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ABSTRACT

Clauses and subgoals in a Datalog program can be given in any
order without affecting program meaning. However, practical ap-
plications of the language require the use of built-in or external
predicates with particular dataflow requirements. These can be ex-
pressed as input or output modes on arguments. We describe a static
analysis of moding for Datalog which can transform an ill-moded
program into a well-moded program by reordering clause subgoals,
satisfying any dataflow requirements. We describe an incremen-
tal algorithm which efficiently finds a reordering if it exists. This
frees the programmer to focus on the declarative specification of
their program rather than on the implementation details of external
predicates. We prove that our computed reorderings yield well-
moded programs (soundness) and that if a program can be made
well-moded, we compute a reordering to do so (completeness).
ACM Reference Format:
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1 INTRODUCTION

Declarative languages aim to free the programmer from implemen-
tation details, allowing them to focus on the essence of a problem.
However, in practice, implementation details often creep back in.
In logic programming, one such implementation detail is subgoal
ordering which rears its head once we start introducing external
functions into pure logic programs or when performance becomes
a concern. The aim of this paper is to push the implementation
concern of subgoal ordering from the programmer back to the lan-
guage. We consider Datalog, a syntactic subset of Prolog which
has recently been (re)growing in popularity. Among other things,
it is used for managing enterprise data [1] and as a language for
concisely and efficiently expressing program analyses [10, 15].

Sentences in pure Datalog are Horn clauses, hence subgoals
can be specified in any order where any ordering is trivially safe to
invoke. However, this is not true in practice. Many systems allow
useful external functionality such as arithmetic, comparison, and
input/output functions. For example, a function for printing to the
console might choose not to print unbound values or an external
hashing function may require its first parameter to be strictly an
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input and its second to be an output. In large systems, ordering can
also have performance implications, e.g., a database query might
make more efficient use of an index if an argument is ground.

The concept of moding [13] allows us to specify the dataflow
requirements of predicates. For example, a programmer can specify
via moding that a particular argument must be bound before the
clause is executed as supported in Mercury [17]. Well-moded pro-
grams do not give invocation errors in the sameway that well-typed
programs do not go wrong.

We now describe a few examples of ill-moded programs which
can be fixed using the information from our analysis. Consider the
following Datalog clause with moding annotations as superscripts:
1 auth(U) :- hash+?(P,H), password(U,P), valid(U,H).

The superscript +? specifies that the hash predicate is safe only
when the first argument is bound in an invocation and when the
second is free or bound. This clause is not well-moded since P is
not bound in the context of the first subgoal (it would need to be
bound by the clause head), therefore hash is invoked with a free
variable. However, in the absence of side-effects (discussed later), it
is sound to reorder the subgoals to meet the moding constraints by
swapping the first and second subgoals so that password is invoked
first, binding P under the usual left-to-right semantics.

As an alternative, one might write this example as two clauses:
1 auth(U) :- check(U,P), password(U,P).
2 check(U,P) :- hash+?(P,H), valid(U,H).

The hash subgoal in check has a mode error again because P is
unbound in the invocation of check in auth on line 1. However, the
reordering to fix this is non-local: onemust reorder the body of auth
to make the invocation of hash safe. Searching all permutations of
subgoals in all clauses in a program for valid orderings is infeasible.
We instead propagate constraints to the callers.

We also provide information that can be used in conjunction
with clause cloning. Imagine an interactive system with client- and
server-side facilities for checking password strength:
1 client_check(P) :- weak(P,H).
2 server_check(H) :- weak(P,H).
3 weak(P,H) :- hash+?(P,H), rainbow+?(H,P).

The client side does not have access to the hash and the server
side does not have access to the plaintext password. However both
parties want to check if the password is compromised by looking
up the hash in a rainbow table1 and confirming that is indeed the
password corresponding to the hash. There is no fixed-order of
weak’s subgoals that satisfy moding requirements of both hash
and rainbow. If we generate two versions of weak with different
subgoal orderings and use the appropriate one according to the
binding pattern at the call site, then queries involving both client-
and server-side checks can be well-moded:

1A pre-computed reverse lookup table from hashes to plaintext.
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1 client_check(P) :- weak1(P,H).
2 server_check(H) :- weak2(P,H).
3 weak1(P,H) :- hash+?(P,H), rainbow+?(H,P).
4 weak2(P,H) :- rainbow+?(H,P), hash+?(P,H).

Cloning is not a feature of ourmoding system, but a by-product of
an adornment program transformation (Section 3.2) which generate
versions of each clause annotated with a variable binding pattern.
The ordering information from our analysis guides the adornment
procedure and ensures the subgoals used in the generated clauses
are ordered such that they are safe to invoke.

