times. The 95% CL upper
bound was estimated to be 0.29, which is in line with
that of the t-statistic. We chose the upper bound of the
t-statistic to set ρ∗1 as 0.30 rather than its lower bound
because all indicators such as Pr, R, F1, FPR, and dρ1

had a good balance when ρ1= 0.30 (e.g., F10.3 = 0.84,
F10.24= 0.74). More importantly, setting a bigger ρ∗1 can
avoid extracting too many false positives (e.g., FPR0.3 =
0, FPR0.24 = 0.06).

Then, we also grid searched the optimal ρ2 in Equa-
tion (2) in the same way followed by plotting ROC
(Figure 18) at various threshold settings ρ2 for a pier
assembly sample. The 95% CI of t-statistic for ρ2 was
derived to be 0.36 ± 0.03. Likewise, we chose the upper
bound to set ρ2 as 0.39. Once we obtained ρ∗1 and ρ∗2 , we
calculated ρ3b = ρ∗1

ρ∗2
≈ 0.80.

Then, we estimated the value of ρ3a , which is the slab
thickness ratio estimation used to remove the upper slab
surface points from the pier area(s) {βmp} (see Step 3.1).

The pier areas {βmp} are relatively small regions com-
pared with an entire bridge. It is reasonable to consider
the vertical elevation of βmp constant so that we can
present the probability of point density for {βmp}. Sup-
pose the distribution of the points along Z-axis of {βmp}
is a collection of probabilities of locations on the pier
area surface where the points are located in. The den-
sity estimations of pier area samples from slab bridges
showed an obvious void space between the top surface
and the bottom surface of a slab. The 95% CI of the nor-
malized slab bottom level was 0.84 ± 0.06. Likewise, for
all the pier area samples from beam-slab bridges. The
95% CI of ρ3a was estimated to be 0.76 ± 0.04. These
statistics suggested that for slab and beam-slab bridges,
the top 10% βmp points include the upper slab surface so
as we can remove and classify them into deck assembly.
This slab thickness ratio ρ3a is especially used for beam-
slab bridges in Step 4 for girder segmentation. We chose
the slab bottom level estimation of beam-slab bridge to
estimate the ρ3a as 0.28 and 0.2 (i.e., 1 − (0.76 ± 0.04)).
Taking into account the shallow girder and the effect
of transverse gradient, we chose ρ3a = 0.2 so that then,
ρ4 = ρ∗1−ρ3a

ρ∗1
≈ 0.33.

4.4 System validation and results

We evaluated the whole proposed method of the proto-
type on the level of structural components with the op-
timal hyperparameters identified in Section 4.3.3. Then
we compared the results against GT C. The method gen-
erated an oriented-bounding-box for each segmented
point cluster (hereafter AutoBBox) and assigned a se-
mantic instance label to each point. The run-time for
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Fig. 19. Detection results and AutoBBoxes for point clusters of four example bridges.

each bridge point cloud was on average 8.02 ± 3.02
minutes (less than one million points), including all four
major steps of the proposed method. This means a dra-
matic decrease of 90% compared to GT C.

We first compared AutoBBoxes against GTBBoxes
and evaluated the proposed method’s performance us-
ing the following conditions. For a specific point cluster
generated from the proposed method, let Cauto and Cgt

be the centers of its AutoBBox and its GTBBox (if it
exists), respectively, and d(Cauto, Cgt ) be the Euclidean
distance between Cauto and Cgt .

C1. GTBBox of the specific point cluster exists;
C2. Cauto is inside the corresponding GTBBox;
C3. ε = d(Cauto,Cgt )

min(lgt , wgt ,hgt )
<50%, where lgt , wgt , hgt are the

length, width, and height of the GTBBox of the point
cluster, respectively.

