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Abstract

We propose a Bayesian nonparametric prior over
feature allocations for sequential data, the birth-
death feature allocation process (BDFP). The
BDFP models the evolution of the feature al-
location of a set of N objects across a covari-
ate (e.g. time) by creating and deleting features.
A BDFP is exchangeable, projective, stationary
and reversible, and its equilibrium distribution
is given by the Indian buffet process (IBP). We
show that the Beta process on an extended space
is the de Finetti mixing distribution underlying
the BDFP. Finally, we present the finite approx-
imation of the BDFP, the Beta Event Process
(BEP), that permits simplified inference. The
utility of the BDFP as a prior is demonstrated on
real world dynamic genomics and social network
data.

1. Introduction - Problem Statement
We are interested in time series settings where we observe
data {Yt ∈ Y : t = 1, . . . , L}. We consider problems
where the observations are explained by a latent structure
which assigns objects to features and this feature alloca-
tion changes over time. For instance, consider the top-
ics covered by a number of newspapers over time; some
topics “die” while new ones are “born”. The topic cov-
erage of each paper is its latent feature allocation which
could be modelled with an Indian buffet process (Griffiths
& Ghahramani, 2011, IBP). While static feature allocation
models are well studied, these are not able to handle the
time series nature of many datasets. We propose a process
that extends the IBP by allowing the feature allocation to
evolve over the covariate as a result of “birth” and “death”
of features.

1University of Oxford, Oxford, UK 2Stanford University, Cali-
fornia, USA 3University of Cambridge, Cambridge, UK 4Uber AI
Labs, SF, California, USA. Correspondence to: Konstantina Palla
<konstantina.palla@gmail.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

2. Related Work
We target problems where the data depends on a covariate,
such as time or space, and is explained by a latent struc-
ture, in particular a (multi-membership) clustering of the
data points. The observations are result of the underlying
partitioning and its evolution over the covariate. Typical
models fall in two main categories: clustering and feature
allocation. The former allow each data point to belong to
one and only one class (cluster), while the latter let each
data point belong to multiple groups (features). Bayesian
nonparametric approaches are primarily based on the Chi-
nese restaurant process (CRP, Aldous, 1983) or the Indian
buffet process (IBP, Griffiths & Ghahramani, 2005) cor-
responding to the two categories. In particular, a sam-
ple from a CRP is an assignment of data points to dis-
joint classes (a clustering), while a sample from an IBP is
an allocation of the data points to (possibly) overlapping
classes (a feature allocation). Dependent nonparametric
processes extend distributions over partitions to distribu-
tions over collections of partitions indexed by locations in
some covariate space, such as R+ (e.g. continuous time),
Z (e.g. discrete time), or Rd (e.g. geographical location).
Teh et al. (2013) define such a process based on the du-
ality between Kingman’s coalescent (Kingman, 1982) and
the Dirichlet diffusion tree (Neal, 2003). In the resulting
“Fragmentation-Coagulation” process (FCP) a partitioning
of the data points evolves over the covariate undergoing
fragmentation and coagulation events while maintaining
CRP marginals. More recently, Palla et al. (2013) derived
a dependent partition-valued process (DPVP) on an arbi-
trary covariate space which, like the FCP, is exchangeable
and has CRP distributed marginals. In the setting of fea-
ture allocations, Williamson et al. (2010) propose a non-
parametric process, the dependent IBP (dIBP), with IBP
distributed marginals and in which the feature allocations
are coupled over the covariate space using a Gaussian pro-
cess (GP, Rasmussen & Williams, 2006). In a similar vein,
Van Gael et al. (iFHMM, 2009) define the Markov Indian
Buffet process (mIBP), a probability distribution over a po-
tentially infinite number of binary Markov chains evolving
in discrete time. They use the mIBP to extend the facto-
rial hidden Markov model (FHMM, Ghahramani & Jordan,
1997) to the infinite FHMM (iFHMM).

In this paper, we address the problem of dependence for
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binary latent feature models. We propose a process that ex-
tends the IBP by allowing features to be “born” and “die”
at times learnt by the model, while maintaining the essen-
tial mathematical properties of the IBP. The process is a
Markov Jump process (MJP) where the events are the birth
or the death of a feature. The idea is closely related to the
FCP where the events are either a fragmentation of a clus-
ter or a coagulation of two clusters. The partitions at each
location in the FCP are marginally a sample from a Chi-
nese restaurant process, while the feature allocations in the
BDFP are marginally samples from an IBP. Compared to
the dIBP, both processes model feature allocations evolv-
ing over the covariate. However, while in the dIBP the
assignment of data points to a feature might change over
the covariate, in our process, it remains the same until the
feature dies. In the case of the iFHMM, the authors model
the dependence of a feature allocation on a discrete time
variable as opposed to our process where continuous co-
variate space is assumed. Moreover, in the iFHMM, the
marginal distribution of a feature allocation is analogous
but not equal to an IBP. We call the proposed process the
birth-death feature allocation process (BDFP). The BDFP
is exchangeable, projective, stationary and reversible, and
its equilibrium distribution is given by the Indian buffet
process.