We show how to statically check that Datalog programs are
well-moded. Furthermore, we give an algorithm that computes or-
derings of subgoals that satisfy the moding constraints of programs,
if such an ordering exists. This is valuable because it frees the pro-
grammer to focus on the specification of the higher-level goals
rather than their syntactic order. Although orderings are computed
statically, we do not prescribe a time of use. They can be used to
transform the Datalog program statically (suitable for bottom-up
or top-down evaluation) or reorder subgoals dynamically as they
are evaluated (suitable for top-down evaluation).

The contributions of this paper are:
• a natural formalisation of well-modedness for Datalog in
terms of existing adornment program transformation,

• a sound and complete incremental analysis algorithm for
finding suitable subgoal orders of program clauses and check-
ing well-modedness of programs.

The rest of the paper is structured as follows.We first state our as-
sumptions and notation (Section 2) and give a formalisation of well-
modedness based on the adornment program transformation for
Datalog (Section 3). This leads us to our mode analysis algorithm
establishing well-modedness and producing subgoal orderings for
binding patterns. This is presented in intra-clausal (Section 4) and
inter-clausal (Section 5) stages along with properties of the algo-
rithm. We modify the intra-clausal analysis to accommodate some
Datalog extensions (Section 6). Finally, we discuss previous ap-
proaches to mode analysis (Section 7) and conclude (Section 8).
Proofs omitted from the main text are in Appendix A.

2 NOTATION AND ASSUMPTIONS

Definition 2.1 (Datalog program structure). A Datalog program
is a set of clauses of the form p :- s1, . . . , sn., where:

• p is the clause head;
• si collectively forms the body of the clause, where each si is
individually called a subgoal;

• A clause head and subgoals are atomic formulae;
• An atomic formula is a predicate symbol applied to a tuple
of terms, e.g., p(X,Y).

We assume subgoals are executed left-to-right and variables are
bound to their values whenever possible. Since there are no function
symbols in Datalog, binding the value of a variable is same as
grounding it.

We consider programs that come with a query. A query is of the
form ?- s1, . . . , sn . This gets expanded into a normal clause with
a fresh head predicate. Moreover, the head of this clause has all
variables in the body of the query as its formal parameters.

We use a function vars to map the syntax of a logical formula
or clause to a set of its variables. Functions head and body map a
clause to its head and the set of its subgoals respectively.

A predicate symbol and its arity uniquely identifies a predicate.
For presentation purposes, we assume the function symbol alone
uniquely identifies the predicate. A predicate may have multiple
occurrences in the body of a clause, e.g., p(X) :- q(X), q(X).,
has two distinct subgoals using the same predicate. The function
pred maps a subgoal to its predicate and arity maps predicates to
their arity. If p is a predicate and Pr is a program, then Prp is the
set of clauses with p in their head.

Throughout, the “min” operator refers to the minimal elements
of a set of subsets under the partial order defined by subset relation.
For example, min{{1, 2}, {2, 3}, {1}, {1, 2, 3}} is {{1}, {2, 3}}.

We assume mode requirements of predicates are available and
do not give a syntax for their declarations. This information may
be hard-coded in the case of built-in predicates or supplied through
mode declarations akin to type declarations.

3 ADORNMENT ANDWELL-MODEDNESS

Informally, a well-moded program does not produce runtime errors
arising from insufficient variable binding. In this section, we intro-
duce the definitions needed to formalise this notion for Datalog.

3.1 Mode annotations and constraints

Each variable only ever needs one of two modes in Datalog. The
mode + indicates that the argument should be bound at the time of
invocation and ? indicates it can either be bound or free.

As introduced above, we use mode vectors as superscripts to
indicate the mode requirements of a predicate. Though these su-
perscripts are placed on subgoals in our examples, they should be
considered as global specifications for the predicate in the whole
program. If the subgoal has no superscripts, this means the under-
lying predicate has no mode requirements (equivalent to having
? for all variables). If it has a set of mode vectors that means any
one of them can be used to satisfy the dataflow requirements of
the predicate, e.g., p{+?,?+}(X,Y). This multiplicity may arise from
multiple implementations backing the predicate or, as we explore
below, due to different ordering of subgoals leading to different
moding requirements for user-defined predicates.

Invocation safety is predicated on bound arguments, so instead
of working with mode vectors directly, we use constraints.

Definition 3.1 (Constraint). For a predicate, p, any subset of its
argument positions, 1 ≤ i ≤ arity(p), forms an atomic constraint. A
set of atomic constraints which is minimal under the subset relation
is a constraint. Thus, the domain of constraints for a predicate p is
Dp = {min S | S ⊆ P({i | 1 ≤ i ≤ arity(p)})}. Throughout this text
C is used to range over constraints and AC over atomic constraints.