The point cluster is correctly detected by the AutoB-
Box and we assigned one to True Positive (TP) if all the
above three conditions are satisfied; one to false positive

(FP) if C1 is false but an AutoBBox is generated; one to
false negative (FN) if C1 is true but at least one of C2
and C3 is not satisfied. The Pr, R, and F1 in bounding-
box-wise metrics for each bridge were generated using
similar formulas as Equations (8)–(10). Specifically, the
Pr is the number of correctly detected point clusters out
of the total number of AutoBBoxes of a bridge data set,
the R is the number of correctly detected point clusters
out of the total number of GTBBoxes of a bridge data
set, and the F1 is the harmonic mean of the Pr and R.

Figure 19 illustrates the point-wise and bounding-
box-wise detection results. As shown, Bridge 9 slab
contains obvious skew. The average Pr, R, and F1 of
the bounding-box-wise performance of 10 bridges were
100%, 98.5%, and 99.2% (Table 3), respectively. All
of the components were correctly detected except pier-
Cap1 (ε = 71.9%), pierCap2 ( ε = 81.9%) of Bridge 1.
Yet, few points in these clusters were detected as FP
(FDRpierCap1 = 4.4%, FDRpierCap2 = 8.6%), where the
false discovery rate (FDR) for each point cluster is

Table 3
Bounding-box-wise performance and point-wise performance in micro-average of 10 bridge data sets

Bounding-box-wise Point-wise

Bridge #FN #FP #TP F1 #FP Pr/R/F1 micro

1 2 0 11 91.7% 2493 99.5%
2 0 0 4 100% 4839 99.0%
3 0 0 4 100% 3486 99.3%
4 0 0 13 100% 220 100%
5 0 0 3 100% 3256 99.3%
6 0 0 7 100% 1509 99.7%
7 0 0 20 100% 49412 89.1%
8 0 0 7 100% 2351 99.5%
9 0 0 7 100% 2777 99.4%

10 0 0 7 100% 234 100%

Avg. 99.2%
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Table 4
Confusion-matrix of Bridge 2

Auto label

slab pier11 pier12 pier13 Pr

slab 388525 2639 574 1624 98.8%
pier11 0 37935 0 0 100%

GT label pier12 0 0 31804 0 100%
pier13 2 0 0 36897 100%
R 100% 93.5% 98.2% 95.8%

Table 5
Effect of large occlusions on Bridge 1

FDRs = FPs

FPs + TPs
(14)

Therefore, although bounding-box-wise metrics can
give us a general picture of the performance, they are
too sensitive to the locations of misclassified points,
which largely affected the values of d(Cauto, Cgt ).

We repeated the system evaluation with point-wise
metrics, that is, Equations (8)–(10). Herein, the “S” in
Equations (8)–(10) refers to any specific final point clus-
ter generated from our proposed solution.

For a specific bridge point cloud, we computed the
micro-average scores. In micro-average, we summed up
individual TP, FP and FN from all point clusters to ob-
tain the statistics:

Prmicro =
∑|S|

s=1 TPs∑|S|
s=1 TPs +

∑|S|
s=1 FPs

(15)

Rmicro =
∑|S|

s=1 TPs∑|S|
s=1 TPs +

∑|S|
s=1 FNs

(16)

where |S| is the number of generated point clusters
in this given bridge point cloud. The micro-average
F1-score is simply the harmonic mean of Prmicro and
Rmicro.

Assumptions A3a – A3c were justified as the method
recognizes that there was no pier cap in the pier as-
semblies of Bridges 2, 3, 5, and 7 (wall-type-pier) and
Bridges 4, 6, 8, 9, and 10 (multiple columns without
cap). The method correctly identified the pier caps in
Bridge 1.

Table 3 shows that the proposed method achieved re-
markable performances: the highest micro-average of
Pr/R/F1 was rounded up to 100% and the lowest was

89.1% (for multiclass case, the micro-averages yields re-
sult in a mathematically equivalent definition for preci-
sion and recall, thus equivalent F1-score).

