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Abstract
Dropout, a stochastic regularisation technique for
training of neural networks, has recently been
reinterpreted as a specific type of approximate
inference algorithm for Bayesian neural networks.
The main contribution of the reinterpretation is
in providing a theoretical framework useful for
analysing and extending the algorithm. We show
that the proposed framework suffers from several
issues; from undefined or pathological behaviour
of the true posterior related to use of improper
priors, to an ill-defined variational objective due
to singularity of the approximating distribution
relative to the true posterior. Our analysis of
the improper log uniform prior used in variational
Gaussian dropout suggests the pathologies are
generally irredeemable, and that the algorithm
still works only because the variational formu-
lation annuls some of the pathologies. To ad-
dress the singularity issue, we proffer Quasi-KL
(QKL) divergence, a new approximate inference
objective for approximation of high-dimensional
distributions. We show that motivations for varia-
tional Bernoulli dropout based on discretisation
and noise have QKL as a limit. Properties of
QKL are studied both theoretically and on a sim-
ple practical example which shows that the QKL-
optimal approximation of a full rank Gaussian
with a degenerate one naturally leads to the Prin-
cipal Component Analysis solution.

1. Introduction
Srivastava et al. (2014) proposed dropout as a cheap way
of preventing Neural Networks (NN) from overfitting.
This work was rather impactful and sparked large inter-
est in studying and extending the algorithm. One strand of
this research lead to reinterpretation of dropout as a form of
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approximate Bayesian variational inference (Kingma et al.,
2015; Gal & Ghahramani, 2016; Gal, 2016).

There are two main reasons for attempting reinterpretation
of an existing method: 1) providing a principled interpre-
tation of the empirical behaviour; 2) extending the method
based on the acquired insights. Variational Bayesian dropout
has been arguably successful in meeting the latter criterion
(Kingma et al., 2015; Gal, 2016; Molchanov et al., 2017).
This paper thus focuses on the former by studying the theo-
retical soundness of variational Bayesian dropout and the im-
plications for interpretation of the empirical results.

The first main contribution of our work is identifica-
tion of two main sources of issues in current variational
Bayesian dropout theory:

(a) use of improper or pathological prior distributions;

(b) singularity of the approximate posterior distribution.

As we describe in Section 3, the log uniform prior in-
troduced in (Kingma et al., 2015) generally does not in-
duce a proper posterior, and thus the reported sparsifi-
cation (Molchanov et al., 2017) cannot be explained by
the standard Bayesian and the related minimum descrip-
tion length (MDL) arguments. In this sense, sparsification
via variational inference with log uniform prior falls into
the same category of non-Bayesian approaches as, for exam-
ple, Lasso (Tibshirani, 1996). Specifically, the approximate
uncertainty estimates do not have the usual interpretation,
and the model may exhibit overfitting. Consequently, we
study the objective from a non-Bayesian perspective, prov-
ing that the optimised objective is impervious to some of
the described pathologies due to the properties of the varia-
tional formulation itself, which might explain why the algo-
rithm can still provide good empirical results.1

Section 4 shows how mismatch between support of the ap-
proximate and the true posterior renders application of
the standard Variational Inference (VI) impossible by mak-
ing the Kullback-Leibler (KL) divergence undefined. As
the second main contribution, we address this issue by prov-
ing that the remedies to this problem proposed in (Gal &
Ghahramani, 2016; Gal, 2016) are special cases of a broader

1An earlier version of this work was published in (Hron et al.,
2017).
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class of limiting constructions leading to a unique objective
which we name Quasi-KL (QKL) divergence.

Section 5 provides initial discussion of QKL’s properties,
uses those to suggest an explanation for the empirically ob-
served difficulty in tuning hyperparameters of the true model
(e.g. Gal (2016, p. 119)), and demonstrates the potential of
QKL on an illustrative example where we try to approxi-
mate a full rank Gaussian distribution with a degenerate
one using QKL, only to arrive at the well known Principal
Component Analysis (PCA) algorithm.

2. Background
Assume we have a discriminative probabilistic model
y |x,W ∼ P(y |x,W ) where (x, y) is a single input-
output pair, and W is the set of model parameters gen-
erated from a prior distribution P(W ). In Bayesian
inference, we usually observe a set of data points
(X,Y ) = {(xn, yn)}Nn=1 and aim to infer the posterior
p(W |X,Y ) ∝ p(W )

∏
n p(yn |xn,W ),2 which can be

subsequently used to obtain the posterior predictive density
p(Y ′ |X ′,X,Y ) =

∫
p(Y ′ |X ′,W )p(W |X,Y )dW .

If p(y |x,W ) is a complicated function ofW like a neural
network, both tasks often become computationally infeasi-
ble and thus we need to turn to approximations.

Variational inference approximates the posterior distribution
over a set of latent variablesW by maximising the evidence
lower bound (ELBO),

L(q) = E
Q(W )

[log p(Y |X,W )]−KL (Q(W )‖P(W )) ,

with respect to (w.r.t.) an approximate posterior Q(W ). If
Q(W ) is parametrised by ψ and the ELBO is differentiable
w.r.t. ψ, VI turns inference into optimisation. We can then
approximate the density of posterior predictive distribution
using q(Y ′ |X ′,X,Y ) =

∫
p(Y ′ |X ′,W )q(W )dW ,

usually by Monte Carlo integration.

A particular discriminative probabilistic model is a Bayesian
neural network (BNN). BNN differs from a standard NN
by assuming a prior over the weightsW . One of the main
advantages of BNNs over standard NNs is that the posterior
predictive distribution can be used to quantify uncertainty
when predicting on previously unseen data (X ′,Y ′). How-
ever, there are at least two challenges in doing so:

1) difficulty of reasoning about choice of the prior P(W );

2) intractability of posterior inference.

For a subset of architectures and priors, Item 1 can be ad-
dressed by studying limit behaviour of increasingly large

2Throughout the paper, P(W ) refers to the distribution and
p(W ) to its density function. Analogously for other distributions.

networks (see, for example, (Neal, 1996; Matthews et al.,
2018)); in other cases, sensibility of P(W ) must be as-
sessed individually. Item 2 necessitates approximate infer-
ence – a particular type of approximation related to dropout,
the topic of this paper, is described below.

Dropout (Srivastava et al., 2014) was originally proposed as
a regularisation technique for NNs. The idea is to multiply
inputs of a particular layer by a random noise variable which
should prevent co-adaptation of individual neurons and thus
provide more robust predictions. This is equivalent to multi-
plying the rows of the subsequent weight matrix by the same
random variable. The two proposed noise distributions were
Bernoulli(p) and Gaussian N (1, α).

Bernoulli and Gaussian dropout were later respectively rein-
terpreted by Gal & Ghahramani (2016) and Kingma et al.
(2015) as performing VI in a BNN. In both cases, the appro-
ximate posterior is chosen to factorise either over rows or
individual entries of the weight matrices. The prior usually
factorises in the same way, mostly to simplify calculation
of KL (Q(W )‖P(W )). It is the choice of the prior and its
interaction with the approximating posterior family that is
studied in the rest of this paper.

3. Improper and pathological posteriors
Both Gal & Ghahramani (2016) and Kingma et al. (2015)
propose using a prior distribution factorised over individ-
ual weights w ∈ W . While the former opts for a zero
mean Gaussian distribution, Kingma et al. (2015) choose to
construct a prior for which KL (Q(W )‖P(W )) is indepen-
dent of the mean parameters θ of their approximate posterior
q(w) = φθ,αθ2(w), w ∈W , θ ∈ θ, where φµ,σ2 is the den-
sity function of N (µ, σ2). The decision to pursue such
independence is motivated by the desire to obtain an algo-
rithm that has no weight shrinkage – that is to say one where
Gaussian dropout is the sole regularisation method. Indeed,
the authors show that the log uniform prior p(w) := C/|w|
is the only one where KL (Q(W )‖P(W )) has this mean
parameter independence property. The log uniform prior is
equivalent to a uniform prior on log|w|. It is an improper
prior (Kingma et al., 2015, p. 12) which means that there is
no C ∈ R for which p(w) is a valid probability density.

Improper priors can sometimes lead to proper posteriors (e.g.
normal Jeffreys prior for Gaussian likelihood with unknown
mean and variance parameters) if C is treated as a positive
finite constant and the usual formula for computation of
posterior density is applied. We show this is generally not
the case for the log uniform prior, and that any remedies
in the form of proper priors that are in some sense close to
the log uniform (such as uniform priors over floating point
numbers) will lead to severely pathological inferences.
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Figure 1. Illustration of Proposition 1. Blue is the prior, orange
the likelihood, and green shows a particular neighbourhood ofw =
0 where the likelihood is greater than r > 0 (such neighbourhood
exists by the continuity). Integral of the likelihood over (−δ, δ)
w.r.t. P(w) diverges because the likelihood can be lower bounded
by r > 0 and the prior assigns infinite mass to this neighbourhood.

3.1. Pathologies of the log uniform prior

For any proper posterior density, the normaliser Z =∫
RD p(Y |X,W )p(W )dW has to be finite (D denotes

the total number of weights). We will now show that this
requirement is generally not satisfied for the log uniform
prior combined with commonly used likelihood functions.

Proposition 1. Assume the log uniform prior is used and
that there exists some w ∈ W such that the likelihood
function at w = 0 is continuous in w and non-zero. Then
the posterior is improper.

All proofs can be found in the appendix. Notice that stan-
dard architectures with activations like rectified linear or
sigmoid, and Gaussian or Categorical likelihood satisfy
the above assumptions, and thus the posterior distribution
for non-degenerate datasets will generally be improper. See
Figure 1 for a visualisation of this case.

Furthermore, the pathologies are not limited to the region
near w = 0, but can also arise in the tails (Figure 2). As an
example, we will consider a single variable Bayesian logistic
regression problem p(y |x,w) = 1/(1 + exp(−xw)), and
again use the log uniform prior forw. For simplicity, assume
that we have observed (x = 1, y = 1) and wish to infer
the posterior distribution. To show that the right tail has
infinite mass, we integrate over [k,∞), k > 0,∫

[k,∞)

p(w)p(y |x,w)dw =

∫
[k,∞)

C

|w|
1

1 + exp(−w)
dw

>

∫
[k,∞)

C

|w|
1

1 + exp(−k)
dw =

C · (∞− log k)

1 + exp(−k)
=∞ .

Equivalently, we could have obtained infinite mass in
the left tail, for example by taking the observation to be

k

(1
+
e−

k )−
1

Figure 2. Visualisation of the infinite tail mass example. Blue is
the prior, orange the sigmoid likelihood, and green shows the lower
bound of the [k,∞) interval. The sigmoid function is greater than
zero for any k > 0. The integral of the likelihood over [k,∞) w.r.t.
P(w) can thus again be lower bounded by a diverging integral.

(x = −1, y = 1). Because the sigmoid function is continu-
ous and equal to 1/2 at w = 0, the posterior also has infinite
mass around the origin, exemplifying both of the discussed
degeneracies. The normalising constant is of course still
infinite and thus the posterior is again improper.

The practical implication of these pathologies is that even
tasks as simple as MAP estimation (Proposition 1 implies
unbounded posterior density) or posterior mean estimation
will fail as the target is undefined. In general, improper pos-
teriors lead to undefined or incoherent inferences. The above
shows that this is the case for the log uniform prior com-
bined with BNNs and related models, making Bayesian
inference, exact and approximate, ill-posed.

3.2. Pathologies of the truncated log uniform prior

Neklyudov et al. (2017) proposed to swap the log uniform
prior on (−∞,∞) for a distribution that is uniform on a suf-
ficiently wide bounded interval in the log|w| space (will be
referred to as the log space from now on), i.e. p(log|w|) =
1/(b − a)I[a,b] (w) , a < b where IA is the indicator func-
tion of the set A. This prior can be used in place of the log
uniform if the induced posteriors in some sense converge to
a well-defined limit for any dataset as [a, b] gets wider. If
this is not the case, choice of [a, b] becomes a prior assump-
tion and must be justified as such because different choices
will lead to sometimes considerably different inferences.
We now show that posteriors generally do not converge
for the truncated log uniform prior and discuss some of
the related pathologies of the induced exact posterior.

