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Abstract. This paper presents work in progress on an algorithm to track and 

identify changes in the vocabulary used to describe particular concepts over time, 

with emphasis on treating concepts as distinct from changes in word meaning. 

We apply the algorithm to word vectors generated from Google Books n-grams 

from 1800-1990 and evaluate the induced networks with respect to their 

flexibility (robustness to changes in vocabulary) and stability (they should not 

leap from topic to topic). We also describe work in progress using the British 

National Biography Linked Open Data Serials to construct a “ground truth” 

evaluation dataset for algorithms which aim to detect shifts in the vocabulary 

used to describe concepts. Finally, we discuss limitations of the proposed 

method, ways in which the method could be improved in the future, and other 

considerations. 
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1 Introduction 

Some influential theories of conceptual structure, such as the so-called name priority 

view [1] and some interpretations of the classical theory of concepts [2], treat concepts1 

as essentially in one-to-one correspondence to word senses [3,4,5]. On this view, one 

word might have several different senses and thereby correspond to several different 

                                                           
1 Rather than thinking of concepts in a way that strongly links them to a particular lexeme (e.g., 

“the concept of justice”), we have argued elsewhere that it is preferable to think of concepts 

(at least insofar as they are expressed in discourse) in terms of their functions, one of which 

is to permit two interlocutors to sense that they have arrived at a common understanding of 

the matter under discussion. This is rather different and more abstract than the notion of a 

concept as being equivalent to a class in a classical ontology, and more specific than a theme 

or topic. However, for purposes of clarity and compatibility with the way related work speaks 

about “concepts,” our use of the word in this paper roughly conforms to the vague OED 

definition of “a general idea or notion.” We are explicitly not using it to refer to “the meaning 

that is realized by a word or expression.” 
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concepts, but it is nonetheless possible to identify concepts via a careful examination 

of word meanings. Some modern philosophers and psychologists have made 

convincing arguments that this view is overly simplistic or flat-out wrong [1,6]. Even 

if one does believe in a direct correspondence between word senses and concepts, 

however, it is clear that a change in word sense does not necessarily entail a change in 

the concept that was originally associated with it. For example, the word broadcast 

started to change from having the meaning of “scattering [seed] abroad over the whole 

surface, instead of being sown in drills or rows” to being associated with the 

transmission of radio or television signals in the 1920s [7,8]. However, the fact that the 

primary sense of broadcast changed did not mean that the concept of sowing seeds over 

a wide area went away. Similarly, it seems clear that a culture could possess a particular 

concept even if no corresponding word or collocation exists in the primary language 

spoken by members of that culture.  

 

The distinction between word senses and concepts is an important one to draw because, 

as pointed out by Wevers et al. [9], some computational approaches described as 

methods for detecting changes in “concepts” are often actually methods for detecting 

changes in the use of a single word or an unchanging group of words over time. Because 

word senses change over time, a change in the frequency or lexical associations of a 

particular word does not necessarily entail a change in the concept of interest. Being 

able to track concepts over time in a way that is robust to shifting vocabularies is 

therefore essential. Methods for detecting conceptual change in time-varying textual 

sources are particularly relevant in the context of Linked Open Data (LOD). To assist 

in the maintenance of LOD ontologies, knowledge engineers may wish to use time-

varying text corpora, such as academic journals or news sources, to monitor conceptual 

change over time. Consider someone who maintains an ontology intended to represent 

relationships between various concepts in the neuroscience literature, who notices that 

this year there has been a marked uptick in the frequency of particular words that 

previously occurred only rarely. Does this merit the addition of a new class to the 

ontology? Or is this simply novel language for describing an old idea? Ultimately, this 

must come down to human judgment, but automatic methods for assisting with the 

decision could highlight important related classes already represented in the 

knowledgebase. 

 

This paper presents work in progress toward an algorithm to track vocabulary 

associated with particular concepts over time in a flexible and stable way. In the next 

section, we describe related work, particularly a promising model recently developed 

by [10]. In Section 3 we implement a method which avoids one of the weaknesses of 

previous work while retaining the most important benefits. In Section 4, we describe 

work in progress using the British National Biography Linked Open Data Serials to 

construct a “ground truth” evaluation dataset for algorithms of this sort. We also discuss 

an additional approach to constructing a suitable ground truth dataset that we believe 

may hold some promise. Finally, we discuss some limitations of the method proposed 

in Section 3 and discuss other considerations. In particular, we highlight the fact that 

the present method has difficulty distinguishing between periods of “some vocabulary 



change” and “massive vocabulary change,” and suggest a way to improve its capacity 

to do so. We also highlight limitations of focusing only on densely associated clusters 

of words when attempting to understand conceptual change quantitatively.  