4.5 Discussion

An example of confusion matrix of Bridge 2 is given in
Table 4. Although we achieved high detection rates with
the PCD of all 10 RC bridges in both the bounding-box-
wise and the micro-average assessments (Table 3 and
Table 6), the FDR of some point clusters revealed that
the proportion of the FP points is not insignificant. This
is especially true for Bridge 7. There are a few compo-
nents that reached very high detection precision, such
as the pier (97.2%) and many girders, such as girder14
(100%), girder15 (100%), girder22 (100%), and
girder23 (100%), among others. However, some points
were not properly classified. Normally, a slab cluster
should contain the most populated labels in a bridge
point cloud (i.e., it has the most points). For Bridge 7
(Table 6), we had a misclassification for the slab point
cluster ( FPslab = 37764, FDRslab = 17.7%). The FDR
was also not trivial for girder11 (21.1%), girder19
(27.9%), girder21 (23.3%), and girder29 (20.6%).
The microaverage metrics adequately captured class
imbalance issues and brought the overall precision
average down to 89.1%.

There are two main reasons for the reduced classi-
fication performance in Bridge 7. First, the significant
parabolic vertical alignment of the roadway in each
deck segment of this bridge made the segmentation
less accurate. Future work should develop a further
deck-segment slicing procedure in Step 4 to alleviate
the impact of parabolic curves. Second, the girders were
placed so close to each other that the gaps between ad-
jacent girders were difficult to be seen by a scan sensor.
Around 8% of the surface of Bridge 7 was occluded
(Table 1) mainly due to the fact that the points on the
webs of the girders were missing. As a result, these
regions were quite ambiguous, making it difficult to de-
tect an individual girder by the proposed method. The
points between adjacent girders were misclassified as
slab. To learn how many occlusions are exactly accept-
able, we reconducted experiments using Bridge 1 by
creating arbitrary occlusions in slab, pier caps, and piers,
respectively, while others remain unchanged. Then we
combined all these occlusions. The occlusion level was
estimated to be 30–40%. Table 5 shows that our method
achieved high detection performance. However, it is
not encouraging to process such a high occlusion level
data in real applications. The experiment of the best
projection search of deck2 of Bridge 8 also proved
that our method is robust to very unevenly distributed
points between the upper and lower slab (Figure 20).
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Table 6
Point-wise performance of Bridges 1, 4, 7, and 9

Cluster #FN #FP FDR (%) ε (%)

Bridge 1 slab 1478 48 0.1 0
pierCap1 239 572 4.4 71.9
pierCap2 0 800 8.6 81.9
pierCap3 209 673 5.5 17.6
pier11 37 0 0 1.8
pier12 52 0 0 2.9
pier13 54 0 0 3.1
pier21 33 0 0 2.1
pier22 23 0 0 2.8
pier23 55 0 0 2.9
pier31 20 0 0 0.9
pier32 248 0 0 15.7
pier33 45 0 0 3.4

Bridge 4 slab 82 114 0.03 3.4
pier11 2 23 0.29 8.1
pier12 9 1 0.02 1.5
pier13 3 4 0.04 0.1
pier14 2 6 0.02 0.2
pier15 11 2 0.02 1.1
pier16 2 25 0.30 1.2
pier21 2 27 0.30 10.5
pier22 32 2 0.02 4.4
pier23 7 2 0.02 0.9
pier24 14 2 0.02 2.3
pier25 52 2 0.03 2.9
pier26 2 10 0.12 0

Bridge 7 slab 11000 37764 17.7 37.0
pier11 2 573 2.75 3.7
girder11 108 2061 21.1 30.5
girder12 113 3 0.04 2.4
girder13 3230 3 0.03 13.2
girder14 4000 2 0.01 7.1
girder15 4005 2 0.01 13.3
girder16 2715 2 0.02 17.4
girder17 1051 2 0.02 12.6
girder18 32 3 0.04 12.3
girder19 89 3468 27.9 22.3
girder21 84 3269 23.3 21.3
girder22 98 4 0.04 1.1
girder23 3511 2 0.02 16.2
girder24 5351 3 0.02 3.9
girder25 8368 3 0.01 3.5
girder26 4377 4 0.03 10.9
girder27 1034 5 0.05 10.6
girder28 95 9 0.13 7.1
girder29 149 2230 20.6 27.9

Bridge 9 slab 5 2768 0.75 0.2
pier11 181 1 0.01 16.3
pier12 1161 1 0 8.1
pier21 278 1 0.01 25.2
pier22 258 1 0.01 25.0
pier31 457 1 0 14.6
pier32 437 4 0.02 20.3
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Fig. 20. Best projection search when points are very unevenly distributed (example of deck2 of Bridge 8).