Definition 3.2 (Mode requirement semantics). A mode vector is
translated into an atomic constraint by taking the set of indices
for which the mode is +. A set of mode vectors is converted to a
constraint by translating each mode vector and removing all super
sets. This translation is done by J−K. For example, J{++?, ?++}K is
{{1, 2}, {2, 3}}. Given a mode function, mv, from predicates to a set
of mode vectors, J−KF is defined as J−K ◦mv. We use mv and f to
range over mode and constraint functions respectively.
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Definition 3.3 (Ill constraint). A constraint holds alternative mod-
ing requirements and if this set is empty, there are no alternatives
that can be used for safe predicate invocation. Hence, ∅ for any
constraint domain is the unique ill constraint.

Definition 3.4 (Trivial constraint). The trivial constraint contains
an atomic constraint that does not require any variables to be
bound. So for any constraint domain, we say {∅} is the unique
trivial constraint.

3.2 Adornments and ordering

Program adornment annotates the clauses of a program with bind-
ing patterns on their arguments. We use this to formalise well-
modedness. We use a generalised form of adornment which is pred-
icated on a subgoal reordering function. This generalisation allows
different binding patterns to be produced for subgoals depending
on the ordering and allows us to derive a versatile well-modedness
definition. The following definitions define the transformation at a
high-level as used in the rest of the paper.

Definition 3.5 (Adornment). An adornment associates to an ar-
gument/parameter of an atomic formula either f or b indicating
the binding status of the argument/parameter: free or bound. An
adornment vector (or a binding pattern) for an atomic formula is
a vector of adornments whose size matches the predicate’s arity.
Throughout, a, b range over adornment vectors which we index
with natural numbers, i.e., ai is the ith adornment in the vector.

For some subgoal sub of an adorned clause, we denote the adorn-
ment vector of sub as adornment(sub).

Definition 3.6 (Ordering). An ordering is a bijection between lists
of subgoals. When applied to a list of subgoals it permutes them.
We use σ to range over orderings.

Definition 3.7 (Generalised clause adornment). Let adorn be a
function that takes a clause cl, a binding pattern a, an ordering σ
for the clause, and returns the adorned and reordered (according to
σ ) version of the clause.

A clause adorn(cl, a,σ ) is calculated as follows: first, the clause
head is assigned the binding pattern a. Next, the body of the clause
cl is reordered using σ . Finally, the list of subgoals is traversed
left-to-right and adorned. For each argument that is a literal or
a variable that is known to be bound, the argument receives the
adornment b, otherwise it is given the adornment f. With each
processed subgoal, we add all the variables of the subgoal to the
list of variables known to be bound.

Example 3.8. Let cl be the clause:
1 p(X,Y) :- q(Y,Z), r(X,Y)

Given an adornment a = bf and a local ordering σ (q, r) = r, q, then
adorn(cl, a,σ ) produces:
1 p(X,Y)bf :- r(X,Y)bf, q(Y,Z)bf

Note that now q has Y as bound since it is bound by p during the
adornment procedure.

Definition 3.9 (Reordering functions). A local reordering function
for a particular clause is a function mapping binding patterns (for
the clause head) to orderings for that clause. A global reordering
function maps clauses to local reordering functions.

We use r to range over local orderings and gr for the global ones.

The idea is that different binding patterns of the clause head
can imply different reorderings for the clause. Later (Section 4 and
Section 5), we will compute reordering functions such that, given a
head binding pattern, adorning the reordered clause left-to-right
with respect to this pattern yields subgoal binding patterns that are
consistent with mode requirements.

Definition 3.10 (Generalised program adornment). Let adornProgram
be a function that takes a program Pr , a query clause clq , and a
global reordering function, gr .

An adorned version of the program is generated by invoking
adorn on clq , with a binding pattern (adornment vector) with f
for each parameter of the query clause and a reordering function
gr(clq ).

For each subgoal in the body, we generate an adorned version
of its predicate by using adorn on its clauses using the binding
pattern given to the subgoal along with the corresponding local
reordering from gr . This process is repeated for newly generated
adorned clauses until no more clauses can be generated.

An adorned program is equivalent to the original program in
the answers it computes [2]. When all the local reordering func-
tions are the identity function (preserving source ordering), then
adornProgram is the traditional adornment transformation.