To illustrate the considerable effect the choice of [a, b] might
have, we return to the example of posterior inference in
a logistic regression model p(y |x,w) = 1/(1 + e−xw) af-
ter observing (x = 1, y = 1), using the prior pn(w) =
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Figure 3. A truncated log uniform prior transformed to the original
space. Notice that the support gap around the origin narrows as
an → −∞, and the tail support expands as bn →∞ which yields
the more pathological inferences the wider [an, bn] gets.

IIn (w) Cn/|w| where In = [−ebn ,−ean ] ∪ [ean , ebn ]
(i.e. the appropriate transformation of the closed interval
[an, bn] from the log space – see Figure 3). We exemplify
the sensitivity of the posterior distribution to the choice of
the (In)n∈N sequence by studying the limiting behaviour
of the posterior mean and variance. Using the definition of
IIn (w) and symmetry, the normaliser of the posterior is,

Zn =

∫ −ean

−ebn

1

|w|
1

1 + e−w
dw +

∫ ebn

ean

1

|w|
1

1 + e−w
dw

=

∫ ebn

ean

1

|w|
1 + ew

1 + ew
dw = bn − an .

Similar ideas can be used to derive the first two moments,

E
Pn

(w) =

∫ ebn

ean
1

1+e−w dw −
∫ −ean

−ebn
1

1+e−w dw

bn − an

=
h(ebn) + h(−ebn)− h(ean)− h(−ean)

bn − an
, (1)

E
Pn

(w2) =

∫ ebn

ean

|w|
bn − an

1 + ew

1 + ew
dw =

e2bn − e2an

2(bn − an)
,

(2)

where h(x) := log(1 + ex), and Pn stands for Pn(w |x, y).
To understand sensitivity of the posterior mean to the choice
of (In)n∈N, we now construct sequences which respectively
lead to convergence of the mean to zero, an arbitrary positive
constant, and infinity.3 To emphasise this is not specific to
the posterior mean, we show that the variance might equally
well be zero, infinite, or undefined.

To get limn→∞ EPn(w) = 0, notice that for a fixed bn,
the second term in Equation (1) tends to log(4)/∞ = 0.

3It would be equally possible to get convergence to an arbitrary
negative constant, and negative infinity if the observation was
(x = −1, y = 1).

Hence we can make the posterior mean converge to zero
by making the first term also tend to zero; a way to achieve
this is setting bn = log(log|an|), which tends to infinity as
an →∞. The limit of Equation (2) for the same sequence,
and thus the variance, tends to zero as well.

For limn→∞ EPn(w) = c > 0, we again focus on the first
term in Equation (1) as the second term tends to zero for any
increasing sequence In ↗ R. Simple algebra shows that for
any diverging sequence bn →∞, taking an = bn − ebn/c
yields the desired result. The same sequence leads to infinite
second moment and thus to infinite variance.

Finally, a choice which results in infinite mean and thus
undefined variance is setting an = −bn, for which the mean
grows as ebn/bn. We would like to point out that this sym-
metric growth of an with bn is of particular interest as it
corresponds to changing between different precisions of
the float format representation on the computer as consid-
ered in Kingma et al. (2015, Appendix A).

3.3. Variational Gaussian dropout as penalised
maximum likelihood

We have established that optimisation of the ELBO im-
plied by a BNN with log uniform prior over its weights
cannot generally be interpreted as a form of approximate
Bayesian inference. Nevertheless, the reported empirical
results suggest that the objective might possess reasonable
properties. We thus investigate if and how the pathologies
of the true posterior translate into the variational objective
as used in (Kingma et al., 2015; Molchanov et al., 2017).

Firstly, we derive a new expression for KL (Q(w)‖P(w)),
and for its derivative w.r.t. the variational parameters, which
will help us with further analysis.
Proposition 2. Let q(w) = φµ,σ2(w), and p(w) = C/|w|.
Denote u := µ2/(2σ2). Then,

KL (Q(w)‖P(w))

= const. +
1

2

(
log 2 + e−u

∞∑
k=0

uk

k!
ψ(1/2 + k)

)
(3)

= const.− 1

2

∂M(a; 1/2;−u)

∂a

∣∣∣∣
a=0

, (4)

where ψ(x) denotes the digamma function, and M(a; b; z)
the Kummer’s function of the first kind.

We can obtain gradients w.r.t. µ and σ2 using,

∇uKL (Q(w)‖P(w)) =

1 u = 0
D+(
√
u)√

u
u > 0

, (5)

and the chain rule; D+(x) is the Dawson integral.
The derivative is continuous in u on [0,∞).
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Before proceeding, we note that Equation (5) is sufficient to
implement first order gradient-based optimisation, and thus
can be used to replace the approximations used in (Kingma
et al., 2015; Molchanov et al., 2017). Note that numeri-
cally accurate implementations of the D+(x) exist in many
programming languages (e.g. (Johnson, 2012)).

In VI literature, the term KL (Q(w)‖P(w)) is often inter-
preted as a regulariser, constraining Q(w) from concentrat-
ing at the maximum likelihood estimate which would be
optimal w.r.t. the other term EQ(W )[log p(Y |X,W )] in
the ELBO. It is thus natural to ask what effect this term
has on the variational parameters. Noticing that only the in-
finite sum in Equation (3) depends on these parameters,
and that the first summand is always equal to ψ(1/2), we
can focus on terms corresponding to k ≥ 1. Because
ψ(1/2 + k) > 0,∀k ≥ 1, all summands are non-negative.
Hence the penalty will be minimised if µ2/(2σ2) = 0, i.e.
when µ = 0 and/or σ2 → ∞; Corollary 3 is sufficient to
establish that this minimum is unique.

Corollary 3. Under assumptions of Proposition 2,
KL (Q(w)‖P(w)) is strictly increasing for u ∈ [0,∞).

Sections 3.1 and 3.2 suggests the pathological behaviour is
non-trivial to remove unless we replace the (truncated) log
uniform prior.4 An alternative route is to interpret optimi-
sation of the variational objective from above as a type of
penalised maximum likelihood estimation.

Proposition 2 and Corollary 3 suggest that the variational
formulation cancels the pathologies of the true posterior
distribution which both invalidates the Bayesian interpreta-
tion, but also means that the algorithm may perform well
in terms of accuracy and other metrics of interest. Since
the KL (Q(W )‖P(W )) regulariser will force the mean
parameters to be small, and the variances to be large, and
the EQ(W )[log p(Y |X,W )] will generally push the pa-
rameters towards the maximum likelihood solution, the re-
sulting fit might have desirable properties if the right balance
between the two is struck. As the Bayesian interpretation
no longer applies, the balance can be freely manipulated by
reweighing the KL by any positive constant. The strict page
limit and desire to discuss the singularity issue lead us to
leave exploration of this direction to future work.

4. Approximating distribution singularities
Both the Bernoulli and Gaussian dropout can be seen as
members of a larger family of algorithms where individual
layer inputs are perturbed by elementwise i.i.d. random
noise. This is equivalent to multiplying the corresponding
row wi of the subsequent weight matrix by the same noise
variable. One could thus define wi = siθi, si ∼ Q(si),

4Louizos et al. (2017) made promising progress there.

Figure 4. Illustration of approximating distribution singularities.
On the left, blue is the standard and orange a correlated Gaussian
density. Null sets, are (Borel) sets with zero measure under a
distribution. Since both distributions have the same null sets, they
are absolutely continuous w.r.t. each other. On the right, orange
now represents a degenerate Gaussian supported on a line. Blue
assigns zero probability to the line whereas orange assigns all of its
mass; orange assigns probability zero to any set excluding the line
but blue does not. Hence neither is absolutely continuous w.r.t.
the other, and thus KL-divergence is undefined.

Q(si) being an arbitrary distribution, and treat the induced
distribution over wi as an approximate posterior Q(wi).

An issue with this approach is that it leads to unde-
fined KL (Q(W )‖P(W |X,Y )) whenever the prior as-
signs zero mass to the individual directions defined by θ.
To understand why, note that KL (Q(W )‖P(W |X,Y ))
is defined only if Q(W ) is absolutely continuous w.r.t.
P(W |X,Y ) which means that whenever P(W |X,Y )
assigns probability zero to a particular set, Q(W ) does so
too. The right-hand side plot in Figure 4 shows a simple
example of the case where neither distribution is absolutely
continuous w.r.t. the other: the blue Gaussian assigns zero
mass to any set with Lebesgue measure zero, such as the line
along which the orange distribution places all its mass, and
thus the orange Gaussian distribution is not absolutely con-
tinuous w.r.t. the blue one. This example is relevant to our
problem from above, where Q(wi) always assigns all its
mass to along the direction defined by the vector θi. For
more details, see for example (Matthews, 2016, Section 2.1).
When a measure is not absolutely continuous w.r.t. another
measure, it can be shown to have a so called singular com-
ponent relative to that measure, which we use as a shorthand
for referring to this issue. Consequences for variational
Bayesian interpretations of dropout are discussed next.

4.1. Implications for Bayesian dropout interpretations

Section 3.2 in (Kingma et al., 2015) proposes to use a shared
Gaussian random variable for whole rows of the posterior
weight matrices. Specifically si ∼ N (1, α) is substituted
for Q(si) in the generic algorithm described in the previous
section. We call such behaviour in the context of varia-
tional inference an approximating distribution singularity.
The singularity has two possible negative consequences.
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First, if only the si scalars are treated as random variables,
θ become parameters of the discriminative model instead of
the variational distribution. Optimisation of the ELBO will
yield a valid Bayesian posterior approximation for the si.
The lack of regularisation of θ might lead to significant
overfitting though, as θ represent all weights in the BNN.

Second, if the fully factorised log uniform prior is used as
before, then the directions defined by θ constitute a measure
zero subspace of RD, and thus the KL (Q(W )‖P(W )) and
consequently KL (Q(W )‖P(W |X,Y )) are undefined
for any configuration of θ. This is an instance of the is-
sue described in the previous section. As a consequence,
standard variational inference with this approximating fam-
ily and target posterior is impossible.

A similar problem is encountered in (Gal & Ghahramani,
2016; Gal, 2016). The approximate posterior is defined as
Q(wi) = p δ0 + (1 − p) δθi for each row in every weight
matrix. The assumed prior is a product of independent
non-degenerate Gaussian distributions which by definition
assigns non-zero mass only to sets of positive Lebesgue
measure. Again, the approximate posterior is not absolutely
continuous w.r.t. the prior and thus the KL is undefined.

To address this issue, Gal & Ghahramani (2016) propose to
replace the Dirac deltas in Q(wi) by Gaussian distributions
with small but non-zero noise (we call this the convolutional
approach). As an alternative, Gal (2016) proposes to instead
discretise the Gaussian prior and the approximate posterior
so both assign positive mass only to a shared finite set of
values. Because the discretised Gaussian assigns non-zero
mass to all points in the set, the approximate posterior is
absolutely continuous w.r.t. this prior (we refer to this as
the discretisation approach).

Strictly speaking, the two approaches cannot be equivalent
because the corresponding random variables take values
in distinct measurable spaces (RD and a discrete grid re-
spectively). Notwithstanding, both approaches are claimed
to lead to the same optima for the variational parameters.5

The suggested method for addressing this discrepancy is
to introduce a continuous relaxation (Gal, 2016, p. 119) of
the optimisation problem for the discrete case. The precise
details of this relaxation are not given. One could define it as
the relaxation that satisfied the required KL-condition (Gal,
2016, Appendix A), but there is of course then a risk of a
circular argument. Putting these intuitive arguments on a
firmer footing is one motivation for what follows here.

In the light of Section 3.2, it is natural to ask whether either
of the proposed approaches will tend to a stable objective
as the added noise shrinks to zero, and the discretisation
becomes increasingly refined, respectively for the convolu-

5Modulo the Euclidean distance to a closest point in the finite
set for the discretisation approach.

tional and discretisation approaches. Theorem 4 provides
an affirmative answer by proving that both approaches lead
to the same limit under reasonable assumptions.6

Theorem 4. Let Q,P be Borel probability measures on
RD, P with a continuous density p w.r.t. the D-dimensional
Lebesgue measure, and Q supported on an at most count-
able measurable set S ⊂ QD, with density q w.r.t. the count-
ing measure on QD. If S is infinite, further assume that
diam(S) <∞, i.e. supx,y∈S ‖x− y‖2 <∞.