2 Related Work 

To address the problem of word sense change described in the Introduction, the 

Concepts Through Time model advocates an alternative approach to tracking concepts, 

using a set of Dutch newspapers from 1890-1990 as a corpus [9]. Rather than selecting 

a static set of terms and monitoring its frequency over the entire century, they select an 

initial term or terms of interest and find a cluster of words that are highly similar, 

according to a word embedding model trained on a specific timeslice (e.g., articles from 

the years 1890-1900). The cluster is updated from timeslice to subsequent timeslice in 

a manner which acknowledges that “the set of words used to discuss a particular 

concept might not show any overlap at all between different periods of time” [9]. 

However, treating time-shifted collections of words with no overlap whatsoever as the 

‘same’ has its own drawbacks. As [11] points out, “Imagine a subset of documents 

containing strong co-occurrence patterns across time: first between birds and 

aerodynamics, then aerodynamics and heat, then heat and quantum mechanics—this 

could lead to a single topic that follows this trajectory, and lead the user to 

inappropriately conclude that birds and quantum mechanics are time-shifted versions 

of the same topic.” Perhaps for this reason, subsequent work by the developers of 

Concepts Through Time notes that “a successful system… should strike a balance 

between an adaptive strategy that responds to changes in vocabulary, and a more 

conservative approach that keeps the vocabulary stable” [10]. Their revised model 

requires a user to select an initial set of seed terms and an algorithm to construct 

vocabularies of related terms for each timeslice: adaptive, nonadaptive, or hybrid. A 

simplified description of their adaptive method is that it starts with an input vocabulary 

(initially the user’s set of seed terms), expands that by adding words exceeding some 

minimum similarity threshold to the set, constructs a network from this set such that all 

pairs of nodes (words) exceeding the threshold are assigned an edge, and then prunes 

nodes that are low in degree centrality. The resulting word set is used as the input 

vocabulary for the next timeslice. This method works, but sometimes results in 

unacceptably high levels of drift away from the original concept. To counter this, they 

implement a nonadaptive method which simply outputs the words most similar to the 

words in the original seed set for every sliding time window, as well as a hybrid method 

which replaces “the least central terms of the vocabularies produced by the nonadaptive 

method by the top i vocabulary terms produced by the adaptive method with respect to 

degree centrality” [10]. This hybrid method performs best when compared against 

human judgments of performance. 

 

Topic models have been another popular approach for monitoring groups of related 

words over time [11,12,13,14]. However, these often either do not explicitly model 

changes in vocabulary within a particular topic/concept, or do not pay explicit attention 



whether the method allows topics to drift far afield from their original conceptual 

content. One contribution of the present work is that it does both, while resolving an 

important difficulty with the most similar approach we are aware of. 

 

Finally, much work has been done on automatically tracing changes in a given word’s 

meaning over time, e.g. [8,15,16]. Although this clearly differs from our aim of tracing 

changes in the vocabulary used to describe particular concepts, these methods are 

extremely useful for our purposes. For example, a word may need to be excluded from 

a core of tightly interrelated terms if its meaning drifts too far afield from the rest. We 

therefore here make extensive use of the HistWords vectors [8] developed by applying 

skip-grams with negative sampling (one of the algorithms available in word2vec) to n-

grams distributed by Google Books. HistWords contains a separate vector for each of a 

very large number of terms for every decade from 1800 to 1990, such that words that 

appear in similar contexts within a given timeslice have similar vectors. Such vectors 

successfully capture shifts in word meaning over time [8], and we use the same 

approach and data to quantify semantic similarity. We describe how we use these 

vectors in more detail in the following section. 

3 Time-Varying Relationships in Text 

Recall that the adaptive method of [10] involves an expansion step in which words 

related to any word in the input vocabulary are added to the network as nodes, and a 

pruning step in which nodes low in network centrality (in-degree or out-degree) are 

pruned. Although this is an excellent way to pull in novel vocabulary while also 

preventing the overall network from drifting too far afield, it has one unintended 

consequence. When the input vocabulary contains a word linked to two densely 

connected but unrelated clusters (e.g., a polysemous word), unrelated clusters of words 

will be added during the expansion step (Figure 1). Because nodes in each cluster have 

high degree, they will not be eliminated in the pruning step. The consequence is that 

unrelated, weakly connected clusters can persist as part of the same “concept.” The 

example in Figure 1 makes this particularly clear by illustrating two clusters so 

unrelated that they would become disconnected if the node connecting them were 

pruned. However, it is important to recognize that this phenomenon remains a problem 

even if a constraint were imposed requiring the graph to be fully connected. The other 

two methods described by [10] (nonadaptive and hybrid) suffer from the same 

difficulty. 