3. Feature Allocations and the Indian Buffet
Process

Consider a dataset with N data points indexed by integers
[N ] := {1, 2, . . . , N} (allowing N → ∞). Each data-
point n is associated with a binary vector Zn of length
K that defines its feature allocation; Znk = 1 if data-
point n has feature k and Znk = 0 otherwise. The po-
tential total number of features K may be infinite. The
binary matrix Z[N ] = [ZT1 ,Z

T
2 , . . . ,Z

T
N ]T specifies a ran-

dom feature allocation of [N ], while ZN denotes the space
of all feature allocations of [N ], i.e. Z[N ] ∈ ZN . We de-
fine mk as the number of datapoints that possess feature
k, K+ =

∑2N−1
h=1 Kh as the number of features for which

mk > 0 and Kh as the multiplicity of feature h, that is
the number of times the same binary column h appears in
Z[N ]. Under the IBP (Griffiths & Ghahramani, 2011), the
probability of a matrix Z[N ] is

g([Z[N ]];α) =
αK+∏H
h=1Kh!

exp(−αHN )

K+∏
k=1

(N −mk)!(mk − 1)

N !

(1)

where α > 0 is the concentration parameter, HN =∑N
j=1

1
j is the N th harmonic number and H ≤ 2N − 1

is the number of distinct nonzero features in the allocation.

Thibaux & Jordan (2007) showed one can construct the In-
dian buffet process from a Beta-Bernoulli process using the

following two stage sampling process for n = 1, . . . , N :

B|c, µ0 ∼BP(c, µ0) Zn|B ∼ BeP(B) (2)

where B =
∑∞
k=1 ωkδθk and Z =

∑∞
k=1 fkδθk . First

a draw B is sampled from the Beta process BP(cµ0)
(Hjort, 1990) with µ0 as the base distribution. B is a set
of pairs (ωk, θk) sampled from a Poisson process on the
product space [0, 1] × Θ with Lévy intensity ν(dω,dθ) =
cω−1(1 − ω)c−1dωµ0(dθ). Then, B is used as the atomic
hazard measure for a Bernoulli process BeP(B). Each
Zn is a draw from the Bernoulli process and constitutes
a collection of atoms of unit mass on Θ. Then, Zn is
a binary vector containing the {fk}∞k=1 values resulting
from tossing a countably infinite sequence of (condition-
ally independent) coins with success probabilities ωk, i.e.
fk|ωk ∼ Bernoulli(ωk). This construction allows the use
of de Finetti’s theorem (de Finetti, 1931) that lets the joint
distribution of the rows to be written as

P (Z1, . . . ,ZN ) =

∫ [ N∏
n=1

P (Zn|B)
]
dP (B) (3)

where B is the random measure that renders the variables
Zn conditionally independent. Equation (3) shows the ex-
changeability of the rows of Zn, since they can be de-
scribed as a mixture of Bernoulli processes.

4. Birth-Death Process for Feature Allocation
We consider a continuous-time Markov process (Z(t))t≥0

in which each Z(t) is a random feature allocation tak-
ing values in the discrete space ZN . The state space is
countably infinite; it is determined by all the possible fea-
ture allocations defined by N datapoints and K features,
where K → ∞. The Markov process (Z(t)) evolves over
time jumping to different states (feature allocations). Let
{t1, . . . , tJ ∈ R : J ∈ N} denote the times when the chain
jumps such that tj = inf{τ ≥ tj−1 : Z(τ) 6= Z(tj−1)}
and Z(tj) ∈ ZN . These jumps are a result of a birth or
a death of a feature. The process (Z(t)) can only jump to
neighbouring states, i.e. if the chain is currently at state
Z(tj) = s, then at time tj+1 it transitions to Z(tj+1) = s′

where a new feature is created or an existing feature is
deleted after a birth or a death event respectively. Let
ZsN ⊂ ZN be the discrete space of neighboring states to
state s. The process is time homogeneous with transition
probabilities P(Z(t + y) = s′|Z(y) = s) = P(Z(t) =
s′|Z(0) = s) = pss′(t) for all t, y, where s, s′ ∈ ZN . At
time tj+1 the process jumps to the next state Z(tj+1) = s′

with rate determined by the current state Z(t) = s and the
corresponding event, i.e birth or death. More specifically,

• Birth: Suppose s ∈ ZN is a feature allocation with
Ks nonzero features and s′ ∈ ZsN is another feature
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allocation that differs from s in having one additional
feature of size |a| so that K ′s = Ks + 1. We choose
the transition rate from s to s′ as

qss′ = R
(|a| − 1)!(N − |a|)!