Then there exists a sequence (s(n)) ⊂ R independent of Q
and P s.t. the limit for both the sequences of convolved and
discretised distributions {(Q(n),P(n))}n∈N,7

lim
n→∞

{
KL (Q(n)‖P(n))− s(n)

}
= E

Q

(
log q

p

)
, (6)

given the perturbation noise is Gaussian and eventually
shrinks to zero, and that the discretisation creates ever finer
grid with equally sized cells as n → ∞. The sequence
(s(n)) tends to 0 if Q� P and to infinity otherwise.

The right-hand side (r.h.s.) of Equation (6) satisfies Gal’s KL
condition, i.e. it leads to the same optimisation problem and
thus unifies the convolutional and discretisation approach.

Unlike in (Gal, 2016, Appendix A), our derivation does not
make an extraneous assumption on the distribution over any
function of the θ parameters nor does it require that the ex-
pectation of‖θi‖22 grows without bounds with dim(θi). Nei-
ther of these two assumptions is sure to hold in practice as
θ are being optimised, and θi in any modern (B)NN is ini-
tially scaled by

√
dim(S) exactly to achieve approximately

constant Euclidean norm irrespective of the dimension.

We explored whether Equation (6) holds more generally.
Theorem 5 extends the convolutional approach to a consid-
erably larger class of approximating distributions.

Theorem 5. Let Q,P be Borel probability measures on RD,
P with a bounded continuous density p w.r.t. the Lebesgue
measure on RD, and Q supported on a measurable linear
manifold S ⊂ RD of (Hamel) dimension KS . Assume Q has
a continuous bounded density q w.r.t. the Lebesgue measure
on S, where the continuity is w.r.t. the trace topology.

Then there exists a sequence (s(n)) ⊂ R dependent only on
KS s.t. the following holds for the convolutional approach,

lim
n→∞

{
KL (Q(n)‖P(n))− s(n)

KS

}
= E

Q

(
log q

p

)
, (7)

given the perturbation noise is Gaussian and eventually
shrinks to zero. The sequence (s

(n)
KS

) tends to 0 if Q � P
and to infinity otherwise.

6We state only the most important assumptions in Theorems 4
and 5. Please see the appendix for the full set of assumptions.

7P(n) = P , ∀n ∈ N, in the convolutional case.
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A result related to Theorem 5 for the discretisation approach
can be derived under assumptions similar to Theorem 4 with
one important difference: (s

(n)
KS

), if it exists, is affected not
only by KS , but also by the orientation of S in RD. This
is because the dominating Lebesgue measure is different
for each affine subspace S and thus, unlike in the countable
support case, q cannot be defined w.r.t. a single dominating
measure. Implicit in Theorems 4 and 5 is that the same
constant can be subtracted from KL (Q(n)‖P(n)) for all
distributions Q with the same type of support. Hence if
we are optimising over a family of singular approximating
distributions, the sequence (s(n)) (resp. (s

(n)
KS

)) does not
need to change between updates to obtain the desired limit.

Before moving to Section 5 which discusses some of
the merits of using Equations (6) and (7) as an objective for
approximate Bayesian inference, let us make two comments.

First, taking the limit makes the decision about size of per-
turbation or coarseness of the discretisation unnecessary.
The sequences used do not cause the same instability prob-
lems discussed in Section 3.2 because the true posterior is
well-defined even in the limit, which we assume in saying
that P is a probability measure. The main open question is
thus whether optimisation of the r.h.s. of Equation (6) will
yield a sensible approximation of this posterior.

Second, if there is a family of approximate posterior distri-
butions Q parametrised by ψ ∈ Ψ, the equality,

argmin
ψ∈Ψ

E
Qψ

(
log

qψ
p

)
= lim
n→∞

argmin
ψ∈Ψ

KL (Q
(n)
ψ ‖P(n)) ,

(8)
need not hold unless stricter conditions are assumed. Equa-
tion (8) is of interest in cases when KL (Q

(n)
ψ ‖P(n)) has

some desirable properties (e.g. good predictive performance)
which we would like to preserve. However, this is not
the case for variational Bernoulli dropout as the objective
being used by Gal & Ghahramani (2016) is, in terms of gra-
dients w.r.t. the variational parameters, identical to the limit.

Furthermore, we can view both the discretisation and con-
volutional approaches as mere alternative vehicles to derive
the same quasi discrepancy measure (cf. Section 5). If this
quasi discrepancy possesses favourable properties, the pre-
cise details of optima attained along the sequence might
be less important. One benefit of this view is in avoiding
arguments like the previously mentioned continuous relax-
ation (Gal, 2016, p. 119).

5. Quasi-KL divergence
The r.h.s. of Equations (6) and (7) is markedly similar to
the formula for standard KL divergence. We now make
this link explicit. If ZPS :=

∫
S
p dmS < ∞, mS being

either the counting or the Lebesgue measure dominating

measure for q, we can the probability density pS := p/ZPS ,
and denote the corresponding distribution on (S,BS) by PS .
We term Equation (9) the Quasi-KL (QKL) divergence,

QKL (Q‖P) := E
Q

(
log q

p

)
= KL (Q‖PS)− log ZPS .

(9)
Taking Equation (9) as a loss function says that we would
like to find such a Q for which the KL divergence between
Q and PS is as small as possible, while making sure that
the corresponding set S runs through high density regions
of P, preventing Q from collapsing to subspaces where p is
easily approximated by q but takes low values. Since p is
continuous (c.f. Theorem 4), values of p roughly indicate
how much mass P assigns to the region where S is placed.

Standard KL divergence and QKL are equivalent when
Q � P and the two distributions have the same support.
QKL is not a proper statistical divergence though, as it
is lower bounded by − log ZPS instead of zero. The non-
negativity could have been satisfied by defining QKL as
KL (Q‖PS), dropping the log ZPS term. However, this
would mean losing the above discussed effect of forcing
S to lie in a relatively high density region of P, and also
the motivation of being a limit of the two sequences consid-
ered in Theorem 4.

Nevertheless, QKL inherits some of the attractive properties
of KL divergence: the density p need only be known up to
a constant, the reparameterisation trick (Kingma & Welling,
2014) and analogical approaches for discrete random vari-
ables (Maddison et al., 2017; Jang et al., 2017; Tucker et al.,
2017) still apply, and stochastic optimisation and integral
approximation techniques can be deployed if desired.

On a more cautionary note, we emphasise that EQ(log p
q ) is

upper bounded by log ZPS and not the log marginal likeli-
hood as is the case for standard KL use in VI. Hence optimi-
sation of this objective w.r.t. hyperparameters of P need not
work very well, since the resulting estimates could be biased
towards regions where the variational family performs best.8

This might explain why prior hyperparameters usually have
to be found by validation error based grid search (Gal, 2016,
e.g. p. 119) instead of ELBO optimisation as is common in
the sparse Gaussian Process literature (Titsias, 2009).

Whether and when is QKL an attractive alternative to
the more computationally expensive but proper statistical
discrepancy measures which are capable of handling sin-
gular distributions (e.g. Wasserstein distances) is beyond
the scope of this paper. To provide basic intuition of whether
QKL might be a sensible objective for inference, Section 5.1
focuses on a simple practical example that yields a well
known algorithm as the optimal solution to QKL optimisa-
tion, and exemplifies some of the above discussed behaviour.

8A similar issue for KL was observed by Turner et al. (2010).
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5.1. QKL and Principal Component Analysis

Proposition 6 is an application of Theorem 5:

Proposition 6. Assume P = N (0,Σ), Σ a (strictly) posi-
tive definite matrix of rank D, with a degenerate Gaussian
Q = N (0,AV AT), where A is a D × K matrix with or-
thonormal columns, and V is a K × K (strictly) positive
definite diagonal matrix. Then,

QKL (Q‖P) = c− 1

2

K∑
k=1

logV kk +
1

2
Tr
(
ATΣ−1AV

)
where c is constant w.r.t.A,V . The optimal solutionA,V
is to set columns of A to the top K eigenvectors of Σ and
the diagonal of V to the corresponding eigenvalues.9

Proposition 6 shows that the QKL-optimal way to appro-
ximate a full rank Gaussian with a degenerate one is to
perform PCA on the covariance matrix. The result is intu-
itively satisfying as PCA preserves the directions of highest
variance; S was thus indeed forced to align with the high-
est density regions under P as suggested in Section 5. See
Figure 5 for a visualisation of this behaviour. Proposition 7
presents a variation of the result of Tipping & Bishop (1999),
showing that Equation (8) can hold in practice.

Proposition 7. Assume similar conditions as in Propo-
sition 6, except Q will now be replaced with a series
of distributions convolved with Gaussian noise: Q(n) =
N (0,A(n)V (n)(A(n))T + τ (n)I). Given τ (n) ↓ 0 as
n → 0 and the obvious constraints on A(n),V (n), Equa-
tion (8) holds in the sense of shrinking Euclidean/Frobenius
norm between {A(n),V (n)} and the PCA solution.

It is necessary to mention that both the QKL from Propo-
sition 6 and any of the yet unconverged KL divergences
in Proposition 7 have

(
D
K

)
local optima for any combination

of the eigenvectors which might lead to potentially problem-
atic behaviour of gradient based optimisation.

6. Conclusion
The original intent behind dropout was to provide a sim-
ple yet effective regulariser for neural networks. The main
value of the subsequent reinterpretation as a form of appro-
ximate Bayesian VI thus arguably lies in providing a prin-
cipled theoretical framework which can explain the empi-
rical behaviour, and guide extensions to the method. We
have shown the current theory behind variational Bayesian
dropout to have issues stemming from two main sources: 1)
use of improper or pathological priors; 2) singular approxi-
mating distributions relative to the true posterior.

9We have assumed both Gaussians are zero mean to simplify
the notation. Analogical results holds in the more general case.

Figure 5. Visualisation of the relationship between QKL minimisa-
tion and PCA. The target in this example is the blue two dimen-
sional Gaussian distribution. The approximating family is the set
of all Gaussian distributions concentrated on a line, which would
be problematic with conventional VI (c.f. Section 4). For all of
the linear subspaces shown by the coloured lines the KL term on
the right hand side of Equation (9) can be made zero by a suitable
choice of the normal mean and variance. The remaining term
− log ZPS therefore dictates the choice of subspace. The orange
line is optimal aligning with the largest eigenvalue PCA solution.

The former issue pertains to the improper log uniform prior
in variational Gaussian dropout. We proved its use leads to
irremediably pathological behaviour of the true posterior,
and consequently studied properties of the optimisation ob-
jective from a non-Bayesian perspective, arguing it is set up
in such a way that cancels some of the pathologies and can
thus still provide good empirical results, albeit not because
of the Bayesian or the related MDL arguments.

The singular approximating distribution issue is relevant to
both the Bernoulli and Gaussian dropout by making stan-
dard VI impossible due to an undefined objective. We have
shown that the proposed remedies in (Gal & Ghahramani,
2016; Gal, 2016) can be made rigorous and are special
cases of a broader class of limiting constructions leading to
a unique objective which we termed quasi-KL divergence.
We presented initial observations about QKL’s properties,
suggested an explanation for the empirical difficulty of ob-
taining hyperparameter estimates in dropout-based approxi-
mate inference, and motivated future exploration of QKL by
showing it naturally yields PCA when approximating a full
rank Gaussian with a degenerate one.

