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 Paredes et al recently described Poldip2 as a novel regulator of mitochondrial 

lipoylation through stabilisation of ACSM1 (1). We have several concerns with their 

proposed model based on the following reasons. 

Prior mammalian and yeast biochemical studies are not consistent with a significant 

physiological role for lipoate scavenging in eukaryotes (2, 3). Genetic depletion or germline 

mutations in de novo lipoic acid synthesis enzymes (LIAS, LIPT1 and LIPT2) result in loss of 

mitochondrial lipoylation, respiration, and developmental defects in mammals, which are 

not reversed with exogenous lipoic acid (2, 4). While LIPT1 has an established role in this de 

novo synthesis pathway, there is no evidence that LIPT1 is a scavenging enzyme, as implied 

by Paredes et al. The suggestion that all lipoate-dependent enzymes are octanoylated by 

LIPT2 and support LIAS-mediated lipoate synthesis is not, to our knowledge, supported by 

experimental studies.  

ACSM1 is a promiscuous enzyme reported to activate the native (D) and unnatural 

(L) stereoisomers of lipoate in vitro (5). This lack of enantiomeric specificity makes it unlikely 

that ACSM1-catalysed lipoate activation is physiological. Furthermore, as ACSM1 uses GTP 

(5), rather than ATP, it is unclear how ACSM1 would form the lipoyl-AMP intermediate 

proposed in the model by Paredes et al. The authors also provide no explanation as to the 

source of the scavenged lipoate.  

The identification that impaired lipoylation of the 2-oxoglutarate (2-OG) 

dehydrogenase complex (OGDHc) leads to stabilisation of HIF-1⍺, replicates earlier work by 
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Burr et al (6), whereby 2-OG accumulation promotes the formation of L-2-hydroxyglutarate 

(L-2-HG) and inhibition of the prolyl hydroxylases (PHDs) is observed. This activation of HIFs 

following 2-OG and L-2-HG accumulation has been reproducibly observed in hypoxia and 

under acidotic conditions (7, 8). The mechanism proposed by Paredes et al is inconsistent 

with these prior observations. Loss of OGDHc activity leads to an increase in 2-OG levels (6, 

9), rather than the decrease suggested by Paredes et al. Indeed, unbiased metabolomic flux 

studies show LIAS or OGDH deficiency increase cellular 2-OG in both cancer cells and 

primary dermal fibroblasts (6). Moreover, this increase in 2-OG is also observed in humans 

with germline mutations in lipoic acid synthesis (2). Paredes et al use an indirect method to 

measure 2-OG levels and provide no explanation as to why 2-OG levels are reduced in their 

model. More detailed measurements of the metabolic consequences of Poldip2 loss are 

required before concluding that HIF stabilisation is due to decreased 2-OG.  

 Finally, ACSM1 has previously been shown to be depleted in conditions of HIF 

stabilisation such as VHL depletion (10), so it is equally plausible that the loss of ACSM1 in 

hypoxia simply represents its suppression as part of its canonical role in fatty acid beta 

oxidation. 
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