N !
(4)

where R > 0 is a parameter governing the birth
rate. The new feature a is a binary column of length
N . There are

(
N
|a|
)

binary formulations for this fea-

ture and 2N − 1 =
∑N
n=1

(
N
n

)
for all possible fea-

ture births and thus, the total birth rate from s is∑N
n=1

(
N
n

)
R (n−1)!(N−n)!

N ! = R
∑N
n=1

1
n = R ·HN

where HN =
∑N
n=1 1/n is the N -th harmonic num-

ber and n = |a| .
• Death: The rate of transitioning from s′ to s is

qs′s =
Rr

α
(5)

where D = R
a is a parameter governing the death rate

and r is the multiplicity of the feature in s′ that dies.
The multiplicity r is the combinatorial factor that ac-
counts for all the possible ways of obtaining the same
equivalence class as defined in Griffiths & Ghahra-
mani (2011) . There are Ks′ features (including repe-
titions of the same feature) in s′ that might “die”, thus
the total death rate from s′ is RKs′

α .

The total rate of transition out of state s ∈ ZN is the sum
of the total birth and death rates, qs = RHN + RKs

α =

R
(
HN + Ks

α

)
. We call (Z(t))t>=0 a birth-death feature

allocation process with birth rate R and death rate R
α and

write BDFP(α,R).

Theorem 1. The Markov process (Z(t))t≥0 is irreducible
and has stationary distribution IBP(α). Furthermore, it is
reversible.

Proof. A continuous time Markov chain is irreducible if it
is possible to eventually get from every state to every other
state with positive probability. It is reversible if detailed
balance holds, i.e. there is a probability distribution π on
ZN such that πsqss′ = πs′qs′s for all s, s′ ∈ ZN . Then π is
also the invariant (equilibrium) distribution of the Markov
chain. The chain in BDFP is irreducible, because for any
T > 0 and any two distinct feature allocations γ, ρ ∈ ZN ,
there is a positive probability that if it starts at γ ∈ ZN ,
it will end at ρ ∈ ZN . Reversibility and the equilibrium
distribution can be demonstrated by detailed balance. Sup-
pose γ, ρ are feature allocations such that γ, ρ ∈ ZN and ρ
differs from γ in that it has one additional feature a of size
|a|. The number of (nonzero) features in ρ isKρ = Kγ+1.

Then,

g(γ;α)qγρ =
αKγ

Π
Hγ
h=1Kh!

exp (−αHN )

Kγ∏
k=1

(N −mk)!(mk − 1)!

N !
R

(|a| − 1)!(N − |a|)!
N !

mKγ+1=|α|
=

αKγ+1

αΠ
Hγ
h=1Kh!

exp (−αHN )

Kγ+1∏
k=1

(N −mk)!(mk − 1)!

N !
R

=
αKρ

rαΠ
Hγ
h=1Kh!

exp (−αHN )

Kρ∏
k=1

(N −mk)!(mk − 1)!

N !

R

α
ra

rα=Kα=
αKρ

Π
Hρ
h=1Kh!

exp (−αHN )

Kρ∏
k=1

(N −mk)!(mk − 1)!

N !

R

α
ra

= g(ρ;α)qργ (6)

where g(γ;α) is the probability of a feature allocation γ
under the IBP as defined in Equation (1), qγρ is the transi-
tion rate from state γ to state ρ, Hγ , Hρ are the number of
distinct features in states γ and ρ respectively and ra is the
multiplicity (the times the feature is present at the current
feature allocation) of feature a that dies. Detailed balance
holds, and as such the process is reversible and the equilib-
rium distribution is IBP[N ](α).

Assume that (z(t)) is a realization of the BDFP (Z(t))
over the finite interval [0, T ], T > 0 and we write
(z(t))0≤t≤T . With probability one the sample path
(z(t))0≤t≤T will only contain a finite number of jump
events, each of which is either a birth or a death event. We
write B and Q to denote the set of the features created or
turned off by birth or death events respectively.

Proposition 1. Writing q(t) = qz(t) to denote the total
transition rate out of state z(t), the probability of a real-
ization (z(t)) under the law of the BDFP is:

R|B|+|Q|
αA−|B|−|Q|∏A∗−|B∗|
h=1 Kh!

exp (−αHN ) exp
(
−
∫ T

0

q(t)dt
)
× . . .

∏
b∈B∪{z(t=0)}

(|b| − 1)!(N − |b|)!
N !

∏
d∈D

rd

(7)

where A = K0 + |B| = KT + |Q|, A∗ = H0 + |B∗| =
HT + |Q∗|. B∗, Q∗ are the sets of features with zero mul-
tiplicity at their creation time or with multiplicity of one at
their death time respectively, and {z(t)} denotes the set of
features at time t.

