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Abstract

The way a non-native speaker pronounces the phones of a lan-
guage is an important predictor of their proficiency. In grading
spontaneous speech, the pairwise distances between generative
statistical models trained on each phone have been shown to be
powerful features. This paper presents a deep learning alter-
native to model-based phone distances in the form of a tunable
Siamese network feature extractor to extract distance metrics di-
rectly from the audio frame sequence. Features are extracted at
the phone instance level and combined to phone-level represen-
tations using an attention mechanism. Pair-wise distances be-
tween phone features are then projected through a feed-forward
layer to predict score. The extraction stage is initialised on ei-
ther a binary phone instance-pair classification task, or to mimic
the model-based features, then the whole system is fine-tuned
end-to-end, optimising the learning of the distance metric to
the score prediction task. This method is therefore more adapt-
able and more sensitive to phone instance level phenomena. Its
performance is compared against a DNN trained on Gaussian
phone model distance features.

Index Terms: pronunciation assessment, phone distances,
CALL, CAPT, Siamese Networks, attention mechanism

1. Introduction

The growing global demand for foreign language learning [1],
combined with recent advances in computing power, speech
processing and machine learning, has driven an increased in-
terest in Computer Assisted Language Learning (CALL) and
auto-marking, in particular the automatic assessment of non-
native speaker proficiency [2, 3, 4].

Pronunciation is a key predictor of proficiency, and is ex-
pected to become more native, reducing strain to the listener
caused by L1 effects, as the learner progresses up the CEFR
levels [5]. There is a broad literature on the definition of good
pronunciation as it pertains to automatic assessment, with vari-
ations in terminology. In this work, pronunciation is defined as
the manner in which each word of an utterance is rendered as
series of phones, distinguishing it from message construction,
which relates to the choice of words, and prosody, which re-
lates to other acoustic properties of speech (i.e. tempo, rhythm
and stress). Good pronunciation consists of knowing the correct
phone sequence for each word and then rendering those phones
in an acceptable manner. A speaker can thus be assessed by
the frequency in their speech of lexical errors (e.g. pronounc-
ing the silent b in subtle), or by the general way in which they
pronounce the phones of the language (e.g. consistently mis-
pronouncing /v/ as /b/). It is this latter accent quality factor,
represented by a proficiency score, that this paper concerns.

Section 2 provides an overview of the approaches employed
to assess pronunciation in the literature and explains the method
of model-based phone distance features, used here as a base-
line. Section 3 demonstrates how the phone distance concept
can be expanded upon by replacing the model-based approach
with a deep, tunable feature extractor based on Siamese net-
works, while section 4 shows how these can be integrated in an
end-to-end system to predict grade. Section 5 presents the data
and speech recognition system used in the experiments, while
Sections 6 and 7 present the results and conclusions.

2. Phone distance features

Approaches in the literature to pronunciation assessment in-
clude comparison to native speaker models [6, 7, 8] and au-
tomatic speech recogniser (ASR) confidence measures (usu-
ally on alignment tasks) such as Goodness of Pronunciation
(GOP) [9, 10, 7, 6]. The problem with both of these approaches
is that they generally require prior knowledge of the exact text
the speaker is saying (to identify comparable native models in
the former case and to give meaning to the ASR confidence
scores in the latter). For this reason, most systems in the litera-
ture rely on “read aloud” tasks with known transcriptions. Open
responses to questions, however, give a better indication of the
learner’s proficiency than read speech. When dealing with the
resulting spontaneous speech the candidate’s audio must first
be passed through an ASR, to determine what the speaker said.
The recognised text is then used together with the audio for
feature extraction to form the input to the automatic grader.
This introduces the problem of the ASR’s word and phone er-
ror rates, which can be particularly high when assessing low
proficiency non-native speakers, and to which any assessment
system must therefore be robust.

To overcome these issues, more recent approaches to
pronunciation assessment have utilised the distances between
phones [11, 12, 13, 14]. Rather than characterising each phone
by the distribution of acoustic features in its articulations, each
phone is defined relative to the pronunciation of each of the oth-
ers (Figure 1).

Figure 1: [llustration of the phone distance concept
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The full set of phone-pair distances describes the speaker’s
overall accent. These features should thus robustly represent
pronunciation in a way that is compact and independent of
speaker attributes. Kyriakopoulos et al. [13] proposed a model-
based phone distance feature system for pronunciation assess-
ment. Gaussian models are built for each phone and the K-L
divergences between them used to determine the speaker’s ac-
cent quality. This system is taken as the baseline in this paper.