As use of improper priors and singular distributions is not
isolated to the variational Bayesian dropout literature, we
hope our work will contribute to avoiding similar pitfalls
in future. Since it relaxes the standard KL assumptions,
QKL will need further careful study in subsequent work.
Nevertheless, based on our observations from Section 5
and the previously reported empirical results of variational
Bayesian dropout, we believe QKL inspires a promising
future research direction with potential to obtain a gen-
eral framework for the design of computationally cheap
optimisation-based approximate inference algorithms.
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A. Proofs for Section 3
Notation and identities used throughout this section: ψ(x)
for the digamma function, ψ(x+ 1) = ψ(x) + 1/x, ψ(k +
1) = Hk−γ where Hk is the kth harmonic number and γ is
the Euler–Mascheroni’s constant, Ei(x) = −

∫∞
−x e−t/tdt

is the exponential integral function,
∑∞
k=1 u

kHk/k! =
eu(γ+log u−Ei(−u)) (Dattoli & Srivastava, 2008; Gosper,
1996), and

∑∞
k=1 u

k/(k! k) = Ei(u) − γ − log u (Harris,
1957); the last two identities hold for u > 0. Importantly,
we define 00 := 1 unless stated otherwise.

Proof of Proposition 1. Denote the likelihood value by ε >
0. Take an arbitrary number r such that ε > r > 0. By
continuity, we can find δ > 0 such that|w − 0| < δ implies
that the likelihood value is greater than r; let A 3 0 denote
the open ball of radius δ centred at 0. Because both the prior
density and the likelihood function only take non-negative
values, we can apply the Tonelli–Fubini’s theorem to obtain,

Z =

∫
RD−1

p(W¬w)

[∫
R
p(w)p(Y |X,W ) dw

]
dW¬w

>

∫
RD−1

p(W¬w)

[∫
A

C

|w|
r dw

]
dW¬w =∞ ,

where W¬w is a shorthand for W \ w. When Z = ∞,
the measure of RD under P(W |X,Y ) is infinite and thus
it cannot be a proper probability distribution.

Proof of Proposition 2. Using standard identities about
Gaussian random variables, and the fact that v := ε2,
ε ∼ N (µ/σ, 1), follows the non-central chi-squared distri-
bution χ2(λ, ν) with ν = 1 degrees of freedom and non-
centrality parameter λ = (µ/σ)2, we have,

E
Q(w)

[log q(w)]− E
Q(w)

[log p(w)]

= E
Q(w)

[log q(w)]− log C +
1

2
E

Q(w)
[log|w|2]
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= c1 +
1

2
E

ε∼N (µ/σ,1)
[log σ2ε2]

= c1 +
1

2

(
log σ2 + E

v∼χ2(µ2/σ2,1)
[log v]

)

= c2 +
1

2

∫ ∞
0

∞∑
k=0

e
− µ2

2σ2
(
µ2

2σ2 )k

k!

vk−
1
2 e−

v
2

2k+ 1
2 Γ(k + 1

2 )
log v dv ,

where c1 := − 1
2 log(2πeσ2)− log C, c2 := c1 + 1

2 log(σ2),
and we used the fact that χ2(λ, ν) is equivalent to a Poisson
mixture of centralised chi-squared distributions. Define,

fn(v) :=

n∑
k=0

e
− µ2

2σ2
(
µ2

2σ2 )k

k!

vk−
1
2 e−

v
2

2k+ 1
2 Γ(k + 1

2 )
log v ,

and rewrite the last integral as,∫ ∞
0

lim
n→∞

fn(v)dv

=

∫ 1

0

lim
n→∞

fn(v)dv +

∫ ∞
1

lim
n→∞

fn(v)dv .

Observe that fn ≥ 0,∀n ∈ N, and fn ↑ f∞ pointwise
on v ∈ [1,∞), and fn < 0,∀n ∈ N, and fn ↓ f∞ point-
wise on v ∈ [0, 1), for f∞ defined as the pointwise limit
of fn. Hence we can use the monotone convergence the-
orem as long as the |

∫
f0(v)dv| < ∞. Using the identity

Ev∼χ2(0,ν)[log v] = ψ(ν/2)− log(1/2), we have,

∫ ∞
0

fn(v)dv = log 2 + e
− µ2

2σ2

n∑
k=0

(
µ2

2σ2 )k

k!
ψ(1/2 + k) ,

which means that fn ∈ L1,∀n ∈ N. Because both∫ 1

0
|fn(v)|dv and

∫∞
1
|fn(v)|dv are upper-bounded by∫∞

0
|fn(v)|dv, we can apply the monotone convergence

theorem to equate,∫ 1

0

lim
n→∞

fn(v)dv = lim
n→∞

∫ 1

0

fn(v)dv∫ ∞
1

lim
n→∞

fn(v)dv = lim
n→∞

∫ ∞
1

fn(v)dv ,

and thus by Theorem 4.1.10 in (Dudley, 2002) conclude∫∞
0
f∞(v)dv = limn→∞

∫∞
0
fn(v)dv. Substituting back,

E
Q(w)

[log q(w)]− E
Q(w)

[log p(w)]
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= c2 +
1

2

(
log 2 + e

− µ2

2σ2

∞∑
k=0

(
µ2

2σ2 )k

k!
ψ(1/2 + k)

)

= c3 −
1

2

∂M(a; 1/2;−µ2/(2σ2))

∂a

∣∣∣∣∣
a=0

,

where M(a; b; z) denotes the Kummer’s function of the first
kind, and c3 := c2 − 3

2 log 2 − 1
2γ. It is easy to check

that Equation (3) holds for all u = 0 assuming 00 = 1.

The last equality above was obtained using Wolfram Al-
pha (Wolfram—Alpha, 2017b). To validate this result, we
performed an extensive numerical test, and will now show
that the series indeed converges for u = µ2/(2σ2) ∈ [0,∞),
i.e. for all plausible values of u. The comparison test gives
us convergence for u ∈ (0,∞):

∞∑
k=0

uk

k!
ψ(1/2 + k) < ψ(1/2) +

∞∑
k=1

uk

k!
ψ(1 + k)

= ψ(1/2) +

∞∑
k=1

uk

k!
(Hk − γ)

= ψ(1/2) + eu(γ + log u− Ei(−u))− γ(eu − 1)

= ψ(1/2)− γ + eu(log u− Ei(−u)) ,

where we use the fact that the individual summands are
non-negative for k ≥ 1 (which is also means we need not
take the absolute value explicitly). It is trivial to check that
the series converges at u = 0, and thus we have convergence
for all u ∈ [0,∞).

To obtain the derivative with respect to u, we use the infi-
nite series formulation from Equation (3), and the fact that
the derivative of a power series within its radius of conver-
gence is equal to the sum of its term-by-term derivatives
(see (Gowers, 2014) for a nice proof). Using that only the
infinite series in Equation (3) depends on u, we obtain,

∇ue−u
∞∑
k=0

uk

k!
ψ(1/2 + k)

= ∇u
(

e−uψ(1/2) + e−u
∞∑
k=1

uk

k!
ψ(1/2 + k)

)

= −e−uψ(1/2) + e−u
∞∑
k=1

(
uk−1

(k − 1)!
ψ(1/2 + k)

)

− e−u
∞∑
k=1

(
uk

k!
ψ(1/2 + k)

)

= e−u(ψ(3/2)− ψ(1/2)) + e−u
∞∑
k=1

(
uk

k!
ψ(3/2 + k)

)

− e−u
∞∑
k=1

(
uk

k!
ψ(1/2 + k)

)

= 2e−u + e−u
∞∑
k=1

uk

k!

1

1/2 + k
= e−u

∞∑
k=0

uk

k!

1

1/2 + k

=
2D+(

√
u)√

u
,

for u > 0 and is equal to 2 if u = 0; in our case, the condi-
tion u ≥ 0 is satisfied by definition; to obtain the expression
in Equation (5), notice that the above series is multiplied
by 1/2 in Equation (3). Equality of the last infinite series
to 2D+(

√
u)/
√
u, was again obtained using Wolfram Al-

pha (Wolfram—Alpha, 2017a); the result was numerically
validated, and convergence on u ∈ (0,∞) can again be
established using the comparison test:

∞∑
k=0

∣∣∣∣∣ukk!

1

1/2 + k

∣∣∣∣∣ =

∞∑
k=0

uk

k!

1

1/2 + k
< 2 +

∞∑
k=1

uk

k!

1

k

= 2 + Ei(u)− γ − log u .

The convergence at u = 0 is obtained trivially, yielding
convergence for all u ∈ [0,∞).

D+(u) and
√
u are continuous on (0,∞), and

√
u > 0;

hence D+(u)/
√
u is continuous on (0,∞), and from defi-

nition of the Dawson integral limu→0+
D+(
√
u)/
√
u = 1,

i.e. the gradient is continuous in u on [0,∞).

Proof of Corollary 3. We use the conclusion of Proposi-
tion 2 which established differentiability for u ∈ [0,∞)
(and thus continuity on the same interval). To show that
KL (Q(w)‖P(w)) is strictly increasing for u ∈ [0,∞), it
is sufficient to observe,

∇uKL (Q(w)‖P(w)) =
1

2
e−u

∞∑
k=0

uk

k!

1

1/2 + k
> 0 ,

because each summand is strictly positive for u ∈ [0,∞)
(given 00 = 1). By a simple application of the mean value
theorem, we conclude KL (Q(w)‖P(w)) is strictly increas-
ing in u on [0,∞).

B. Proofs for Section 4
Throughout this section, let (RD,‖·‖2) be the D-
dimensional Euclidean metric space, T the usual topology,
and B the corresponding Borel σ-algebra. Let λd, d ∈ N,
be the d-dimensional Lebesgue measure.1 P,Q will be
probability measures, P with continuous density p w.r.t.
the Lebesgue measure on RD, and Q concentrated on some
S ∈ B, which is either (at most) countable or a linear mani-
fold. Let KS be the Hausdorff dimension of S, i.e. zero in

1More precisely the restriction of the m-dimensional Lebesgue
measure to the corresponding Borel σ-algebra. We will be using
the term Lebesgue measure instead of the sometimes used term
Borel measure which we use to refer to any measure defined on
the Borel σ-algebra.
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the countable, and dim(S) in the linear manifold case (dim
being the Hamel dimension). The restriction Q|S of Q to
(S,BS), BS the trace σ-algebra, will be denoted by Q̃.

Assume Q̃ has a density q w.r.t. the counting measure on QD

if S is at most countable,2 or w.r.t. Lebesgue measure on S
in the linear manifold case. In the (at most) countable case,
further assume that diam(S) <∞ if S is infinite (trivially
true if S is finite). If S is a linear manifold, assume that q is
continuous w.r.t. the trace topology TS , and that both q and
p are bounded; denote the bounds on densities q and p by
Cq and Cp respectively. We will be usingmS as a shorthand
for either of the corresponding dominating measures of q.
We will also assume that log q ∈ L1(Q̃). Finally, the axiom
of choice is assumed throughout.

We will be using the following fact: because (RD,‖·‖2)
is a complete separable metric space, every finite Borel
measure is regular by Ulam’s theorem (Dudley, 2002, The-
orem 7.1.4), and thus tight by definition. Hence for any
probability measure P on (RD,B) and every ε > 0, there
exists a compact set C ∈ B s.t. P(C) > 1− ε.

The proofs of Theorems 4 and 5 will be divided into multiple
propositions, each proven in a subsection corresponding to
the limiting construction used.

Proof of Theorem 4. Combine Propositions 8 and 21.

Proof of Theorem 5. Use Proposition 9.

Notice that the statements of Propositions 8, 9 and 21 dif-
fer slightly from those of Theorems 4 and 5 by denoting
the limit as EQ̃ log q

p|S instead of EQ log q
p . The former is

more precise in the sense that q is the density of Q̃ w.r.t.
mS on (S,BS), and thus is not measurable w.r.t. Q, making
the integral ill-defined. After swapping Q for Q̃, the inter-
change of p for p|S is necessary for similar reasons. We
omitted this detail from the main text so as to meet the page
limit, and to lighten the technicality of the discussion.

B.1. Convolutional approach

Before approaching the proof of Propositions 8 and 9, we
note that Lemma 11 allows us to assume that S = RKS ×
{0}D−KS if S is a linear manifold w.l.o.g.