4.1. Dependent Beta Process Construction

The BDFP process can be constructed using a nonho-
mogenous Poisson process Π. Consider the Lévy mea-
sure ν(dωdxdtbdtω) on a product space [0, 1] ⊗ X ⊗ R ⊗
[0,∞). A sample corresponds to set of points Π =
{ωk, xk, tkb , tkω}k where the range of k is countably infinite.
Each atom corresponds to a feature and is associated with
a weight ωk ∈ [0, 1], a location xk, a birth time tkb ∈ R
and a life-span tkω ∈ [0,∞) (Figure 1). The Lévy measure
is of the form ν(dωdxdtbdtω) = ρ(dω)µ(dxdtbdtω) and
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x

tb

ω
–1

Figure 1. Cartoon for the dependent Beta process construction of
the BDFP: a realisation of a Poisson process Π over the product
space [0, 1] ⊗ X ⊗ R ⊗ [0,∞) is drawn. The tω dimension over
the space [0,∞) is omitted in the axis representation. However,
each tω corresponding to each point (feature) is drawn as a blue
line of length tω starting at the associated birth time point.

corresponds to a Beta process on the combined space Θ =
X⊗ R⊗ [0,∞) with ρ(dω) = αω−1(1− ω)α−1 and base
measure µ(dθ) = µ(dxdtbdtw). Setting g(dtb) = dtb and
β(dtω) = D exp−Dtω dtω , the base measure is µ(dθ) =
µ0(dx)g(dtb)β(dtω) = µ0(dx)dtbD exp−Dtω dtω , where
D is the death rate. The constant measure g(dtb) over the
real line R is infinite but σ-finite, that is the total measure
g(R) = ∞, but there is a measurable partition (Ek) of R
with each g(Ek) < ∞. Since ν(dωdθ) integrates to infin-
ity but satisfies

∫
[0,1]

∫
Θ

(1 ∧ |ω|)ν(dωdθ) < ∞, a count-
ably infinite number of i.i.d. random points {(ωk,θk)}∞k=1

are obtained from the Poisson process and
∑∞
k=1 ωk is fi-

nite with probability one. A Beta process is a completely
random measure (Kingman, 1967) and, as such, a sample
can be expressed as B =

∑∞
k=1 ωkδθk |α, µ ∼ BP(αµ),

where the atoms θk = {xk, tkb , tkω} ∈ Θ and weights
ωk ∈ [0, 1].

Having drawn a sample B we can construct the feature al-
locations over an index space R as follows:

B =

∞∑
k=1

ωkδθk |α, µ ∼ BP(αµ)

Sn: =

∞∑
k=1

bnkδθ |B ∼ BeP(ωk)

Znk(t) = SnkI(tkb < t < tkb + tkω) (8)

with bnk|ωk ∼ Bernoulli(ωk) and n = 1, . . . , N . The bi-
nary matrix S of dimension N ×K, is a feature potential
matrix. Each binary element Snk indicates whether object
n possesses feature fk. S is a global variable and doesn’t
depend on time t. At any time t, the feature allocation ma-
trix Z(t) is a deterministic function of the current features
present at t, that is {fk : tkb < t < tkb + tkw, k = 1, . . . ,∞}

and the feature potential matrix S, i.e. Znk(t) = 1 iff
Snk = 1 and tkb < t < tkb + tkω .

The resulting feature allocation process (zn(t))T is equiva-
lent to the following: every time a new feature fk is created,
each object n joins with probability ωk, i.e. znk(tkb )|ωk ∼
Bernoulli(ωk). If znk(tkb ) = 1, object n will possess fea-
ture fk until tkb + tkω . Repeat this process for all objects.

Proposition 2. The BDFP is exchangeable and the Beta
process BP(αµ) on X⊗R⊗[0,∞) describes its underlying
mixing measure.

Proof. Consider a sequence of variables (zn(t))T with
n = 1, 2, . . . , N such that each (zn(t))T is the feature allo-
cation evolution of object n over the index space T. These
variables are not independent since each (zn(t))T depends
on the Z|[n−1](t) = (z1:(n−1)(t))T. However, given a sam-
ple from the B ∼ BP(αµ) described in Section 4.1, each
variable (zn(t))T becomes conditionally independent and
the following holds

P ((z1(t))T, (z2(t))T, . . . , (zN (t))T) =

∫ N∏
n=1

P ((zn(t))T|B)φ(dB)

(9)

where φ = BP(αµ).