Consider a speaker n whose utterances have been recog-
nised and time-aligned to a series of I, phone instances
o, M1, ..., T1,, —1, €ach corresponding to one of the 47 English
phones wo, w1, ..., wae (faal, /ax/, /ah/ etc. h.

Each phone instance ; is itself a sequence of T; frames
:(:éi), wgi)7 R a:g_)fl, where wii) is the vector of perceptual lin-
ear prediction (I;LP) features extracted from frame ¢. Each
phone wy is represented by the parameters of a multivariate
Gaussian model (u;"),Eg")), which predicts the PLP features
produced each time the speaker utters an instance of:

p(@|m = ws) = N(a(; u(, 24 (1)

Distances between models are represented using symmetric
KullbackLeibler (K-L) divergence:

n 1 n n n n
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Each speaker is thus represented by 1081 scalar phone-pair
distances Df)’fl) , D(()"Q) ey Diz,)u, together forming the vector
D,,. These features are then used to train a deep neural network
(DNN) to predict human-assigned proficiency scores:

Sn = f(Dn) 3)

3. Siamese phone distance features

This paper proposes an alternative phone distance feature ap-
proach to the model-based method described in the previous
section. The generative Gaussian model of each phone is re-
placed with a feature vector projected up from the frame se-
quences. This feature extractor is tunable and can be fine tuned
to the task of automatic assessment, unlike the more general
model-based approach. This also addresses a couple of issues
with the model-based phone distance feature approach above.

By localising the phone representation to the level of the
individual phone instance the amount of data needed to extract
the features is reduced. In addition, the features should be more
interpretable. The first step is to project the frame sequence
mél), mgz), ey :1:53?71 of each phone instance i to a fixed-length
vector representz{tion h; by passing it through a bi-directional
Long Short Term Memory (LSTM) network:
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The standard mechanism of obtaining a fixed-length vector
h; from the forward and backward sequences of a Recurrent
Neural Network (RNN) is to concatenate the two sequences’
final time steps (Figure 2, left):

'based on ARPABET phone set [15]
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Figure 2: Standard, centre and attention-based sequence-to-
vector bi-RNNs.

This approach is problematic in this case, however, since
the first and last frames of each phone instance are actually the
least representative of its content (since they are on the align-
ment boundary). Two alternative methods are therefore consid-
ered:

1. Using the middle, rather than final, frame of each pass
(Figure 2, middle)

hi = [n))", hGTT" @)

2. Using an attention mechanism to weight the importance
of each frame (Figure 2, right)
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and similarly for aib’i) (with same Ay ).

Whichever of the three methods is used, the resultant network
must be trained across all instances across all speakers to map
frame sequences to a space in which distances between phones
are most indicative of proficiency.

Having defined a projection from the original audio frame
sequences to a phone instance feature space, it is now necessary
to use these projections to learn a phone distance metric. To
this end, Siamese networks are employed. A Siamese network
is composed of two copies of the same neural network, each fed
with one of the elements of a pair of input samples. These iden-
tical networks project the samples into an embedding space. A
measure of distance is then computed between the two samples
depending on their relation label (same or different). The er-
ror is propagated evenly in the two copies. The architecture is
based on the LSTM Siamese architecture for learning difference
metrics between pairs of variable length sequences presented by
Mueller and Thyagarajan[16].

Consider a pair of phone instances 7; and 7;, taken from
the same speaker n, of phones wy and wy, respectively. Using
the method from the previous section, they are projected to vec-
tors h; and h;. The distance between the two instances can
therefore be represented as:

dij = ||hi — hj]l2 (1D



Two approaches are considered for training this metric to
approximate the distance between the two instances. The first
is simply to train d; ; to approximate the model-based K-L di-

vergence distance D(") for phones ¢ and % in speaker n. The
second is to use d; ; to predict whether the two instances are
instances of the same phone:

L 17 w(b = UJU;
cu—{ 0w % wy (12)

This is done by passing d;,; through a sigmoid to derive the
probability p;; that ¢;; = 1

2
P =7 + exp(—dij;) ! 13

Given the large number of possible instance pairs for each
speaker n, M pairs (lén)7 r(()")), (lgm7 rgn)) (lg\z) 1 7"5\2) D
are sampled for use in training (in the experlments in this paper
M = 100). In the K-L training case sampling is completely
random, while in the binary case % pairs of instances of the
same phone and % pairs of instances of different phones are
sampled.