Indeed, there could be some extremely nonuniformly
distributed points scenarios that our method may not
accommodate. Yet, we believe that a carefully planned
and elaborately designed scanning process could
eliminate these cases. Specially targeted laser-scanning
techniques or settings are required for these challenging
regions. The method of Laefer and Truong-Hong (2017)
can be considered in this endeavor.

It is worth noting that our method is efficient for a
certain type of RC bridge, that is, the typical RC slab
bridges and beam-slab bridges. Although it is too soon
to claim that the proposed method will accommodate
all needs, the experiments proved that our method fills
some gaps in knowledge and is capable of dealing with
some very common and important types of highway
bridges.

This method could likely be scaled up for more
complicated bridges. Additional procedures can be
integrated into our method to detect other elements,
such as abutments, bearings, handrails, and so forth.
Future work can also be built on Step 4 to detect and
segment delicate components in bridges with more
complex superstructure geometries (e.g., grid-beams,
cross-beams). The method developed for reconstruct-
ing gridded steel structures (Gyetvai et al., 2018; Laefer
and Truong-Hong, 2017) can be integrated.

5 CONCLUSIONS

Object detection in bridge point clouds remains un-
solved. In this work, we presented a novel top-down

method for major bridge-component detection in point
clouds and tested it on 10 sets of real RC highway-
bridge PCD. The validation metrics showed that the
method is very reliable, which supports our hypothe-
sis. Given the high performance of our method on real-
world bridge point clouds containing defects such as oc-
clusions and sparseness, we contend that there is vir-
tually no human intervention needed to check whether
the points are correctly classified in each step.

The contributions of this research are the following:

1. Our method can deal with complex real-world
bridge topologies, such as varying elevation and
slightly curved horizontal alignment. The method
also excelled on Bridges 8 and 9, which contain ob-
vious curved horizontal alignments.

2. Our method can handle challenging scenarios,
such as occlusions and locally variable densities of
points. Although some input is very sparse (e.g.,
Bridges 4, 6, and 8) due to long scan distances, our
method still achieved quite good performance in
these point clouds.

3. Our method dramatically reduces computational
costs by breaking down a large set of point cloud
into subsets. In this way, large-scale object detec-
tion efficiency can be significantly improved with-
out sacrificing precision.

However, the proposed method does not intend to
be a cure-all. More bridge data with various con-
figurations especially that with different girder and
pier cap types should be included and investigated in
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future studies. This can enhance the statistical power of
the method with increased confidence level and reduced
margin of error. Then, the method is not suitable for di-
aphragm bridges whose upstand diaphragms lay on the
same level of the integrated lateral beams. It also can-
not deal with concrete bridges with complex geometries
or steel bridges (e.g., truss bridges). In addition, small
girder spacing and severely unevenly distributed points
may affect and decrease the detection performance of
the proposed method for beam-slab bridges. These re-
gions require additional very-high-resolution scanning.
In short, this research indicated that the most impor-
tant typical RC bridges can be supported using the pro-
posed solution, which can significantly reduce the mod-
eling cost and will accelerate the adoption of BrIM for
existing RC bridges. Future planned works will focus on
(1) the overcoming of the abovementioned limitations
and addressing some of the assumptions; (2) upgrading
the algorithm to scale up to more complex bridge sys-
tems and detection of more components; and (3) fitting
IFC objects to the generated labeled point clusters.
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