Equation (9) is the de Finetti representation of the BDFP
and as such the BDFP is exchangeable and the BP on
Θ = X ⊗ R ⊗ [0,∞) is its underlying mixing measure.
Restricting our focus on each index t, the overall Beta pro-
cess BP(αµ) on X⊗ R⊗ [0,∞) results in a set of depen-
dent random measures over X, oneBt for each t ∈ T, such
that each Bt is marginally a Beta process. Consider a fixed
time point t ∈ T and the space [0, 1] ⊗ X (the red vertical
plane in Figure 1). The point process on this plane (where
blue lines intersect the plane) corresponds to features alive
at time t, i.e. t ∈ [tb, tb + tω]. The Lévy measure on this
plane, is calculated by projecting the overall Lévy measure
onto the plane,

νt(dωdx) =

∫ ∞
0

∫ t

t−tω
ν(dωdxdtbdtω)

= αω−1(1− ω)α−1µ0(dx)

D
(10)

where νt is a measure over [0, 1] ⊗ X for a specific t ∈ T.
More specifically, it is the Lévy measure of a Beta process
on X with ρ(dω) = αω−1(1 − ω)α−1 and base measure
µt(dx) = µ0(dx)

D . Thus we have that marginally
Bt|α, µt ∼ BP(αµt), ∀t ∈ T. (11)

The restricted and projected measure at any index t ∈ T de-
fines a Beta process. Two draws, Bt and Bs, with t, s ∈ T,
will be dependent with the amount of dependence decreas-
ing as |s− t| increases.

Proposition 3. The dependent Beta process construction
presented has IBP marginals at any t.
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Proof. At any t ∈ T, Bt|α, µt ∼ BP(αµt). It is straight-
forward to see that, marginally, the feature allocation ma-
trix Zt obtained using the generative process in Equa-
tion (8) is equivalent to Zt|Bt ∼ BeP(Bt) and therefore
Zt ∼ IBP(α), ∀t ∈ T.

Corollary 1. At any t ∈ T, the feature allocation matrix
Zt can be generated by the following generative model as
K →∞:

ωk|α ∼ Beta

(
R

K

)
, Znk|ωk ∼ Bernoulli(ωk) (12)

for k = 1, . . . ,K and n = 1, . . . , N

The proof of the corollary in included in the supplementary
material. Note that the above is true only marginally, i.e.
at time t ∈ T and it doesn’t generste dependence structure
between Zt’s.

We underline the dependence of Zs and Zt when |s− t| →
0, ∀s, t ∈ T. The closer s, t are, the more the atoms
(features) Bs and Bt share. If we independently sampled
Zs|Bs ∼ BeP(Bs) and Zt|Bt ∼ BeP(Bt) then Zs, Zt
would be dependent, but not equal, even as |s − t| → 0.
However, in the BDFP the presence of the same features re-
sults in the same (not just similar) allocation as |s−t| → 0.
In both cases, the marginal distribution of the feature al-
location matrix at any t ∈ T is Zt|Bt ∼ BeP(Bt) and
Zt|α ∼ IBP(α). The BDFP results in a continuous evolu-
tion of the Z(t) over T: formally Zt

d→ Zs as t→ s.

This construction of the BDFP resembles the spatial nor-
malised Gamma process (SNΓP) by (Rao & Teh, 2009).
The main difference lies in the marginal distribution; the
SNΓP admits DP marginals as opposed to the Beta process
marginals of the dependent Beta process as shown in Equa-
tion (11).

Proposition 4. The feature allocation process described
by Equation (8) with B ∼ BP(αµ), has the same birth and
death rates as the BDF process.

5. Finite Model
For the BDFP, the inference simplifies considerably if we
consider a finite approximation which gives the count-
ably infinite model in the limit. Consider the space
S = [0, 1] ⊗ X ⊗ [0, T ] ⊗ [0,∞), where we restrict the
space of tb to be [0, T ] instead of the whole real line
R. This accounts for typical applications of the model
where we observe data at distinct times over a finite
time range. Consider the Lévy measure ν(dωdxdtbdtω)
on the space S. Then, under the dependent Beta pro-
cess representation (see section 4.1), the expected num-
ber of atoms present in S is

∫
S ν(dωdxdtbdtω) =∫ 1

0
ρ(dω)

∫
X µ0(dx)

∫ T
0
g(dtb)

∫∞
0
β(dtω) = KT , where

fk

tfkb tfkd

FEATURES PRESENT

t t′0 T

Figure 2. Cartoon for the Beta event construction of the BDFP:
A Poisson(KT ) number of features are uniformly distributed
across the time range [0, T ] (blue lines). Each feature is assigned
a weight sampled from Beta( R

K
, 1). The leftmost point of each

line corresponds to the time of birth of that feature, while the
length of each line indicates the life span of each feature sam-
pled from Exponential(D). To sample feature allocations from
the process, we consider random time points across time, e.g. t, t′

and draw imaginary red lines. The feature allocation matrix at t
involves the features that are crossing the red line at t. The mem-
bership of the objects n = 1, . . . , N to those features is defined
by the values of the corresponding elemnts in the potential matrix
S.