If the M pairs have corresponding phone labels
(057,66, (817, 01")), o (5711, 047 1), the  objec-
tive functions over all N speakers in the training becomes, for
K-L training:

M
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and for binary training:
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The vector h; for each instance ¢ can now be said to repre-
sent a space in which Euclidean distance is representative of the
conceptual distance between phones. This representation must
now be combined from the phone instance to the overall phone
level for each speaker and finally projected to predict speaker
score.

4. Predicting grade

Once trained, the systems described in the previous section can
extract distance features at the level of phone instance pairs.
The next step is to integrate these systems into an end-to-end
system for predicting a speaker’s proficiency score.

The projected phone instance features h£n> for all instances

( (n)

Wi") of phone w,, " in speaker n, can be combined to derive an

overall phone vector hc(b") in one of two ways:

1. By simple averaging:

n 1 n
hgjzﬁ > nW (16)
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2. Via another attention mechanism:
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LT =W g

LT =Wy

(n)
afV = —PE (18)
Zi:ﬂ'i:wd) exXp¢;

" = g(h{™) (19)

where g is a word-level LSTM, since each instance’s sur-
rounding context is expected to affect how important it
is to score.

The distance feature between each pair of phones wg, wy
can now be calculated as:

dy'y, = lIho = hu|2 (20)
resulting in 1081 scalar distances d(()nl) , dé"Q) . di’g)u,

gether forming vector d, which is passed through a feed-
forward layer to predict the score:

sn = f(dn) @n

End-to-end training of the whole system (after initialisation

using the Siamese network training) with the MSE criterion can
now be performed using all IV speakers in the training set:

1 N—-1 )
n{ N;(S dn)) } (22)

5. Experimental Setup

The preceding sections of this paper have described a system for
predicting pronunciation proficiency score based on the audio
frames and aligned phone sequence of the utterances produced
by a candidate. The data for initialising, training and testing
this system are obtained from candidate responses to the spo-
ken component of the Business Language Testing Service (BU-
LATS) for foreign learners of English, provided by Cambridge
English Language Assessment. The BULATS speaking test has
five sections, all related to business scenarios [17]. Section A
consists of short responses to prompted questions. Candidates
read 8 sentences aloud in Section B. Sections C-E consist of
spontaneous responses of several sentences in length to a series
of spoken and visual prompts. Candidates are scored on a scale
from O to 30, based on their overall proficiency, and it is this
score that the system is predicting.

The systems are trained on a gender and proficiency level
balanced mixed L1 dataset (TRN) consisting of 994 speakers
(first languages Polish, Vietnamese, Arabic, Dutch, French and
Thai), scored on their overall proficiency (not just pronuncia-
tion) by human graders and evaluated on a held out evaluation
set (EVL), consisting of 226 speakers of a similar mix of L1s,
gender and proficiency, with scores provided by expert human
graders.

As discussed in Section 2, the first step before passing the
date through the system is recognising the text being spoken and
aligning the audio to a sequence of phones. Both these tasks are
performed using an automatic speech recogniser (ASR). Due to
the incorrect pronunciations, grammar and rhythm, related to
the speaker’s proficiency level and first language (L1), the ac-
curacy of standard commercial “off-the-shelf” ASR systems is
too low for non-native learner English. Instead, the ASR system
from Kyriakopoulos et al. [13] (also described in Van Dalen et
al.[18]), which is trained on non-native learners of English, is
used. This ASR has an overall word error rate (WER) of 47.5%
and a phone error rate (PER) of 33.9%, evaluated against crowd
sourced transcriptions of EVL.



6. Experimental Results

Sections 3 and 4 describe a pronunciation assessment system
in two stages. First, an LSTM of either the standard, centre or
attention variety is trained, in a Siamese architecture, to extract
phone instance features to predict, for a given phone instance
pair, either a binary or a K-L divergence distance metric. Next,
the trained LSTM is integrated into an end-to-end score predic-
tion system, using either an averaging or attention mechanism
to move from the phone instance level to the phone level.

Given the above, it is necessary to evaluate, using the setup
described in Section 5, first, how well the system performs at
the initialisation tasks, second, which of the proposed architec-
tures (standard vs. centre vs. attention LSTM, binary vs. K-L
training, averaging vs. attention combination) is best perform-
ing and, third, how the best architecture performs relative to the
baseline.