 

Our method addresses this by allowing two nodes to be treated as part of the same 

“conceptual network” only if all words in the network are highly related to all other 

words in the network. This constraint results in the happy consequence that words are 

excluded which may be highly related to one or two words in a particular network by 

happenstance, but are not close enough to the “conceptual core” to be related to each 

of the others. If a graph is constructed in which highly related words (nodes) are 

connected by edges, then such a “conceptual network” corresponds simply to the graph-



theoretical notion of a clique. Because all subsequent descriptions of networks in this 

paper concern weighted graphs in which nodes represent words, edges represent strong 

corpus-based associations between words, and edge weight corresponds to the strength 

of the association, we use “nodes” and “words” interchangeably, and “relatedness,” 

“similarity,” and “edge weight” as synonymous with “cosine similarity” (e.g., similarity 

between word vectors in the HistWords data). Like [10], we treat documents from every 

timeslice (in our case, decades from 1800-1990) as a separate subcorpus and build a 

separate vector space corresponding to each. 

 

 

Fig. 1. A graph representing two unrelated clusters of words connected by a single polysemous 

word. Even if the center node is eliminated in the pruning step described in [10], the nodes in 

each 8-clique may not be, due to their high degree. Both clusters thus erroneously continue to be 

interpreted as part of the same “concept.” 

3.1 Algorithm 

Given a size k and a seed set of words W, the algorithm begins by finding the fully 

connected subgraph of size k containing all words in W such that the minimum edge 

weight  (in the earliest timeslice) is as high as possible (i.e., higher than in all other such 

subgraphs that meet the criteria). This can be accomplished efficiently by attempting to 

find a subgraph of size k containing all words in W such that every edge exceeds a very 

high threshold2, but then gradually lowering the threshold until an appropriate subgraph 

is found. Afterwards, the vectors for the second timeslice are loaded, and the subgraph 

is updated by attempting to answer the question, “Is it possible to increase the minimum 

edge weight by replacing one of these nodes with a node currently not in the subgraph? 

If so, which of all possible replacements would increase the minimum edge weight the 

most?3” Because typically only one edge is equal to the current minimum edge weight, 

this can also be computed efficiently. This corresponds to a “drop one, add one” rule 

where, for any given timeslice, a single word from the network of the previous timeslice 

will be replaced if and only if doing so increases the minimum similarity between every 

                                                           
2 Because the threshold is initially set so high that no such subgraph can be found, this method 

ensures that the first subgraph discovered which meets these criteria is the one desired. 
3 Note that every node in the subgraph must correspond to a unique word. 



word pair in the resulting network. The process repeats for every subsequent timeslice. 

Table 1 illustrates an example of an evolving network built using this method. 

 

Our primary concerns were that conceptual networks be traced in such a way that is 

flexible (words whose meanings shift away from the conceptual core should drop out) 

but also stable (a network initially about birds should not drift to quantum mechanics). 

We tested the model by initializing it with 500 words randomly selected from the 

30,000 most frequent terms in HistWords, which were used as the lexicon. Of these, 

there were 212 words such that a fully connected network of size 9 existed with a 

minimum edge weight of 0.2 or greater could be constructed.  

 

1900 affable,cheerful,courteous,gay,genial,humored,natured,sprightly,witty 

1910 affable,cheerful,courteous,gay,genial,humored,natured,humoured,witty 

1920 affable,cheerful,courteous,gay,genial,jovial,natured,humoured,witty 

1930 affable,cheerful,courteous,gay,mannered,jovial,natured,humoured,witty 

1940 affable,cheerful,courteous,amiable,mannered,jovial,natured,humoured,witty 

1950 affable,cheerful,courteous,amiable,mannered,vivacious,natured,humoured,witty 

1960 affable,cheerful,courteous,amiable,mannered,charming,natured,humoured,witty 

1970 affable,cheerful,courteous,amiable,mannered,charming,natured,gentle,witty 

1980 affable,cheerful,courteous,amiable,humored,charming,natured,gentle,witty 

1990 affable,cheerful,courteous,amiable,clever,charming,natured,gentle,witty 

Table 1. Evolution over time of the network constructed from the seed word “gay.” 