K → ∞ since
∫ 1

0
ρ(dω) = ∞. By considering finite K

we allow inference on a finite model which approximates
the infinite case with increasing fidelity as K →∞.

The process is depicted in Figure 2 and the infinite case can
be derived as the limit K →∞ of the following:

• Consider a time range [0, T ] and a set of features F ,
such that |F| ∼ Poisson(KT ). Assign to each feature
fk ∈ F , k = 1, . . . |F| a weight ω, such that ωk ∼
Beta

(
R
K , 1

)
and Ω = [ω1, ω2 . . . ω|F|].

• Associate each feature fk ∈ F , k = 1, . . . |F| with
a birth time tkb uniformly sampled in [0, T ]; tkb ∼
U(0, T ) and tb = [t1b . . . t

|F|
b ].

• For each fk ∈ F , sample its life span tkw ∼
Exponential(D), where D is the death rate. Define
the time of death tkd as tkd = tkb + tkw and tw =

[t1w . . . t
|F|
w ].

We call the sequence of the above steps Beta Event Pro-
cess (BEP). Putting everything together, generate a sample
B = {F ,Ω, tb, tw} ∼ BEP(α,R,K, T ) as follows:

|F| ∼ Poisson(KT )

ωk ∼ Beta

(
R

K
, 1

)
, tkb ∼ U(0, T ), tkω ∼ Exponential(D)

(13)

for k = 1, . . . , |F|. Having drawn a sample B from the
BEP, we can construct the feature allocations over time as
follows

Snk|ωk ∼ Bernoulli(ωk)

Znk(t) = SnkI(tkb < t < tkb + tkω) (14)
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where n = 1, . . . , N . The feature potential matrix (as de-
fined in section 4.1) has now N × |F| dimensions. More-
over, each Z(t) for t ∈ T is a matrix of dimensions
N × F (t) and F (t) ≤ |F|. Figure 3(a) show the graphi-
cal model for the BEP.

R

ω S

tw

Zt

tb

Yt

A σε

α

t

(a)

R

ω S

tw

Zt

tb

Yt

Wt s

α

t

(b)

Figure 3. Graphical representation of the BEP for a time point t
and for (a) a linear-Gaussian likelihood and (b) a sigmoid likeli-
hood. The time series Z and Y are represented as single nodes
indexed by the time location t. The birth and life span times of
the total KT features are depicted using vector notation tb and
tw. The black (Zt) and grey (Yt) nodes indicate deterministic
and observed parameters respectively.

Proposition 5. In the finite model, the expected number
of features present at any t ∈ T is E[Nf ] = K

D and for
D = R

α we have E[Nf ] = Kα
R .

Hyperpriors. We put gamma priors on α and R.

Likelihood models. We consider two different likelihood
models: linear-Gaussian for real data and logistic for bi-
nary network data.

For the linear-Gaussian likelihood model, consider a se-
quence of observations {Yt ∈ Y : t = 1, . . . , L} generated
as

Yt = ZtA + εt (15)

where Yt is a N ×M observation matrix at each time t =
1, . . . , L, A is a factor loading matrix of dimension |F| ×
M shared across time and εt ∼ N

(
0, σ2

ε

)
is Gaussian white

noise. We choose a Gaussian prior over A, i.e Afm ∼
N (0, 1).

In the case of dynamic binary network data we extend
the latent feature relational model (LFRM) proposed by
(Miller et al., 2009). Let Yt be the N × N binary matrix
that contains links, i.e. ytij = Yt(i, j) = 1 iff we observe
a link from entity i to entity j at time t. We assume that the
matrices Yt are symmetric and ignore diagonal elements
(self-links). The probability of a link from one entity to an-
other is determined by the combined effect of all pairwise
feature interactions. Let Wt be a |F| × |F| real-valued
weight matrix where Wt(k, k

′) is the weight that affects
the probability of there being a link from entity i to entity
j if entity i has feature k on, i.e. Ztik = Zt(i, k) = 1 and
entity j has feature k′ on, i.e. Ztjk′ = Zt(j, k

′) = 1. The
links are independent conditioned on Zt and Wt, and only
the features that are on for the entities i and j at time t in-
fluence the probability of a link between those entities at
that time (see Figure 3(b)). Formally,

P (ytij = 1|Zt,Wt) = σ
(∑

kl

ZtikZtjlWtkl + s
)

(16)

for k, l = 1, . . . , |F|, where s is a bias term and σ(x) =
(1 + e−x)−1 is the sigmoid function. For completeness,
we assume the priors wt(k, l) ∼ N

(
µw, σ

2
w

)
and s ∼

N
(
µs, σ

2
s

)
.