First, the Siamese networks presented in Section 3 are
trained on randomly selected pairs from all the speakers in the
TRN data set. They are evaluated on similar pairs from the EVL
data set for the two tasks of binary (same vs. different) classi-
fication and predicting the K-L divergences from the baseline
model. Table 1 shows the results for the standard bi-LSTM con-
figuration where the final time steps are concatenated to form
the fixed length phone instance representation h;.

Criterion  Binary Accuracy  K-L Performance
Binary 75.0% 0.599
K-L 68.0% 0.789
Table 1: Performance of standard bi-LSTM configuration
Siamese networks

As expected, the networks perform better on the task they
are trained for than on the other task. Both systems perform
well, suggesting that the Siamese networks are capable of ex-
tracting interpretable distance metrics indicative of both the
clustering together of instances of the same phone as well as
the distances between distributions of different phones. Fur-
ther, the fact that the system trained for each task also performs
reasonably on the other task, suggests that these two concepts
of distance are closely related, as was to be expected.

The experiments are now repeated all three bi-LSTM vari-
ants (standard, centre and attention) of the phone instance rep-
resentation to determine which is best. As expected, and can
be seen in Tables 2 and 3, the attention LSTM performs the
best overall, with the centre time steps configuration better for
matched criteria than the standard configuration. The attention
bi-LSTM is slower to train but is used going forward due to this
better representation.

Criterion Std Cen Att
Binary  75.0% 77.5% 77.3%
K-L 68.0% 67.4% 69.0%
Table 2: Binary accuracy of standard (Std), centre (Cen) and
attention (Att) bi-LSTM Siamese network configurations

Criterion Std Cen Att
Binary 0.599 0.587 0.602
K-L 0.789 0.792 0.788
Table 3: K-L performance of standard (Std), centre (Cen) and
attention (Att) bi-LSTM Siamese network configurations

Having established that the Siamese networks seem to in-
deed be extracting valid distance features, these features are

now employed to predict proficiency scores. The system is con-
nected end-to-end using the averaging and attention methods
and further trained to predict grade. The mean squared error
(MSE) results of these experiments are presented in Table 4.

Initialisation MSE .
Average [ Attention

Binary 19.7 17.6

K-L 16.4 14.2

Table 4: Performance (mean squared error of predicted to
human-assigned scores) of baseline and Siamese systems,
trained using binary and K-L divergence criteria, with or with-
out the extra attention layer and fine tuning, each trained on
TRN and evaluated on EVL

All systems are able to predict score with a reasonable
amount of accuracy and, as expected, adding the attention
mechanism improves performance. The systems which were
initialised using the K-L divergences from the baseline method
outperform those initialised using the binary classifier, which is
to be expected given the superior granularity of K-L divergences
compared to the binary variant.

Finally, the performance of the best architecture (attention
LSTM, K-L criterion, attention combination), is compared to
that of the baseline (Table 5). The system outperforms the base-
line in terms of MSE but is comparable for PCC. This can be
explained given that the new system is optimised end-to-end for
minimum MSE, whereas for the baseline only the grader is op-
timised for minimum MSE.

Initialisation MSE PCC
Baseline 148  0.785
End-to-end system 142 0.780
Table 5: Performance (mean squared error and Pearson cor-
relation coefficient of predicted to human-assigned scores) of
baseline and Siamese systems, trained using binary and K-L di-
vergence criteria, each trained on TRN and evaluated on EVL

7. Conclusions

Phone distance features have previously been shown to be a
good indicator of accent pronunciation quality allowing use
in assessing the proficiency of a non-native learner’s speech,
in particular, for assessment of spontaneous spoken responses.
This paper has proposed an alternative to the model-based ap-
proaches to phone distances based on Siamese networks.

It was first shown how Siamese networks can be used to ex-
tract distance metrics between pairs of phone instances. These
can be used to predict whether the two are instances of the same
or different phones, as well as the relative entropies between the
distributions of their two phones if they are instances of differ-
ent phones. The distance measure is tunable, performing dif-
ferently on different tasks depending on how it is trained. The
latter paradigm, which involves calculating model-based rela-
tive entropies before training, was shown to produce a superior
distance measure. Of the three different architectures consid-
ered, that involving an attention mechanism outperformed the
standard and centre-based sequence-to-vector architectures.

Finally, the networks were also used to develop a profi-
ciency grader, alternatively using an averaging and attention
mechanism to move from the phone instance level to the phone
level, with the latter proving superior. Trained in an end-to-end
fashion this grader was able to predict human-assigned profi-
ciency scores with performance surpassing model-based phone
distance features.
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