 

A potential criticism of this model is that while it purports to be ‘flexible’ in the sense 

that it traces a group of conceptually related words (rather than merely words associated 

with the seed term alone), the fact that it is initialized with words closely related to the 

seed term may mean that in practice the seed term always ends up as a permanent part 

of the network. Table 1 illustrates that in at least one case of radical semantic change 

(the word “gay”), the seed term does successfully drop out by the 1940s. However, it 

is possible that this virtually never happens. Flexibility was therefore evaluated by 

quantifying the proportion of the 212 initial networks (year 1800) in which the seed 

term did drop out by 1990. Another potential criticism is the reverse: Because every 

timeslice offers an opportunity to jettison one term and incorporate a new one, networks 

might drift to completely different topics. For example, if each iteration caused a 

random word to be replaced with a word not previously in the network, then after 19 

timesteps a typical graph of size 9 would be expected to retain only (8/9)19 = 10.7% of 

its initial vocabulary. We therefore also computed the proportion of the vocabulary 

shared in the 1800 vs. 1990 clusters, with qualitative analysis of the clusters with the 

least shared vocabulary, to evaluate whether they exhibited less drift than this random 

baseline. 



3.2 Results 

With respect to flexibility, the seed word used to generate the initial size-9 network in 

1800 was no longer present in the 1990 network in 147 of 212 cases (69%). In 91% of 

these cases, the seed word never re-entered the network once it had dropped out, 

suggesting that the seed word can indeed be permanently ejected from the conceptual 

core if its meaning or associations drift in a different direction. With respect to stability, 

the average overlap in vocabulary between the initial 1800s network and the final 1990s 

network was 33%, with all 212 cases sharing at least one word (11%) in common with 

the original 9-word network. Even when only one word was shared, the network 

typically did not drift too far afield, as in the case of the seed word “uneasy” (1800: 

anxieties, dejected, dejection, distraction, fits, insupportable, languishing, uneasy, 

weariness; 1990: anxieties, grief, despair, disappointment, misery, sorrow, anguish, 

sadness, loneliness). The full set of networks generated in this evaluation may be 

obtained from http://nowin2d.com/vocabularies.html. 

3.3 Discussion 

The results suggest that even with such a rigid algorithm, the induced conceptual 

vocabularies are certainly flexible and reasonably resistant to drift. However, there 

were occasional clear cases in which vocabulary drifted significantly away from the 

original conceptual core, as in the case of the network generated from the seed word 

“logical” (1800: abstruse, definitions, disquisition, disquisitions, explanations, 

explication, grammatical, illustrating, logical), which drifted towards different areas of 

academic study by the 1990s (abstruse, mathematical, philosophy, theory, metaphysics, 

metaphysical, empirical, theoretical, philosophical). One obvious direction for future 

work is the optimization of initialization parameters (network size, initial edge weight 

threshold), which were chosen arbitrarily. However, the fact that even arbitrarily chosen 

initialization parameters resulted in reasonably flexible and stable networks is 

promising. Other directions could include making use of the information about how a 

conceptual vocabulary has changed in the past to predict how it will change in the 

future, using techniques that parallel those applied in predicting ontology evolution, 

e.g. [17]. In addition, future work should consider a stronger evaluation metric. The 

final section describes work in progress towards constructing a “ground truth” 

evaluation dataset that could be used to do just that. 

4 Constructing ground truth evaluation data from  LOD 

To more fully evaluate an algorithm’s ability to track vocabulary change associated 

with arbitrary concepts, a “ground truth” dataset is necessary. The only such data of 

which we are aware is the Ground Truth Set for Monitoring Shifts in Vocabulary Over 

Time4 offered by the developers of Concepts Through Time [10]. However, this dataset 

                                                           
4 Available: http://ilps.science.uva.nl/resources/shifts/  

http://ilps.science.uva.nl/resources/shifts/


is limited to 21 concepts spanning only four decades and is in Dutch, making it 

incompatible with most large, diachronic corpora.  

 

However, something very near to a much larger, English-language ground truth dataset 

already exists as LOD, in the form of the British National Bibliography Linked Open 

Data (BNBLOD) collections. Although we see ‘concepts’ as nonidentical to subjects 

as defined by the BNB, it is nonetheless likely that there is a high level of conceptual 

relatedness between all documents to which the British Library has assigned the subject 

http://bnb.data.bl.uk/id/concept/lcsh/Engineering, even if the vocabulary of such 

documents differs markedly from year to year. Particularly useful are the BNBLOD 

Serials, which in addition to including the year of each journal’s first publication, very 

commonly contain “Journal of X” in the title, where “X” corresponds to a short phrase 

describing a particular subject. The vocabulary of such ‘title phrases’ is often tied to a 

particular moment in time. Consider, for example, the phrases so extracted from the 

earliest “journal of X” journals in the BNBLOD Serials assigned the subject of 

Psychiatry (1876: ‘nervous and mental disease’), Engineering (1921: ‘applied 

mathematics and mechanics’), Entrepreneurship (1985: ‘business venturing’), and 

Tourism (1972: ‘travel research’). These phrases are no longer commonly used to 

describe these subjects. As a first step in constructing an evaluation dataset, therefore, 

we are first simply extracting title phrases, publication dates, and subjects from the 