5.1. Inference

As with many other Bayesian models, exact inference
is intractable so we employ Markov Chain Monte Carlo
(MCMC) for posterior inference over the latent variables
of the finite model. A detailed description is provided in
the supplementary material.

6. Experiments
We experimentally evaluate the BEP model on real-world
genomics and social network data. To evaluate the model
fit, we compared the BEP model to independent models at
each time point.

6.1. Circadian Rhythm Dataset

Here we used a subset of the gene expression data from
Piechota et al. (2010), including N = 500 genes in D = 4
different conditions (exposure to different drugs) over L =
24 time intervals. The measurements indicate how active
a gene is at different times. We created 7 train-test splits
holding out 20% of the data, and ran 700 MCMC itera-
tions. We see that in terms of predictive performance the
BEP outperforms independent IBP models (Table 1). The
genes belonging to each factor show enrichment for differ-
ent known biological pathways (Figure 4). Of particular
note are the tryptophan metabolism genes enriched in fac-
tor 2, given tryptophan’s suspected effects on drowsiness;
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the vasopressin regulated water reabsorption, given this
hormone’s known circadian regulation (Earnest & Sladek,
1986; Yamaguchi et al., 2013); and the regulation of in-
sulin producing beta cells, another hormone with circadian
variation (Shi et al., 2013).

Table 1. Circadian dataset results using 20% held out data, a trun-
cation level of K = 10, |F| = 24, 700 iterations and a burnin of
500. Results are the average over 7 MCMC chains.

BEP INDEPENDENT IBP

TRAIN ERROR 0.0917± 0.0368 0.0983± 0.0012
TEST ERROR 0.0948± 0.0343 1.3380± 0.5155
TRAIN LOG LIKELIHOOD 6.508± 0.7715 6.6871± 0.0217
TEST LOG LIKELIHOOD 1.5661± 0.1583 −8.6861± 4.0670

feature index
5 10 15 20

Kegg Tryptophan Metabolism
Kegg Ribosome

Kegg Ppar Signaling Pathway
Kegg Vascular Smooth Muscle Contraction

Kegg Vasopressin Regulated Water Reabsorption
Reactome Formation Of A Pool Of Free 40s Subunits

Reactome Formation Of The Ternary Complex And Subsequently The 43s Complex
Reactome Influenza Viral Rna Transcription And Replication

Reactome Muscle Contraction
Reactome Nuclear Receptor Transcription Pathway

Reactome Regulation Of Beta Cell Development
Reactome Regulation Of Gene Expression In Beta Cells

Reactome Regulation Of Lipid Metabolism By Peroxisome Proliferator Activated Receptor Alpha
Reactome Translation Initiation Complex Formation

Reactome Viral Mrna Translation
Reactome Smooth Muscle Contraction 0

0.5

1
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Figure 4. Circadian dataset: many of the features uncovered show
enrichment in known biological pathways from Reactome and
KEGG. Values here are − log10 p from a hypergeometric test for
enrichment of the genes in each factor against the 500 background
genes.

6.2. ChIP-seq Epigenetic Marks

For this experiment we used ChIP-seq (chromatin immuno-
precipitation sequencing) data downloaded from the EN-
CODE project (Consortium, 2007), representing histone
modifications and transcription factor binding in human
neural crest cell lines (see (Park, 2009) for a nice review).

The observations involve counts associated with N = 14
(human) cell lines and D = 10 proteins. The counts indi-
cate what proteins, with what chemical modifications, are
bound to DNA along the genome. The measurements are
stored in N × D matrix of counts Yt: for each cell line,
how many reads for each of the 10 proteins mapped to bin t
(100 base pair (bp) region of the genome). t = 1, . . . , 500
bins were considered at the start of chromosome 1 (50K
bp in total). In Figure 5(a) each subfigure corresponds to
one of the 10 proteins and in each subfigure the counts for
the N = 14 cell lines are plotted over the genome sec-
tion of length 50Kbp. Before inference, the raw counts
were square-root transformed (a standard variance stabi-
lizing transform for Poisson data) to make the Gaussian
likelihood appropriate. We ran 7 different held-out tests,
holding out a different 20% of the data each time. Results,
using 700 MCMC iterations, are presented in Table 2. The

BEP outperforms the independent IBP model in both test
likelihood and error with a statistically significant differ-
ence. The independent IBP appears to have better results
in train error and likelihood, again suggesting overfitting.
Comparing the plots of the true measurements to the learnt
ones by the BEP and independent IBP model in Figure 5
we see that both models successfully reproduce the data
but the BEP reconstructions provide a cleaned up picture
of the meaningful signal.