The following definitions will be useful: let Z and E be
independent random variables respectively distributed ac-
cording to the distributions PE := N (0, ID) and Q. Define
the shorthands E(n) := E/

√
n and Z(n) := Z + E(n). We

further define the random variables Ẽ := E(n)
1 : KS

×{0}D−KS ,

2We use the countable measure on rationals to avoid having to
deal with a dominating measure that is not σ-finite.

where the subscript denotes the first KS elements of the vec-
tor (Ẽ(n) = 0 if KS = 0), Ẽ(n) := Ẽ/

√
n, and Z̃(n) :=

Z+Ẽ(n). The corresponding distributions will be denoted as
follows: Q(n) = Law(Z(n)), Q̃(n) := Law(Z̃(n)), P

(n)
E :=

Law(E(n)), PẼ := Law(Ẽ), and P
(n)

Ẽ
:= Law(Ẽ(n)).

Notice that (Z,Z(n), Z̃(n)) and (E(n), Ẽ(n)) are determin-
istically coupled collections of random variables. Also ob-
serve that we only convolve the approximating distribu-
tion with the Gaussian noise, and not the target P. Hence
P(n) = P,∀n ∈ N; we will thus omit the superscript here.

The convolution of two Borel measures µ, ν on Rd , d ∈ N,
will be denoted by µ ? ν where for any measurable set
B, (µ ? ν)(B) =

∫
µ(B − x)ν(dx). Observe Q(n) =

Q ?NRD(0, n−1I), and Q̃(n) = Q̃ ?NS(0, n−1I) with
NS(0, n−1I) = P

(n)

Ẽ
being the Gaussian probability mea-

sure on (S,BS) (assuming NS(µ,Σ) = δµ, the Dirac’s
delta distribution, if S at most countable). As a corollary of
(Dudley, 2002, Proposition 9.1.6), we have,

q(n)(x) =

∫
φλ

D

x,n−1Iq dmS , x ∈ RD , (10)

where φλ
D

µ,Σ is the density function w.r.t. λD ofN (µ,Σ) (we
will omit the superscript unless confusion may arise). By
an analogous argument, we obtain,

q̃(n)(x) =

∫
φmSx,n−1Iq dmS , x ∈ S , (11)

where φmSµ,Σ(z) = δKr (z−µ) if S is at most countable (δKr

is the Kronecker’s delta function), as mS is the counting
measure andNS(µ,Σ) = δµ (see above), and the usual den-
sity function of degenerate Gaussian if mS is the Lebesgue
measure on S. Notice that it would have been more pre-
cise to replace φλ

D

x,n−1I in Equation (10) with φλ
D

x,n−1I |S (c.f.
Lemma 22); we omit the restriction in situations where its
necessity is clear from the context.

Proposition 8. Let S be at most countable and all the rel-
evant aforementioned assumptions hold. We consider two
cases: log p ∈ L1(Q) and log p /∈ L1(Q). If log p ∈ L1(Q),
assume that the random variables {log p(Z(n))}n∈N are
uniformly integrable.3

Then,

lim
n→∞

{
KL (Q(n)‖P)− s(n)

}
= E

Q̃
log

q

p|S
,

with s(n) := −D
2 log(2πen−1).

Proof of Proposition 8. First, assume that log p ∈ L1(Q).
Because log q ∈ L1(Q̃) by assumption, we have log q

p|S ∈

3A useful sufficient condition is provided in Proposition 10.
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L1(Q̃) by Lemma 22 and (Dudley, 2002, Theorem 4.1.10).
We can thus focus on convergence of the cross-entropy
and negative entropy terms individually. By Lemma 12,
the cross-entropy term converges. The negative entropy
term converges by Lemma 13.

It remains to investigate the case log p /∈ L1(Q). Because
Lemma 13 still holds, we can invoke Lemma 20 which
establishes that both the sequence (KL (Q(n)‖P) − s(n))
and the integral EQ̃ log q

p|S do not converge as desired.

Proposition 9. Let S be a linear manifold and all the rel-
evant aforementioned assumptions hold. We consider two
cases: log p ∈ L1(Q) and log p /∈ L1(Q). If log p ∈ L1(Q),
assume that the random variables {log p(Z(n))}n∈N are
uniformly integrable,4 and that E‖Z‖22 <∞.

Then,

lim
n→∞

{
KL (Q(n)‖P)− s(n)

KS

}
= E

Q̃
log

q

p|S
,

with s(n)
KS

:= −D−KS
2 log(2πen−1).

Proof of Proposition 9. First, assume that log p ∈ L1(Q).
Because log q ∈ L1(Q̃) by assumption, we have log q

p|S ∈
L1(Q̃) by Lemma 22 and (Dudley, 2002, Theorem 4.1.10).
We can thus focus on convergence of the cross-entropy and
negative entropy terms individually.

By Lemma 12, the cross-entropy term converges. Turning to
the negative entropy term, by Lemma 14, we need to prove,

E log q̃(n)(Z̃(n))→ E log q(Z) .

Lemma 15 gives log q̃(n)(Z̃(n))→ log q(Z) a.s. Lemma 19
then yields the convergence in mean. Therefore,

lim
n→∞

{
KL (Q(n)‖P)− s(n)

KS

}
= E

Q̃
log q

p|S .

It remains to investigate the case log p /∈ L1(Q). Because
Lemmas 14 and 15 and thus also Lemma 19 still hold, we
can invoke Lemma 20 which establishes that both the se-
quence (KL (Q(n)‖P)− s(n)) and the integral EQ̃ log q

p|S
do not converge as desired.

Proposition 10. For f ∈ C(RD), a collection of random
variables {f(Z(n))}n∈N is uniformly integrable if there
exists some r > 0 s.t. ∀x ∈ RD with ‖x‖2 > r, |f(x)| ≤
hp(x) where hp : RD → R, x 7→

∑p
j=1 cj‖x‖

j
2, for some

c1, . . . , cp ∈ R, and E ‖Z‖p2 <∞.5

4A useful sufficient condition is provided in Proposition 10.
5Proposition 10 can be straightforwardly extended to polynomi-

als in any p-norm ‖x‖p = (
∑D

i=1 x
p
i )

1/p, p ∈ [1,∞) by strong
equivalence of p-norms on finite Euclidean spaces.

Proof of Proposition 10. Kallenberg (2006, p. 44, Equa-
tion (5)) states that a sequence of integrable random vari-
ables {ξn}n∈N is uniformly integrable iff,

lim
k→∞

lim sup
n→∞

E I|ξn|>k|ξn| = 0 . (12)

Let us first ensure that random variables {f(Z(n))}n∈N are
integrable. Defining U := {x ∈ RD : ‖x‖2 > r},

E IU
∣∣f(Z)

∣∣ ≤ E IUhp(Z) ,

with hp(Z) being a linear combination of terms ‖Z(n)‖k2
for k ∈ 0, 1, . . . , p. By Cauchy–Bunyakovsky–Schwarz,

E IU‖Z(n)‖k2 ≤ E ‖Z + E/
√
n‖k2

≤ 2
3k
2 −1

(
E ‖Z‖k2 + 2E ‖Z‖

k
2
2 ‖ E√n‖

k
2
2 + E ‖ E√

n
‖k2
)
.

As E ‖Z‖t2 < ∞ for all t ∈ [0, p] by Hölder’s inequality
and the assumption E ‖Z‖p2 <∞, the second and third sum-
mands will go to 0 as n → ∞, and the first term is finite.
Because E IUC |f(Z(n))| ≤ supUC |f | which is finite by
continuity of |f | and compactness of UC (Heine–Borel the-
orem), the random variables {f(Z(n))}n∈N are integrable.

By Equation (12), it is sufficient if ∀ε > 0, ∃k ∈ R s.t.,

lim sup
n→∞

E I|f(Z(n))|>k|f(Z(n))| < ε .

Because any finite collection of integrable random variables
is uniformly integrable, we can find δ > 0 s.t. ∀B ∈ B with
Q(B) ≤ δ, E IB‖Z‖j2 ≤ ε/(2

3j
2 −1|cj |) for j = 1, . . . , p.

We w.l.o.g. assumed cj > 0,∀j as otherwise we could just
ignore the corresponding terms.

By tightness of Q, for every δ > 0 there exists a compact set
Kδ,α s.t. Q(Kδ,α) > 1− δ (the purpose of α will become
clear later). Because we are on a finite Euclidean space,
Kδ,α is bounded and thus we can w.l.o.g. assume Kδ,α =
B̄rδ−α(sδ), a closed ball centred at sδ ∈ RD with radius
rδ − α, for some α > 0, s.t. rδ − α > r, i.e. KC

δ,α ⊂ U .
Clearly Kδ,α ⊂ Kδ := B̄rδ(sδ) and thus Q(Kδ) > 1 −
δ. Define κ = supKδ |f | which is a finite constant by
continuity of f and compactness of Kδ . We will now show,

lim sup
n→∞

E I|f |>κ|f(Z(n))| < ε .

By the assumption |f | ≤ hp on U , we have,

E I|f |>κδ |f(Z(n))| ≤ E IKC
δ
|f(Z(n))|

≤
p∑
j=1

cj E IKC
δ
‖Z(n)‖j2 =

p∑
j=1

cj E IKC
δ
‖Z + E/

√
n‖j2 ,

where each of the r.h.s. summands can be upper bounded,

2
3j
2 −1

(
E IKC

δ
‖Z‖j2 + 2E ‖Z‖

j
2
2 ‖ E√n‖

j
2
2 + E ‖ E√

n
‖j2
)
.
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As before, all but the first term will vanish as n → ∞
and thus we can ignore them in evaluation of the lim sup.
Ignoring the multiplicative constants for a moment, we
turn our attention to the E IKC

δ
(Z(n))‖Z‖j2 = E IKC

δ
(Z +

E/
√
n)‖Z‖j2 where the noise term remained inside the indi-

cator random variable by construction of the upper bound.

Define A(n)
α := {x ∈ RD : ‖x‖2 ≤ α

√
n} ∈ B, β(n) :=

PE(A
(n)
α ) and observe β(n) ↑ 1. Because ‖Z + E/

√
n‖2 ≤

‖Z‖2 + ‖E/
√
n‖2 by the triangle inequality, and (Z +

E/
√
n) ∈ KC

δ iff ‖Z + E/
√
n‖2 > rδ by definition, we

have I
A

(n)
α

(E) IKC
δ

(
Z + E/

√
n
)
≤ I

A
(n)
α

(E) IKC
δ,α

(Z) for
all n ∈ N. Therefore,

E[(I
A

(n)
α

(E) + I
(A

(n)
α )C

(E)) IKC
δ

(Z + E/
√
n) ‖Z‖j2]

≤ E[I
A

(n)
α

(E) IKC
δ,α

(Z) ‖Z‖j2] + E[I
(A

(n)
α )C

(E) ‖Z‖j2]

= β(n) E[IKC
δ,α

(Z) ‖Z‖j2] + (1− β(n))E ‖Z‖j2 .

Because E ‖Z‖j2 <∞ by Hölder’s inequality and β(n) ↑ 1,
the limit and thus lim sup of the r.h.s. is clearly,

E IKC
δ,α

(Z) ‖Z‖j2 <
ε

2
3j
2 −1|cj |

,

where the upper bound is by uniform integrability of ‖Z‖j2
and the construction of Kδ,α. Substituting back,

lim sup
n→∞

E I|f |>k|f(Z(n))| < ε ,

for all k ≥ κ which concludes the proof.

AUXILIARY LEMMAS

Lemma 11. Assume S is a linear manifold, i.e. S = {x ∈
RD : x = t(z), z ∈ S0}, where S0 = RKS×{0}D−KS , and
t : x 7→ b+Ax with b ∈ RD and A ∈ RD×D orthonormal.
Then,

lim
n→∞

{KL (Q(n)‖P)− s(n)} = E
Q̃

log
q

p|S
,

with (s(n)) ⊂ R, if and only if,

lim
n→∞

{KL ((t−1
# Q) ?P

(n)
E ‖ t

−1
# P)− s(n)}

= E
t−1
# Q̃

log
q ◦ t
p|S ◦ t

.

Furthermore,

q ◦ t =
dt−1

# Q̃

dλS0
,

where λS0
= t−1

# mS is the Lebesgue measure on S0 with
the corresponding trace σ-algebra BS0

. If q is continuous
and bounded, then also q ◦ t is continuous bounded w.r.t.
the corresponding trace topology.