BNBLOD Serials and structuring them as follows: Given a start year y1, an end year y2, 

and a phrase extracted from the title of a serial having subject S first published in y1, 

the algorithm being evaluated must predict which words and phrases are most likely to 

appear in titles of other journals of subject S which were published in y2. A robust 

algorithm trained on an appropriate could ideally correctly identify that the cluster of 

words that contains, e.g., “business venturing” in 1985 ought to include 

“entrepreneurship” by 1995 (rather than, say, “business organization”), and that “travel 

research” in 1972 is closer to “tourism” in 1992 than to “educational travel”.  

 

It should be noted that this is just a first step, and we hope that other, more 

comprehensive methods of evaluation will be developed with time. Possibilities that 

may inspire readers could include working with historians in the manner of [10] to 

create a larger dataset, or even using Library of Congress subject headings. Given that 

the same set of headings has been used to classify current works as well as now-

digitized works going back as far as the 16th century (e.g., many of the volumes found 

in Early English Books Online), these subject headings could provide an interesting 

way to quantify changes in vocabulary over very large timespans. For example, of the 

nine works in Early English Books Online prior to 1700 which are tagged with subject 

headings containing “Biology”, none contain the word “biology” in the full text [18]. 

This is not surprising, as the Oxford English Dictionary reports the first known use of 

the word as used in the scientific sense as dating from 1799 [19]. Standard methods 

from computational linguistics, such as tf-idf, could be employed to extract terms that 

are particularly prominent in texts published in particular decades labeled with 

particular Library of Congress subject keywords. This approach would essentially use 

the Library of Congress subject headings as a supervised ‘ground truth’ of what 



documents are related to a given concept (e.g. biology) from each timeslice, and by 

extension, the prominent words in these documents would be treated as the ‘ground 

truth’ with respect to the vocabulary that is associated with that concept at different 

times. It is our hope that the development of robust evaluation datasets will allow us 

not only to better evaluate our own research but move the field of representing 

diachronic conceptual change forward as a whole. 

5 Limitations, potential improvements, other considerations 

Although we were able to demonstrate that the proposed method is flexible (allows 

words that shift meaning to drop out of a lexical cluster) and resistant to semantic drift, 

the lack of a suitable ground truth dataset on which to objectively evaluate the degree 

to which the method tracks the vocabulary of a single “concept” across time is the most 

crucial limitation, as discussed in the previous section. Another important limitation 

stems from the decision to impose a rigid filter on the amount to which (the “drop one, 

add one” rule). The present method does not force a word to ‘drop out,’ so when there 

is little change in the degree to which a group of words cluster together from one decade 

to the next, the network will not change. However, because at most one word may drop 

out when change is present, it is impossible to distinguish between periods of gradual 

vs. rapid conceptual change using this approach. Allowing the addition of multiple 

words to a network in certain cases – for example, when all words in a particular clique 

became more highly associated with some set of n words than they are with each other, 

for some n > 1 – is an obvious way to remedy this. Of course, allowing more than one 

word to be added to a clique at once increases the chances of permitting unacceptable 

levels of drift, returning us to the central problem: evaluating whether or not a group of 

words was drifting overmuch from its corresponding concept would require a reliable 

ground truth dataset. 

 

In addition, there are unanswered theoretical questions about whether tracking a tight 

cluster of associated words is tantamount to tracking a ‘concept.’ We suspect that it is 

not. If one’s goal is to detect and understand conceptual change across time, it may well 

turn out that the objects of interest are something more akin to ‘conceptual 

architectures’: larger patterns that may include, but are not limited to, dense clusters of 

tightly bound lexis. For example, clusters may split and merge; two clusters of words 

that were previously unassociated may become indirectly associated by virtue of a new, 

mediating cluster that is linked to both; and some entities that are not clusters may hold 

important clues to conceptual change (e.g., single words that undergo significant drift, 

not because of changes in their meaning, but because of changes in their connotations, 

contexts of use, and so on). All of these considerations underscore the complexity and 

promise of novel approaches to tracking the vocabulary associated with particular 

concepts over time. 
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