Example 3.11. Consider the following program Pr where q is
the query and hash is a built-in hash function and password is the
external database predicate to look up a user’s password.
1 q(H) :- hashByUser("Rebecca",H).
2 hashByUser(U,H) :- password(U,P), hash(P,H).

where identity(cl) = λa.id is the global identity reordering, map-
ping every clause to the identity reordering function for every bind-
ing pattern. The adorned program, adornProgram(Pr, clq, identity),
with the identity reordering contains qf as it is the head of the query
clause thus called by no subgoals and hashByUserbf since the first
argument is bound in the query body. External predicates also re-
ceive adornments, but there are no associated clauses to generate.
The hash subgoal’s first argument is bound due to the earlier use of
password which generates a binding for P. The adorned program
in its entirety is:
1 qf(H) :- hashByUserbf("Rebecca",H).
2 hashByUserbf(U,H) :- passwordbf(U,P), hashbf(P,H).

3.3 Well-modedness

We define well-modedness of a program in terms of adornment. It is
defined in both clausal and program scopes.

Definition 3.12 (Mode & adornment consistency). An adornment,
a, is consistent with an atomic constraint, AC , when AC is a set of
indices into a indicating bound adornments alone.

a ◀ AC ≜ ∀i ∈ AC. ai = b

The function findAC selects all atomic constraints in a constraint
that are consistent with a given binding pattern:

findAC(a,C) = {AC ∈ C | a ◀ AC}

A binding pattern, a, is consistent with a constraint, C , when
there are some atomic constraints in C consistent with a.

a ◁C ≜ findAC(a,C) , ∅
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Definition 3.13 (Clausal well-modedness). A clause cl is well-
moded with respect to a constraint function f , a binding pattern
a, and a reordering σ , if all subgoal binding patterns of the clause
after the adornment procedure are consistent with f .

wellModed(cl, a, f ,σ ) ≜

∀sub ∈ body(adorn(cl, a,σ )). adornment(sub) ◁ f (pred(sub))

Definition 3.14 (Program well-modedness). A program Pr with a
goal clause clq is well-moded with respect to a function f mapping
predicts to constraints and a global reordering function gr , if all the
subgoals in the adorned program have binding patterns consistent
with the constraints in f .

wellModedProgram(Pr, clq , f , gr) ≜

∀cl ∈ adornProgram(Pr, clq , gr), sub ∈ body(cl).

adornment(sub) ◁ f (pred(sub))

This definition of well-modedness permits ordering based trans-
formation of clauses as well as retaining multiple versions of the
same clause (with different subgoal orderings).

Somogyi [16] noted modes generalise adornments. This is indeed
the case for Prolog which was the subject of their work. For Dat-
alog, however, adornment precisely formalises well-modedness
because Datalog does not deal with function symbols as Prolog
does. Hence, a variable can only be instantiated to a value at the
time of subgoal invocation or not at all, whereas in Prolog context,
it is possible to partially instantiate variables, e.g. a list of variables,
which calls for finer grained moding instead of binary adornments
to fully express dataflow behaviour of predicates.

3.4 Properties of consistency

We briefly cover several results on the definition of mode consis-
tency which will be of use in later results.

Lemma 3.15 (Ill and trivial constraints). The trivial con-
straint {∅} is consistent with all binding patterns and the ill constraint
∅ is consistent with none.

We define a partial order on constraints and functions that output
constraints (constraint functions). Later, we establish monotonicity
of various functions and operators to prove termination of the
analysis in Theorem 5.11.

Definition 3.16. Let C1 and C2 be two constraints for the same
predicate. If every adornment that is consistent with C1 is also
consistent with C2 pointwise, we define a relation ≤ and say C1 is
less restrictive than C2. Let ⪯ be the pointwise extension of ≤ to
constraint functions.

C1 ≤ C2 ≜ ∀a. a ◁C2 =⇒ a ◁C1

f ⪯ д ≜ ∀p. f (p) ≤ д(p)

Lemma 3.17. For a fixed predicate p, ≤ is a bounded partial order
(PO) with ∅ as the top element and {∅} as the bottom element. For a
fixed domain ⪯ is also a bounded partial order with constant functions
∅ and {∅} as top and bottom elements respectively.

The partial order defined by consistency with binding patterns
implies a subset relation between atomic constraints of two con-
straints.

Lemma 3.18 (PO to atomic constraint relation). If a con-
straintC2 is more restrictive thanC1, this meansC1 has amore relaxed
atomic constraint for each atomic constraint in C2.

∀C1,C2. C1 ≤ C2 =⇒ ∀AC ∈ C2 ∃AC ′ ∈ C1. AC ′ ⊆ AC

4 INTRA-CLAUSAL ANALYSIS

We start mode analysis by considering individual clauses of a pred-
icate in isolation, deriving a moding constraint (Definition 3.1) for
a clause in terms of its body and constraints of its subgoals alone.