Proof of Lemma 11. From definition, t−1(x) = AT(x− b)
which is clearly a homeomorphism from RD onto itself.
Because we are working with Borel σ-algebras, we can use
Lemma 7.5 in (Gray, 2011) to establish,

KL (Q(n)‖P) = KL (t−1
# Q(n)‖ t−1

# P) .

By definition, t−1
# Q(n) = Law(t−1(Z+E(n))); substituting

t−1(Z+E(n)) = AT(Z+E(n)−b) = AT(Z−b)+ATE(n).
Thus by properties of the multivariate normal distribution
and orthonormality of A, t−1

# Q(n) = Law(AT(Z − b) +

ATE(n)) = Law(AT(Z−b)+E(n)) = (t−1
# Q) ?P

(n)
E , and

therefore for all n ∈ N,

KL (Q(n)‖P) = KL ((t−1
# Q) ?P

(n)
E ‖ t

−1
# P) .

Hence the two sequences of KL divergences are the same.
By the substitution formula (see, for example, (Kallenberg,
2006, Lemma 1.22)),

E
t−1
# Q̃

log
q ◦ t
p|S ◦ t

= E
Q̃

log
q

p|S
,

which finishes the first part of the proof.

Because t is continuous, q ◦ t is continuous and bounded if
the same holds for q. Finally, for any B ∈ BS0

,

t−1
# Q̃(B) = Q̃(t(B)) =

∫
t(B)

q dmS

=

∫
S

IB
(
t−1(x)

)
q(x) t#λS0

(dx)

=

∫
S

IB (x) q ◦ t(x)λS0
(dx) =

∫
B

q ◦ tdλS0
,

which shows that q ◦ t =
dt−1

# Q̃

dλS0
as desired.

Lemma 12. If {log p(Z(n))} is uniformly integrable, then
EQ(n) log p→ EQ̃ log p|S as n→∞.

Proof of Lemma 12. Notice that ‖Z(n)−Z‖2 = ‖E/
√
n‖2

by definition, and therefore Z(n) → Z a.s. By the con-
tinuity of p and of the logarithm function, the contin-
uous mapping theorem yields log p(Z(n)) → log p(Z)
a.s. Since we have assumed that the collection of ran-
dom variables {log p(Z(n))} is uniformly integrable and
a.s. convergence implies convergence in probability, we
can use Theorem 10.3.6 in (Dudley, 2002) to deduce
EQ(n) log p → EQ log p as n → ∞. By Lemma 22,
EQ log p = EQ̃ log p|S , concluding the proof.

Lemma 13. If S is at most countable, then,

lim
n→∞

{ E
Q(n)

log q(n) + D
2 log(2πen−1)} = E

Q̃
log q .
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Proof of Lemma 13. The density of Q̃ w.r.t. the counting
measure on QD can be written using the Kronecker’s delta
function δKr as q(x) =

∑
i∈N ρiδKr (x−mi), where ρi ≥ 0,∑

i∈N ρi = 1, and mi ∈ QD,∀i ∈ N. Recall that by Equa-
tion (10), the density of Q(n) w.r.t. λD is,

q(n)(x) =
∑
i∈N

ρi φmi,n−1ID(x) .

We can use the properties of multivariate normal distribu-
tions and the Tonelli–Fubini’s theorem to establish,∫

q(n) log q(n) dλD = −D

2
log(2πn−1) +

∑
i∈N

∫
ρiφ0,ID(ξ) log

[∑
j∈N

ρje
−
‖mi+ξ/√n−mj‖2

2
2n−1

]
λD(dξ) ,

which can be viewed as an integral over the product space
N× RD (remember S is at most countable) w.r.t. the prod-
uct measure of the distribution with density i 7→ ρi and
the GaussianNRD(0, I). For any i ∈ N and ξ ∈ RD, define,

f (n)(i, ξ) := log

[∑
j∈N

ρj exp

(
−
∥∥mi + ξ/

√
n−mj

∥∥2

2

2n−1

)]
.

Then f (n)(i, ξ) → log[ρi exp(−‖ξ‖22 /2)] =: f (∗)(i, ξ)
pointwise as n → ∞. Furthermore, because the sum
inside the logarithm is upper bounded by one, we have
|f (n)(i, ξ)| = −f (n)(i, ξ), ∀n ∈ N, and since − log x ↓ ∞
as x ↓ 0, we obtain |f (n)(i, ξ)| ≤ −f (∗)(i, ξ) which is
the negative logarithm of the ith summand in exp[f (n)(i, ξ)]
for all n ∈ N. Observing,∑

i∈N
ρi E
ξ∼N (0,ID)

(f (∗)(i, ξ)) = −D

2
+
∑
i∈N

ρi log ρi ,

we can invoke the dominated convergence theorem to estab-
lish (using the identity −D

2 = −D
2 log e),∫

q(n) log q(n) dλD +
D

2
log(2πen−1)

→
∑
i∈N

ρi log ρi = E
Q̃

log q ,

as n→∞, concluding the proof.

Lemma 14. For S a linear manifold and every n ∈ N,
E log q(n)(Z(n)) is equal to,

−D−KS

2
log(2πen−1) + E log q̃(n)(Z̃(n)) .

Proof of Lemma 14. As stated at the beginning of this sec-
tion, we can w.l.o.g. assume S = RKS × {0}D−KS . Then,

log q(n)(x)

= log

[∫
RD

(2πn−1)−
D
2 e−

‖x−z‖22
2n−1 Q(dz)

]

= − D−KS

2
log(2πn−1)− n

2

∥∥∥x(KS+1): D

∥∥∥2

2

+ log

[∫
S

φmS
x1 : KS

×{0}D−KS ,n−1I
dQ̃

]
︸ ︷︷ ︸

=q̃(n)(x1 : KS
×{0}D−KS )

,

∀x ∈ RD, where we used Lemma 22 for the last equality.
Using the definition Z(n) = Z + E/

√
n,

E log q(n)(Z(n))

=

∫ ∫
φλ

D

0,I(ξ) log q(n)(z + ξ/
√
n)λD(dξ)Q(dz)

= − D−KS

2
log(2πn−1)− n

2
E
∥∥∥E(KS+1): D/

√
n
∥∥∥2

2

+

∫ ∫
φmS0,I (ξ) log q̃(n)(z + ξ/

√
n)mS(dξ)Q̃(dz)

= − D−KS

2
log(2πn−1)− D−KS

2

+

∫ ∫
φmS0,I (ξ) log q̃(n)(z + ξ/

√
n)mS(dξ)Q̃(dz)

= −D−KS

2
log(2πen−1) + E log q̃(n)(Z̃(n)) ,

where the first equality is by the Tonelli–Fubini’s theorem,
the second by Lemma 22 and the standard marginalisation
properties of the Gaussian distribution (the log q̃(n) term
inside the integral only depends on E(n)

1 : KS
), the third by

the relation of independent Gaussian variables and the χ2

distribution, and the last again by the Tonelli-Fubini’s theo-
rem and the identity −D−KS

2 = −D−KS
2 log e.

Lemma 15. If S is a linear manifold, then,

log q̃(n)(Z̃(n))→ log q(Z) a.s.

Proof. Clearly Z̃(n) = Z + Ẽ/
√
n → Z a.s. Hence for

fixed values Z = z and Ẽ = ξ,∣∣∣log q̃(n)(z + ξ/
√
n)− log q(z)

∣∣∣
≤

∣∣∣log q̃(n)(z + ξ/
√
n)− log q(z + ξ/

√
n)
∣∣∣

+
∣∣log q(z + ξ/

√
n)− log q(z)

∣∣ ,
(13)

by the triangle inequality. The second term on the r.h.s.
goes to zero with n → ∞ by continuity of q. Turning to
the first term, we can use the continuity of the logarithm
to see that we only need to show that ∀ε > 0, ∃N ∈ N
s.t. |q̃(n)(z + ξ/

√
n) − q(z + ξ/

√
n)| < ε for all n ≥ N.

Observe,

|q̃(n)(z + ξ√
n

)− q(z + ξ√
n

)|

≤
∫ ∣∣∣q(z + ξ+u√

n
)− q(z + ξ√

n
)
∣∣∣NS(0, I)(du) .
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where NS(µ,Σ) is the Gaussian distribution on S with
the corresponding moments. Because q is continuous, it
is uniformly continuous on compact sets. Hence we can fix
η > 0 and define F := B̄‖ξ‖2+η(z), the closed ball centred
at z with radius ‖ξ‖2 + η, which is compact by the Heine–
Borel theorem. Use uniform continuity to find t > 0 s.t.
∀(x, y) ∈ F with ‖x− y‖2 < t implies |q(x)− q(y)| < ε,
and w.l.o.g. assume t ≤ η (take t = η if not). For
A := {x ∈ S : ‖x‖2 < t},∫ ∣∣∣q(z + ξ+u√

n
)− q(z + ξ√

n
)
∣∣∣NS(0, I)(du)

≤
∫

IA
(
u√
n

) ∣∣∣q(z + ξ+u√
n

)− q(z + ξ√
n

)
∣∣∣NS(0, I)(du)

+ CqNS(0, n−1I)(AC) ,

where the latter term on the r.h.s. vanishes as n → ∞.
Because ‖z+ ξ+u√

n
− z‖2 ≤ ‖ξ‖2 + ‖ u√

n
‖2 < ‖ξ‖2 + t and

t ≤ η, the first integral is clearly over a subset of F . Since
‖z+ ξ+u√

n
−z+ ξ√

n
‖2 = ‖ u√

n
‖2 which is lower than t on A

by definition, the uniform continuity yields an upper bound,

|q̃(n)(z+ ξ√
n

)− q(z+ ξ√
n

)|<ε+CqNS(0, n−1I)(AC) ,

where the right hand side converges monotonically to ε as
desired. Therefore log q̃(n)(Z̃(n))→ log q(Z) a.s.

Lemma 16. For S a linear manifold and every n ∈ N,
q(n) and q̃(n) are both bounded by the constant Cq and
continuous for T and TS respectively.

Proof of Lemma 16. Boundedness is a simple consequence
of Equation (10) and the Hölder’s inequality,

q(n)(x) =
∥∥φx,n−1I |S q

∥∥
L1(mS)

≤
∥∥φx,n−1I |S

∥∥
L1(mS)

‖q‖L∞(mS) = Cq ;

similarly for q̃(n) using Equation (11).

The proofs of continuity are analogous, therefore we will
only discuss the one for q. Notice that for any x, y ∈ RD,∣∣∣q(n)(x)− q(n)(y)

∣∣∣ ∝ ∣∣∣∣∫ fz(x)− fz(y)Q(dz)

∣∣∣∣ ,
with fz(x) := exp(−n2 ‖x− z‖

2
2).

We can upper bound,∣∣∣∣∫ fz(x)− fz(y)Q(dz)

∣∣∣∣ ≤ ∫ ∣∣fz(x)− fz(y)
∣∣Q(dz) ,

which suggests it would be sufficient to show that the col-
lection of functions {fz}z∈RD is uniformly equicontinu-
ous. A sufficient condition for uniform equicontinuity is
{fz}z∈RD ⊂ Lip(RD,L) where Lip(RD,L) is the set of

real-valued Lipschitz continuous functions on RD with Lip-
schitz constant L. Because each fz is smooth, we can use
Taylor expansion to equate,

fz(x) = fz(y) + (x− y)Tf ′z(ξ)

with f ′z : RD → RD the derivative of fz , for some ξ ∈ RD.
Using the Cauchy–Bunyakovsky–Schwarz inequality,∣∣fz(x)− fz(y)

∣∣ ≤‖x− y‖2∥∥f ′z(ξ)∥∥2
,

which means it is sufficient to show
∥∥f ′z(ξ)∥∥2

is uniformly
bounded in (z, ξ) ∈ RD × RD to establish {fz}z∈RD ⊂
Lip(RD,L). Simple algebra shows that,

∥∥f ′z(ξ)∥∥2
= nfz(ξ)‖ξ − z‖2 ≤

√
n

e
,

∀(z, ξ) ∈ RD × RD, with equality when‖ξ − z‖2 = n−
1
2 .