The features found by the model in the different genome
locations correspond to different states associated with the
specific genome location. Genes and regulatory DNA ele-
ments such as enhancers, silencers and insulators are em-
bedded in genomes. These genomic elements on the DNA
have footprints for the transacting proteins involved in tran-
scription, either for the positioning or regulation of the tran-
scriptional machinery. For instance, promoters are regions
of DNA which recruit proteins required to initiate transcrip-
tion of a particular gene and located near the transcription
start sites. Enhancers are regions of DNA that can be bound
by proteins which activate transcription of a distal gene.
So a cell line, at specific genome location (recall that here
each location corresponds to 100 base pairs), will have un-
derlying feature membership (some promoters and some
enhancer for example) that determines whether particular
protein are found there using ChIP-seq.

Genomic annotations, from ChromHMM (Ernst et al.,
2011), are shown in Figure 8 in the supplementary docu-
ment for the region we model. Different levels of the marks
in these different regions are much easier to see in the re-
constructed signal using BEP in Figure 5(b).

Table 2. Quantitative results for the ChIP-seq dataset . 20% held
out data, a truncation level of K = 3, |F| = 21, 700 iterations
and a burnin of 500. Results are the average over 7 held out sets.

BEP INDEPENDENT IBP

TRAIN ERROR 0.4459± 0.0229 0.032± 0.0089
TEST ERROR 0.4574± 0.018 0.7746± 0.013
TRAIN LOG LIKELIHOOD −12.4979± 0.1439 −0.5916± 0.0979
TEST LOG LIKELIHOOD −3.1666± 0.0318 −175.7968± 4.49

7. van de Bunt’s Dataset
In van de Bunt et al. (1999), 32 university freshman stu-
dents in a given discipline at a Dutch university were sur-
veyed at seven time points about who in their class they
considered as friends. Initially, i.e. t1, most of the students
were unknown to each other. The first four time points are
three weeks apart, whereas the last three time points are six
weeks apart as showin in Figure 11 in the supplementary
matrial. We symmetrise the matrix by assuming friendship
if either individual reported it. We test the performance
of BEP using the sigmoid likelihood model as in Equation
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Figure 5. ChIP-seq data: The observed (a) and reconstructed ob-
servations (b), (c). The BEP reconstructions smooth out the noise
making the meaning signal much easier to visualize. In both mod-
els, the noise signal was removed from the reconstructions.

(16) by holding out 10% of all links across all time points.
We ran each model for 1000 MCMC iterations. The re-
sults are shown in Table 3. The independent network LFR
models outperform BEP in the train setting and the test er-
ror while BEP outperforms in the test likelihood. How-
ever, here the results are comparable. Looking at Figure
6, both models provide the same picture of the allocation.
It is possible the stationary assumption hurts the BEP: in
the VDB dataset the number of links almost exclusively in-
creases over time.

Table 3. van de Bunt’s dataset results using 10% held out data, a
truncation level of K = 4, |F| = 20, 1000 iterations and a burnin
of 200. Results are the average over 7 MCMC chains.

BEP INDEPENDENT LFRM

TRAIN ERROR 1.7009± 0.0850 1.3413± 0.1147
TEST ERROR 1.9107± 0.1321 1.7891± 0.1131
TRAIN LOG LIKELIHOOD −1044.4943± 41.6363 −839.4544± 56.9877
TEST LOG LIKELIHOOD −345.7038± 49.9882 −438.5848± 74.6396
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Figure 6. Inferred feature allocation matrices for the seven time
points (from left to right) in the van De Bunt friendship dataset.
First two rows: Feature allocation matrices inferred by BEP.
Last two rows: Feature allocation matrices inferred by indepen-
dent LFRM.

8. Discussion
Many modern machine learning and statistics tasks involve
multidimensional data positioned along some linear covari-
ate: we have shown functional genomics data where the co-
variate is position in the genome, and network data where
links change over time. To model such data we need pri-
ors that utilize the dependencies through time, while han-
dling high dimensionality. The BDFP is an expressive new
Bayesian non-parametric prior that fulfills these criteria. It
outputs time-evolving feature allocations, which can then
be effectively used to model high-dimensional time-series
data. Since the number of latent features is unbounded,
like other Bayesian non-parametric methods, the model
can adapt its complexity to the data. While the combi-
natorial BDFP may seem like a complex object to handle
computationally, our theoretical results showing that the de
Finetti measure underlying the BDFP is a specific beta pro-
cess, which can be well approximated by a finite K model,
the BEP. Our experimental results, compared to indepen-
dent feature allocations, provides evidence that effectively
modeling dependency in the feature allocation through the
birth-death mechanism is appropriate for a wide range of
statistical applications. Moreover, the BEP provides an in-
terpretable structure using parameters not found, to the best
of our knowledge, in existing models, i.e. birth and death
rate of features. We are interested in scaling inference un-
der the BEP to larger datasets, for example using (stochas-
tic) variational inference methods that have been successful
for the IBP (Doshi et al., 2009).
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