A goal of this analysis is to perform better than brute-force
search, we do this by following the path of least resistance, that is:
as soon as we find some subgoal that can be scheduled without any
constraints, we commit to it. This may discard some valid orderings
of clauses but always leaves us at least one valid ordering that
makes the program well-moded if such an ordering exists. This
analysis is performed by a graph construction.

Before we explain the construction of this graph, we first char-
acterise a more general graph structure and explain how orderings
are stored in it.

4.1 Scheduling graph

A scheduling graph encodes orderings of a clause’s subgoals. We
work towards its formal definition and then explain how orderings
can be retrieved from it. The purposes of introducing scheduling
graphs rather than the specific construction used in the analysis are
twofold. First, it assists in our proof of completeness (Lemma 4.34).
Second, it provides a framework that abstracts most details of the
construction and allows us to focus on subgoal choices alone.

Before we can construct a scheduling graph, we need to translate
between a constraint which is given in terms of argument positions
of predicates and a clause context which contains variables.

Definition 4.1 (Obligation). An obligation, as opposed to a con-
straint, is a set of variables that a subgoal is constrained upon. The
empty set is the trivial obligation.

For example, given a subgoal p(X,Y,Z) constrained in its first
and third arguments, then {1, 3} is the atomic constraint and {X, Z}
is the obligation associated with it. We use two functions to go
back and forth between sets of obligations and constraints (sets of
atomic constraints): for an atomic formula p, osToCp maps a set of
obligations to a constraint and cToOsp goes in the other direction.

Definition 4.2 (Scheduling graph). A scheduling graph д for a
clause cl and a constraint function f over predicates in cl is a
directed acyclic graph with a set of vertices V(д) and edges E(д).

An edge is a triple of a source vertex, label, and destination
vertex. The label is a non-empty set of pairs comprising a subgoal
from the body of cl and an obligation being discharged. We assume
src, label, and dst helper functions to access components of edges.
The paths function give paths of the graph.

A vertex is a tuple of the form (Alt,Acc). The set Alt stores
alternatives given by a set of tuples of the form (s,Obg) where s is a
subgoal of the clause andObg is a set of obligations. The alternatives
represent what can be scheduled after a given point in the graph.
The set of obligations that are coupled with the subgoals represent
the variables that can be bound to satisfy the moding constraints
of this subgoal’s predicate.
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The second component of the vertex, Acc, is an accumulated
obligation, keeping track of the variables that have to be bound at
the head of the clause. As the head of the clause needs to bind these
variables, the following constraint is imposed Acc ⊆ vars(head(cl)).

An example scheduling graph can be seen in Figure 1.
Furthermore, for every edge in a scheduling graph:

(Alt,Acc)
l
−→ (Alt ′,Acc′)

the vertices and edge satisfy the following three properties which
are jointly referred to as the valid scheduling property:
(1) The accumulator of the target vertex extends the accumulator

of the source with the obligations of the label:

Acc′ = nextAcc(Acc, l)

where nextAcc(Acc, l) ≜ Acc ∪
⋃

obgs(l)}

where obgs(l) ≜ {o | (s,o) ∈ l} Thus scheduling adds a binding
requirement that needs to be resolved in the head of the clause.

(2) Alternatives in the target are computed from source alternatives:

Alt ′ = nextAlt(Alt, l)

where

nextAlt(Alt, l) ≜ {(s,Obg) ∈ Alt | s < subs(l)} ⊖
⋃

s ∈subs(l )

vars(s)

with subs(l) ≜ {s | (s,o) ∈ l}. The set of alternatives in the
target has the labelling subgoals removed and variables in the
subgoals within the label are “released”, by the operator ⊖:

A ⊖ Vars ≜ {(s,min {o \ Vars | o ∈ Obg}) | (s,Obg) ∈ A}

The release operator removes the variables it receives from
the obligations of the alternatives and minimises the set of
obligations to remove redundancies.

Example 4.3. Let f(X,Y,Z) be a subgoal and Alt be the alter-
native set {(f, {{X, Y, Z}, {X, Z}, {Y, Z}})} be a set of alternatives.
Releasing the obligation {Z} byAlt⊖{Z} yields {(f, {{X}, {Y}})}
which retains only the minimal obligations of f(X,Y,Z).

(3) We require that the edge labels are selected from the alternatives
of the preceding vertex:

∀(s,o) ∈ l , ∃(s ′,Obg) ∈ Alt. s = s ′ ∧ o ∈ Obg

Finally, a scheduling graph has a root vertex, Rootcl,f , unique
to the clause and the constraint function. It is a transcription of
the predicate context into clause context coupled with an empty
accumulator.