Hence we can see that {fz}z∈RD ⊂ Lip(RD,L) for L =√
n
e , and thus the family of functions {fz}z∈RD is uni-

formly equicontinuous.

Therefore, ∀ε > 0, ∃δ > 0 s.t. ‖x−y‖2 < δ =⇒ |fz(x)−
fz(y)| < ε for all z ∈ RD. Substituting back,

∣∣∣q(n)(x)− q(n)(y)
∣∣∣ < ( n

2π

)D
2

ε ,

whenever ‖x− y‖2 < δ, and thus q(n) is continuous.

Lemma 17. For S is a linear manifold, q̃(n) converges
pointwise to q as n→∞.

Proof of Lemma 17. W.l.o.g. assume S = RKS×{0}D−KS

(c.f. Lemma 11). For arbitrary x ∈ S,

q̃(n)(x) =

∫
q(x− ξ/

√
n)NS(0, I)(dξ) ,

where NS(µ,Σ) is the Gaussian measure on S with the cor-
responding moments. Because q is continuous by assump-
tion, for every ε > 0, ∃δ > 0 s.t. ‖(x − ξ/

√
n) − x‖2 =

‖ξ/
√
n‖2 < δ =⇒ |q(x − ξ/

√
n) − q(x)| < ε. For any

α > 0, we can use Chebyshev’s inequality to determine
N ∈ N s.t. ∀n ≥ N, P(‖ξ/

√
n‖2 ≥ δ) ≤ α. Define B ⊂ S

to be the ball centred at zero with radius δ. Observe,∣∣∣q̃(n)(x)− q(x)
∣∣∣

≤
∫ ∣∣q(x− ξ/√n)− q(x)

∣∣NS(0, I)(dξ)

< ε+

∫
BC

∣∣q(x− ξ/√n)− q(x)
∣∣N (0, IKS )(dξ)

≤ ε+ 2Cqα ,

and therefore q̃(n) → q as n→∞ pointwise.
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Lemma 18. Assume w1, . . . , wk ∈ R are arbitrary con-
stants, and εi, i = 1, . . . , k, are i.i.d. standard normal
variables. Define the vector w = (wi)

k
i=1. Then for p ≥ 0,

E
∣∣∣∣ k∑
i=1

wiεi

∣∣∣∣p = ‖w‖p2
2
p
2 Γ(p+1

2 )

Γ( 1
2 )

.

Proof. Use the linearity of the dot product and Gaussianity
of εi’s to obtain,

E
∣∣∣∣ k∑
i=1

wiεi

∣∣∣∣p = E
∣∣‖w‖2ε̃∣∣p = ‖w‖p2 E |ε̃|p ,

where ε̃ is a standard normal random variable. The result is
then obtained by realising that powers of standard normal
are distributed according to Generalised Gamma variable
for which the expectation is known.

Lemma 19. If S is a linear manifold, E ‖Z‖22 < ∞, and
log q̃(n)(Z̃(n))→ log q(Z) a.s., then as n→∞,

E log q̃(n)(Z̃(n))→ E log q(Z) .

Proof of Lemma 19. We define Y := log q(Z) and Ỹ (n) :=

log q̃(n)(Z̃(n)) and the corresponding probability measures
ν := Law(Y ), ν(n) := Law(Ỹ (n)). Because a.s. conver-
gence implies convergence in distribution, we have ν(n) →
ν weakly. Hence {ν(n)}n∈N is uniformly tight by Proposi-
tion 9.3.4 in (Dudley, 2002), and so is {ν(n)}n∈N ∪ {ν}.

Therefore we can find a compact set B̄δ s.t. ν(B̄δ) > 1− δ
and ν(n)(B̄δ) > 1 − δ, ∀n ∈ N for any δ > 0. W.l.o.g.
we can assume that B̄δ is a closed interval as compactness
is equivalent to closedness and boundedness for Euclidean
spaces by the Heine–Borel theorem, and thus for any com-
pact B̄δ we can find an interval [sδ − rδ, sδ + rδ] satisfying
the above condition for ν and all ν(n).

Convergence in distribution implies that for any f ∈ Cb(R),
E f(Ỹ (n)) → E f(Y ) as n → ∞. The identity function
Id on S is trivially continuous for the usual topology, but
not bounded. However it is bounded on compact sets like
B̄δ. We thus approximate Id by a continuous compactly
supported6 function hδ,η Id, for some fixed η > 0, where,

hδ,η(x) =


1 , if x ∈ B̄δ
0 , if x ∈ Fr,η
rδ+η−|x−sδ|

η , else.
,

with Fδ,η defined as complement of (sδ−rδ−η, sδ+rδ+η).

Using the triangle inequality,∣∣∣∣Eν (Id)− E
ν(n)

(Id)

∣∣∣∣ ≤ ∣∣∣∣Eν (Id)− E
ν

(hδ,ηId)

∣∣∣∣
6Support is the closure of the set where the function is non-zero.

+

∣∣∣∣Eν (hδ,ηId)− E
ν(n)

(hδ,ηId)

∣∣∣∣+

∣∣∣∣ E
ν(n)

(hδ,ηId)− E
ν(n)

(Id)

∣∣∣∣ .
Starting with the first term on the r.h.s., we can upper bound,∣∣∣∣Eν (Id)− E

ν
(hδ,ηId)

∣∣∣∣ ≤ E
ν

∣∣(1− hδ,η)Id
∣∣ ≤ E

ν
IB̄C

δ
|Id| ,

and observe that Eν |Id| ≤ −EQ(log q̄) +
∣∣log Cq

∣∣, q̄ :=
q/Cq, which by log q ∈ L1(Q) implies that Id ∈ L1(ν).
Because any finite number of integrable functions is uni-
formly integrable, we can use Theorem 10.3.5 in (Dudley,
2002) to conclude that ∀ε > 0, there exists δ > 0 s.t.
Eν IB̄C

δ
|Id| ≤ ε. Denote this number by δ1.

Turning to the last term, we can again upper bound∣∣Eν(n)(hδ,ηId)− Eν(n)(Id)
∣∣ with Eν(n) IB̄C

δ
|Id|, ∀n ∈ N.

In this case, it will be beneficial to revert to the original
representation:

E
ν(n)

IB̄C
δ
|Id| = E

Q̃(n)

I
(A

(n)
δ )C
| log q̃(n)| ,

with A
(n)
δ := (log q̃(n))−1(B̄δ); observe that because

ν(n) = (log q̃(n))#Q̃(n), Q̃(n)(A
(n)
δ ) > 1 − δ, ∀n ∈ N,

by definition. By Lemma 16, each q̃(n) is bounded by
Cq, thus we w.l.o.g. assume that | log q̃(n)| = − log q̃(n)

as the normalisation by Cq will only add a vanishing term
CqQ̃

(n)((A
(n)
δ )C) ≤ Cqδ on the r.h.s., ∀n ∈ N. Then,

E
Q̃(n)

I
(A

(n)
δ )C
| log q̃(n)|

= − E
Q̃(n)

(I
(A

(n)
δ )C

log q̃(n))± E
Q̃(n)

(I
(A

(n)
δ )C

log φmS0,I )

= − E
Q̃(n)

(
I
(A

(n)
δ )C

log q̃(n)

φ
mS
0,I

)
− E

Q̃(n)

(I
(A

(n)
δ )C

log φmS0,I )

≤ − Q̃(n)((A
(n)
δ )C) log

Q̃(n)((A
(n)
δ )C)

NS(0,I)((A
(n)
δ )C)

− E
Q̃(n)

(I
(A

(n)
δ )C

log φmS0,I ) ,

where the inequality is by Equation (7) on p. 177 in (Gray,
2011), and the fact that non-degenerate Gaussian distri-
butions on Euclidean spaces are equivalent to the cor-
responding Lebesgue measure (i.e. N (µ,Σ) � λk and
λk � N (µ,Σ) for all k ∈ N, µ ∈ Rk and positive definite
Σ) which means that Q̃(n) � NS(0, I),∀n ∈ N, and thus,

E
Q̃(n)

I
(A

(n)
δ )C

log q̃(n)

φ
mS
0,I

in the above derivation is well-defined. Q̃(n) � NS(0, I)

implies that Q̃(n)((A
(n)
δ )C) > 0 if N (0, IS)((A

(n)
δ )C) > 0

meaning we can upper bound the first term on the r.h.s. by,

−Q̃(n)((A
(n)
δ )C) log Q̃(n)((A

(n)
δ )C) ,
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which vanishes as δ → 0. The second term is equal to,

−Q̃(n)((A
(n)
δ )C)KS

2 log(2π)− 1
2 E I

(A
(n)
δ )C

∥∥∥Z + Ẽ/
√
n
∥∥∥2

2
,

where the first term again vanishes as δ → 0. Combining
Γ(0) = 1, Γ( 1

2 ) =
√
π and Lemma 18, the latter term can

be upper bounded by,

E(I
(A

(n)
δ )C
‖Z‖22) +

E‖Z‖2√
2πn

+
E ‖Ẽ‖22
n

.

As E ‖Ẽ‖22 = KS , the last term will vanish as n → ∞.
Because we have assumed E‖Z‖22 <∞, Hölder’s inequality
yields E‖Z‖2 < ∞ and thus the second term will also
disappear as n → ∞. E‖Z‖22 < ∞ can also be used
to determine that the singleton set {‖Z‖22} is uniformly
integrable and thus again by Theorem 10.3.5 in (Dudley,
2002) E I

(A
(n)
δ )C
‖Z‖22 → 0 as δ → 0. Notice that the terms

that vanish with δ → 0 do so independently of n by uniform
tightness of {Q̃(n)}n∈N and the construction of A(n)

δ . We
can thus find constants N1 ∈ N and δ2 > 0 which will make
Eν(n) IB̄C

δ
|Id|, n ≥ N, arbitrarily small.

Finally, the second term in our original upper bound,∣∣Eν(hδ,ηId)− Eν(n)(hδ,ηId)
∣∣ will tend to zero as n → ∞

for fixed δ > 0 and η > 0 as hδ,ηId ∈ Cb(R). η is only in-
troduced for hδ,ηId to be a continuous compactly supported
function and thus can be set to an arbitrary positive number.
Setting δ = δ1∧δ2, we can thus find N2 ∈ N that will make∣∣Eν(hδ,ηId)− Eν(n)(hδ,ηId)

∣∣ arbitrarily small.

To establish that |Eν(Id) − Eν(n)(Id)| can be made ar-
bitrarily small, simply take N = N1 ∨ N2. Hence
E log q̃(n)(Z̃(n))→ E log q(Z) as n→∞.

Lemma 20. If log p /∈ L1(Q), and,

lim
n→∞

{ E
Q(n)

log q(n) − s(n)} = E
Q̃

log q ,

then EQ̃ log q
p|S and (EQ(n) log q

p|S − s
(n)) diverge.

Proof of Lemma 20. By Lemma 22, log p|S /∈ L1(Q̃). Be-
cause log q ∈ L1(Q̃) by assumption, we have log q

p|S /∈
L1(Q̃) which yields the first part of the claim.

We now turn to the second part, i.e. to the sequence
(EQ(n) log q

p|S − s
(n)).

First, we prove that EQ(n) log p cannot converge. Since p
is bounded, we can w.l.o.g. assume log p ≤ 0. If log p /∈
L1(Q(n)) infinitely often, E log p(Z(n)) does not converge.
Otherwise log p ∈ L1(Q(n)),∀n ≥ N, for some N ∈ N.
Notice that Z(n) → Z a.s., and by continuity of log p, also
log p(Z(n)) → log p(Z) a.s. Because the zero function is

trivially integrable and log p ≤ 0, we can use the reverse
Fatou’s lemma to establish,

lim sup
n→∞

E log p(Z(n)) ≤ E log p(Z) = −∞ ,

where we have used that log p ≤ 0 and log p /∈ L1(Q) in
the last equality. Again E log p(Z(n)) does not converge.

Now we need to prove (EQ(n) log q(n)

p − s
(n)) does not con-

verge. Assume the sequence converges to some κ ∈ R.
By assumption (EQ(n) log q(n) − s(n)) converges. Thus
by (Dudley, 2002, Theorem 4.1.10), EQ(n) log p must also
converge which is a contradiction of the divergence estab-
lished above. Therefore (EQ(n) log q(n)

p − s
(n)) cannot con-

verge, proving the second part of the claim.