Rootcl,f ≜ ({({(s,min cToOss (f (pred(s)))) | s ∈ body(cl)}, ∅)

Although the constraint being translated is minimal by definition
(Def. 3.1), we minimise the sets of obligations in the alternatives af-
ter translation because two indices may point to the same variable,
hence creating a subset relation that did not exist between atomic
constraints. For example, {{1, 2}, {2, 3}} for subgoal p(X,X,Y) pro-
duces the alternative obligation min{{X }, {X ,Y }}, thus {{X }}.

If a path in a scheduling graph has labels covering every subgoal
of a clause, then the path represents a clause ordering. Such paths
are characterised by having a terminal vertex:

Definition 4.4 (Terminal vertex). A terminal vertex is of the form
(∅,Acc) for some obligation Acc . The following predicate checks if
a path has a terminal vertex:

terminal(p) ≜ ∃Acc. (∅,Acc) ∈ V(p)

If a path in a scheduling graph has a terminal vertex, it has to be
the last vertex on the path since edge labels are chosen from the
alternatives. Further, all subgoals must have been scheduled in the
edges preceding the terminal vertex.

Paths from the root of a scheduling graph to its terminal vertices
represent subgoal orderings, which we will extract. Since the labels
in the graph may have multiple subgoals, paths in the graph form
compact orderings. Each edge expands to all permutations of its
members. Permuting each edge on a path and concatenating the
resulting ordering fragments lead to orderings of a whole clause.
Let orderings be the function that returns all orderings stored in a
path. For example, a sequence of first projections of labels (subgoals)
{p}, {q, r}, {s, t} leads to orderings mapping the syntactic order of
the subgoals to the following:

p, q, r, s, t p, r, q, s, t p, q, r, t, s p, r, q, t, s

Using these definitions, we define well-modedness of paths.

Definition 4.5 (Well-moded path). A path p in a scheduling graph
constructed for clause cl is well-moded with respect to a binding
pattern a and constraint function f when all orderings in the path
make the clause well-moded. The path also has to be terminal as
adornment has to know where to place all the subgoals.

wellModedPath(p, cl, a, f ) ≜

terminal(p) ∧ ∀σ ∈ orderings(p). wellModed(cl, a, f ,σ )

4.2 Minimal obligation graph

Due to the constraints of scheduling graphs, a valid graph is essen-
tially determined by choices of which subgoals to schedule at each
edge using a particular obligation from the preceding set of alterna-
tives. Here, we describe the construction of a particular scheduling
graph referred as minimal obligation graph (MOG). The property
of this scheduling graph is that it greedily (Definition 4.11) chooses
the paths with trivial obligations as soon as possible.

Definition 4.6 (Minimal obligation graph). For a clause cl and a
constraint function f over predicates in cl, mogcl,f is a minimal
obligation graph sharing its label and edge structure with that of a
scheduling graph.

We construct mogcl,f in a breadth-first manner. To aid under-
standing of the formal definition, we start with a complete example
of a MOG constructed for an example clause, and then use this to
expound on the definition of the mogcl,f algorithm.

Example 4.7. Consider the following clause clr annotated with
mode vectors:
r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

Subsequently, the moding annotations induce a constraint function
f mapping predicate names to constraints defined:

f (f)= {{1}} f (g)= {{1, 2}, {1, 3}} f (h)= {{1}} f (i)= f (j)= {∅}

Fig. 1 then shows the MOG constructed by mogclr ,f .
5
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A B C F

D

E

G

H
{(i, ∅), (j, ∅)} {(f, ∅)}

{(h, {Z})}

{(g, {Y})}

{(g, {Z})}

{(h, ∅)}

{(g, ∅)}

{(h, ∅)}

A = ({(f, {{X}}), (g, {{X, Y}, {X, Z}}), (h, {{Z}}), (i, {∅}), (j, {∅})}, ∅)

B = ({(f, {∅}), (g, {{Y}, {Z}}), (h, {{Z}})}, ∅)

C = ({(g, {{Y}, {Z}}), (h, {{Z}})}, ∅)

D = ({(h, {∅})}, {Y}) E = ({(h, {∅})}, {Z}) F = ({(g, {∅})}, {Z})

G = (∅, {Y}) H = (∅, {Z})

Clause:
r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

Figure 1: Minimal obligation graph for a clause of r

MOGs are constructed iteratively starting from a root node, we
write mogicl,f for the ith step of this process.

Base case. All MOGs stem from a graph of a root vertex (as in
Definition 4.2) and no edges, defined:

V(mog0cl,f ) = Rootcl,f E(mog0cl,f ) = ∅

Thus mog0cl,f initiates the breadth-first construction of the graph
by adding no edges and one root. In the running example, the root
vertex is called A. The alternative set of the root is a translation
from predicate constraints to the clause context. For example, д has
the constraint {{1, 2}, {1, 3}} and thus g(X,Y,Z) is represented by
{{X, Y}, {X, Z}}. The accumulator component of the vertex is empty.

Inductive step. We explore the MOG one unit distance from the
root at a time. Say we are at distance n + 1, Vertices are derived
from the destination vertices of the edges at distance n + 1. Edges
are added for each vertex at distance n.

V(mogn+1cl,f ) = {dst | (src, l , dst) ∈ E(mogn+1cl,f )}

E(mogn+1cl,f ) =
⋃

v ∈V(mogncl, f )
{mkEdge(v, l) | l ∈ pickLabelcl(π1 v)}

wheremkVertex is defined via scheduling graph constructions (Def. 4.2):

mkEdge(src, l) ≜ (src, l ,mkVertex(src, l))

mkVertex((Alt,Acc), l) ≜ (nextAlt(Alt, l), nextAcc(Acc, l))

From a given vertex, we decide what subgoals to schedule (what
edge label to generate) using pickLabel. We give preference to sched-
uling of natural subgoals within the alternative set over the others.
We explain what each case of these label choices means.

pickLabelcl(Alt) ≜

{
{nats(Alt)} nats(Alt) , ∅

nonNatscl(Alt) otherwise

Case 1: Extending the graph with natural edges. The natural sub-
goals at a given vertex are those that are in the alternative set of the
vertex and are paired with a singleton set of trivial obligation. This
effectively means that the binding requirements of this subgoal are
satisfied at this point.

nats(Alt) ≜ {(sub, ∅) | (sub, {∅}) ∈ Alt}

In the example, applying nats(π1 A) yields: {(i, ∅), (j, ∅)}. This set
is collectively used by mkEdge as a label. Thus, the subgoals i and
j are scheduled between the nodes A and V .

One consequence of natural subgoals all having the trivial obliga-
tion in the edge label is that nextAcc does not add new obligations to
the accumulator in the destination vertex generated. In the example,
this is why the accumulator of B remains as the empty set.

Naturality of a subgoal is contextual. In the example, f is not
natural in vertex A, but as a result of releasing variables of i and j,
it becomes natural B. Hence, it is scheduled as a natural subgoal.

Case 2: Extending the graph with non-natural edges. If there are
no natural subgoals to scheduled the pickLabel function tries alter-
natives with non-trivial obligations. Unlike the natural case, labels
picked in this manner have a single subgoal obligation pair in them.
Formally, they are selected as follows:

nonNatscl(Alt) ≜ {{(s,o)} | (s, os) ∈ Alt,o ∈ os,o ⊆ vars(head(cl))}

A side condition for selecting a label this way is to check if the
obligation is a subset of the head variables. This ensures that it is
possible to bind the variable in the head.

In the example, all edges from C are created in this manner as
all the alternatives C have non-empty obligations.

Unlike the natural case, nextAcc potentially augments the ac-
cumulator in the destination vertex since labels of this kind have
non-empty obligations; the caller has to remove these obligations.
In the example, vertices D, F , and E are generated using this func-
tion and since atC the accumulator is empty, in these three vertices
the accumulator is the single obligation specified in the label.

Building the whole graph. Full mogcl,f is given as a union of its
components.

V(mogcl,f ) =
⋃
n≥0

V(mogncl,f ) E(mogcl,f ) =
⋃
n≥0

E(mogncl,f )

Lemma 4.8. MOG construction leads to a scheduling graph.

Lemma 4.9 (MOG termination). For any clause cl , and any
constraint function f , the MOG construction mogcl,f terminates.

The only scenario where a clause cannot lift its constraints to
the caller is if its subgoals have variables that do not appear in the
head. MOG construction gets stuck in this case.

Example 4.10 (Stuck construction). Consider the following clause
with the given moding requirements:
1 r(X) :- g+(Y), f+(X).