B.2. Discretisation approach

We define the notion of a discretiser, a measurable function
k : RD → A where A is a finite set the members of which
will be called cells. We will consider discretisers that divide
each axis of RD into two half-intervals in the tails and many
equal sized intervals in the middle; the size of these will
be denoted by ∆. Thus if k divides a single axis into M
cells, the total number of cells in RD will be MD. We will
consider sequences of discretisers (kn)n∈N where each kn
produces discretisation which is a refinement of the previous
one, i.e. it only divides existing cells into smaller ones.

We say that a sequence of discretisers is asymptotically exact
if for every x ∈ RD we have,⋂

n∈N

⋂
a∈A(n) : kn(x)=a

k−1
n (a) = {x} ,

i.e. any two distinct points will end up in different cells
eventually. With a slight abuse of notation, we abbreviate
this as limn→∞ kn(x) = {x}.

We further define a function xn : A(n) → RD which accepts
a cell and returns an element that maps to that particular
cell; such function must exist by the axiom of choice.

Finally, we denote the quantised densities w.r.t. the counting
measure for P and Q respectively by p(n)(a) = P(k−1

n (a))
and q(n)(a) = Q(k−1

n (a)).
Proposition 21. Consider an asymptotically exact sequence
of discretisers (kn)n∈N, the corresponding sequence of finite
spaces (A(n))n∈N, and discretisation intervals (∆n)n∈N.
Let S be at most countable and all the relevant afore-
mentioned assumptions hold. We will consider two cases:
log p ∈ L1(Q) and log p /∈ L1(Q).

Then,

lim
n→∞

{
KL (Q(n)‖P(n))− s(n)

}
= E

Q̃

(
log q

p|S

)
,

with s(n) = −D log(∆n).
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Proof of Proposition 21. By assumption, diam(S) < ∞
and thus we can find a compact set K ⊂ RD s.t. S ⊂ K.
W.l.o.g. define R+ ⊃ K to be the smallest hyper-rectangle
of strictly positive Lebesgue measure s.t. it can be padded
out by hypercubes with side ∆1 (by extending the lengths of
sides of R to be positive multiples of ∆1; by the assumption
that each kn refines existing cells, and that the cells are
equal sized, kn(R+) will only produce equal sized cells for
all n ∈ N). R+ exists by the Heine–Borel theorem.

The nth discretised KL is defined as,

KL (Q(n)‖P(n)) =
∑

a∈A(n)

q(n)(a) log
q(n)(a)

p(n)(a)
.

From now on, we will drop the input to the individual quan-
tised densities unless confusion may arise.

We start with the case log p ∈ L1(Q). By Lemma 22,
log p|S ∈ L1(Q̃). Because we assumed that log q ∈ L1(Q̃),

E
Q̃

log q
p|S = E

Q̃
(log q)− E

Q̃
(log p|S) ,

by Theorem 4.1.10 in (Dudley, 2002), and thus we can focus
on the negative entropy and cross-entropy terms separately.

Starting with the negative entropy term, notice that for
any x ∈ S, we have q(n)(kn(x)) → Q̃({x}), as for any
x′ ∈ S \ {x}, Q̃({x′}) > 0 and there exists N ∈ N s.t.∥∥x− x′∥∥

2
>
√

D∆n (the maximum distance of points in
a single cell) for all n ≥ N. Thus q(n)(kn(x)) ↓ Q̃({x}) by
being a monotonically decreasing sequence with the least
upper bound equal exactly to Q̃({x}). Note that by as-
sumption Q̃({x}) = q(x) where q is the density Q̃ of w.r.t.
the counting measure on QD, and thus q(n)(kn(x)) ↓ q(x).

The following insight will help us:∑
a∈A(n)

q(n)(a)h(a) =

∫
q(x)h(kn(x))mS(dx) , (14)

for any h : A(n) → R; note that the definition of A(n)

makes h(kn(x)) a simple function and thus measurable
which means the r.h.s. is well-defined. We can thus use
continuity and monotonicity of the logarithm to establish
log q(n)(kn(x)) ↓ log q(x) pointwise and the fact that
log q(n)(kn(x)) ≤ 0 as q(n)(kn(x)) ≤ 1,∀x, and apply
the monotone convergence theorem to establish,∑

A(n)

q(n) log q(n)
y ∫ q log q dmS .

We now turn to the cross-entropy term. Because R+ is
compact, we can define,

αn := max
a∈kn(R+)

∣∣∣sup[log p(k−1
n (a))]− inf[log p(k−1

n (a))]
∣∣∣ ,

and observe αn ↓ 0 as n→∞ because log p is continuous,
and thus uniformly continuous on R+. Notice,∣∣∣∣ ∑

a∈A(n)

q(n)(a)(log[p(n)(a)]− log[p(xn(a))∆D
n ])

∣∣∣∣
≤

∑
a∈A(n)

q(n)(a)
∣∣∣log[p(n)(a)]− log[p(xn(a))∆D

n ]
∣∣∣

≤
∑

a∈A(n)

q(n)(a)αn ≤ αn ,

using that q(n) = 0 outside of kn(R+). Because αn ↓
0 as n → ∞, we can approximate log[p(n)(a)∆D

n ] by
log p(xn(a)) + D log ∆n.

Since limn→∞ kn(x) = {x} by assumption, we have
xn(kn(x)) → x pointwise by

∥∥x− x′∥∥
2
≤
√

D∆n for
any x′ s.t. kn(x) = kn(x′). By continuity of the logarithm,
log p(xn(kn(x))) → log p(x) pointwise (i.e. log p(xn(a))
can be substituted for the function h(a) in Equation (14)).
Because R+ is compact, we can define κ := supR+

|log p|
which will be finite by the continuity of log p. Hence
|log p(xn(kn(x)))| ≤ κ, and we can apply the dominated
convergence theorem:∑

a∈A(n)

q(n)(a) log p(xn(a))→
∫
q log p|S dmS .

Putting the results in previous paragraphs together, we arrive
at the following limit,

∑
A(n)

q(n) log
q(n)

p(n)
+ D log ∆n →

∫
q log

q

p|S
dmS ,

where we are implicitly using the previously derived equality
EQ̃ log q

p|S = EQ̃(log Q)− EQ̃(log p|S).

It remains to investigate the case log p /∈ L1(Q). Notice that
our proof of convergence of (EQ(n) log p(n) + D log ∆n) to
EQ̃ log p|S is independent of log p ∈ L1(Q) and is facili-
tated using the dominated convergence theorem. The domi-
nated convergence theorem states that the pointwise limit
itself must be integrable, and thus the case log p /∈ L1(Q) is
never realised under our assumptions by Lemma 22.

B.3. Shared auxiliary lemmas

Lemma 22. For Q a probability measure on (RD,B), Q̃
its restriction to (S,BS), and a Borel measurable function
f : RD → R, the following holds,

E
Q
f = E

Q̃
f |S ,

with f |S being the restriction of f to S.
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Proof of Lemma 22. Because EQ f =
∫
f dQ =∫

f+ dQ−
∫
f− dQ, with f+ = f ∨ 0 and f− = −(f∧0),

by definition of the Lebesgue integral, we can w.l.o.g. as-
sume f ≥ 0 so that

∫
f dQ = sup{

∫
g dQ: 0 ≤ g ≤

f, g simple}. For any simple g, using supp(Q) = S,∫
RD

g dQ =

∫
RD

n∑
j=1

ajIBj dQ =

n∑
j=1

ajQ(Bj)

=

n∑
j=1

ajQ(Bj ∩ S) =

n∑
j=1

ajQ̃(Bj ∩ S)

=

∫
S

n∑
j=1

ajIBj dQ̃ =

∫
S

g|S dQ̃ ,

with {aj}nj=1 ⊂ R, n ∈ N. Taking the supremum on both
sides establishes

∫
RD f dQ =

∫
S
f |S dQ̃.

C. Proofs for Section 5
Proof of Proposition 6. Let us first check the assumptions
of Proposition 9. Clearly, the respective densities are con-
tinuous and bounded. Furthermore, the entropy of Q is
equal to 1

2 log det∗(2πeAV AT) where det∗ is the pseudo-
determinant, and thus log q ∈ L1(Q̃). It is also clear that
EZ∼Q ‖Z‖22 < ∞ by the relation of the squared norm of
Gaussian random variables and the χ2 distribution. We
will use Proposition 10 to ensure that the collection of ran-
dom variables {log p(Z(n))}, Z(n) ∼ Q(n), is uniformly
integrable. Observe that for all z ∈ RD,

| log p(z)| ≤ c +
1

2
|zTΣ−1z| ≤ c +

‖z‖22
2γ0

,

where c ∈ R+ is a constant, and γ0 is the lowest eigenvalue
of Σ which is higher than zero because Σ is a (strictly)
positive definite matrix by assumption. As we have already
established EZ∼Q ‖Z‖22 < ∞, Proposition 10 holds and
thus Proposition 9 can be applied.

For fixed A, the Q distribution has support over the subspace
S = {x ∈ RD : x = Az, z ∈ RK}. If z ∼ NK(0,V ),
then Az ∼ ND(0,AV AT). Hence we can perform substi-
tution which reduces QKL to,∫

RK

φ0,V (z) log
φ0,V (z)

φ0,ATΣA(z)
λK(dz)

where we have used the identity (ATΣ−1A)−1z =
ATΣAz for any z ∈ RK. The first term equals
− 1

2 log|V | = − 1
2

∑K
k=1 logV kk up to an additive con-

stant, and the second to Tr
(
ATΣ−1AV

)
up to another

additive constant. For a constant c ∈ R, the integral equals,

c− 1

2

K∑
k=1

logV kk +
1

2
Tr
(
ATΣ−1AV

)
.

The second term can be rewritten as,

Tr
(
ATΣ−1AV

)
=

K∑
k=1

V kka
T
kΣ
−1ak ,

where ak is the kth column of the A matrix. Because this
is an additive loss term in the above QKL, and V kk > 0 by
the construction of S, it is minimised when the ak vectors
are aligned with the top K eigenvectors of Σ because then
aT
kΣ
−1ak = 1/γk which will be lowest for the highest

eigenvalues γk of Σ. Differentiating the objective w.r.t.
V kk after substituting the optimal A yields,

−1

2

1

V kk
+

1

2

1

γk
.

Setting to zero, we see that V kk = γk, i.e. matching
the eigenvalues of Σ is the optimal solution.

Proof of Proposition 6. The nth KL is up to an additive
constant equal to,

L :=Tr
(

(AV AT+ τ (n)I)Σ−1
)
− log

∣∣∣AV AT+ τ (n)I
∣∣∣ .

Using some matrix calculus identities from (Petersen et al.,
2008), the derivatives w.r.t. the individual parameters are,

∇AL = Σ−1A− (AV AT + τ (n)I)−1A ,

∇diag(V )L = diag[AT(Σ−1 − (AV AT + τ (n)I)−1)A] .

Defining a new diagonal matrix V̂
(n)

kk = V kk + τ (n), and
using the orthogonality of A’s columns, we have,

∇AL = Σ−1A−A(V̂
(n)

)−1 ,

∇diag(V )L = diag[ATΣ−1A− (V̂
(n)

)−1] .

Setting the first formula above to zero leads to an eigenvector
problem, hence we know that the columns of A must be
eigenvectors of Σ. Setting the second formula to zero yields,

V kk = (aT
kΣ
−1ak)−1 − τ (n) .

which after substitution of ak by an eigenvector leads to
V kk = γk − τ (n) where γk is the eigenvalue for the kth

substituted eigenvector. By substituting into L,

c +

K∑
k=1

γk
γk
− log(γk − τ (n)) ,

where c is a constant, we see that to the objective is min-
imised when the eigenvectors corresponding to the high-
est eigenvalues are selected. Hence the solution for A is
the same as for PCA for all n ∈ N, and |γk−(γk−τ (n))| →
0 as n → ∞. The optimal solution thus converges to
the PCA/QKL in Frobenius/Euclidean distance.
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