These moding requirements cannot be satisfied by any ordering of
subgoals as the variable Y cannot be bound by just binding X. This
is shown below by the MOG for this clause, which fails to contain
any paths that schedule all the subgoals of the clause.
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After the initial step, the root vertex contains the set of alter-
natives: {(f, {{X}}), (g, {{Y}})}. Since none of these are natural
subgoals, pickLabel selects a non-natural edge which requires aug-
menting the accumulator. Only one edge is possible since only one
obligation has all of its variables in the head of the clause, namely
f. This yields the MOG:

({(f, {{X}}), (g, {{Y}})}, ∅) ({(g, {{Y}})}, {X})
{(f, {X})}

There are no further edges that can be generated (i.e., V(mog2cl,f ) =
E(mog2cl,f ) = ∅) and the MOG has no terminal vertices; there is no
full ordering that makes this clause well-moded with respect to the
given constraints.

A path is considered greedy if it schedules natural subgoals as
soon as possible.

Definition 4.11 (Greedy paths). A path p is said to be greedy if
for any edge pi with a source vertex v and a label l , whenever v
has a natural subgoal sub ((sub, {∅}) in the alternative set), (sub, ∅)
appears in the label, l , of the edge or equivalently does not appear
in the alternatives of the destination vertex.

greedy(p) ≜ ∀i, s . (s, {∅}) ∈ π1 pi =⇒ ∀Alt. (s,Alt) < π1 pi+1
Proposition 4.12. A MOG is a scheduling graph where all paths

are greedy.

Proof. Requirements of a scheduling graph are satisfied trivially
by the MOG construction. Natural edge generation by pickLabel
takes precedence, therefore all paths satisfy greediness. □

4.2.1 Optimising MOG construction. MOG construction is de-
scribed here in a breadth-first manner. A depth-first reconstruction
is possible which, when accompanied with some global state, may
prune the graph. First, we switch to depth first-construction by
branching only when we reach a terminal vertex or there is no
possible edge to add to a path. Second, we maintain a global list of
accumulator components of terminal vertices we encounter so far.
Each time we extend a path (via natural subgoals or otherwise), we
check if the accumulator component of the newly created vertex is
a superset of any member of the global list. If so, then we do not
create that vertex at all as we already have a path that is at least as
good as the one we are about to explore.

In Example 4.7, the red edges show the edges that would not
have been constructed in this approach. If the terminal vertex G is
discovered first, the global list contains {Y}, therefore when we try
to branch from C , we realise F ’s accumulator is a superset of {Y}
and do not add the edge at all. E, on the other hand, is explored as
before since its accumulator {Z} is not a superset of {Y}.

The upside of this change is that we have fewer vertices to
explore, the downside is, in the end, we will have fewer orderings
to choose from for a given binding pattern and which orderings
are retained depends on which terminal vertex is encountered first.

4.3 Extracting a clause constraint out of a MOG

The second component of a MOG vertex is an accumulated obli-
gation. Using this, we can derive a new constraint for the given
clause. Only terminal vertices contribute to constraint derivation.

The obligation in a terminal vertex is a viable option for the
caller to resolve. This notion of choice between obligations must be
expressed with no reference to concrete variable names as these are
clause scoped (i.e., the bound names are irrelevant outside the defini-
tion). Hence, we convert obligations back into singleton constraints
and combine them using the ⊗ operator.

Definition 4.13. If A and B are in the constraint domain Dp . We
define A ⊗ B as min (A ∪ B).

We take the union of the two constraints and min eliminates the
redundant constraints, i.e., min eliminates more restrictive atomic
constraints in the union.

Example 4.14. Consider the following mode-annotated clause:
1 r(X,Y) :- f++(X,Y), g+?(X,Y).

For a constraint function f derived from the moding, then mogr,f :

({(f, {{X, Y}}), (g, {{X}})}, ∅)

({{(g, {∅})}, {X, Y})

({(f, {∅})}, {X})

(∅, {X, Y})

(∅, {X})

{(f, {X, Y})}

{(g, {X})}

{(g, ∅)}

{(f, ∅)}

The clause r receives a different constraint depending on the order
of the subgoals. If f is first (as it is in the source), X and Y together
are the obligation, hence we constrain both argument positions
and get the constraint {{1,2}}. If g is first, only X is the obligation as
use of g binds Y and satisfies the moding requirement of f. Thus,
for this ordering we have the constraint {{1}}. It is clear the latter
ordering is more favourable as it leads to a more relaxed (smaller)
constraint. Hence, the ⊗ operator eliminates the former.

{{1, 2}} ⊗ {{1}} = min({{1, 2}} ∪ {{1}}) = {{1}}

Definition 4.15 (Constraint generated by a MOG). The ⊗ operator
combines translations of terminal vertices into constraints to derive
an overall constraint for the clause from the MOG, defined as the
following function extract:

extractcl(mog) ≜
⊗

(∅,o)∈V(mog)

osToChead(cl)({o})

Example 4.16. In the running example from Figure 1, the terminal
vertices are G = (∅, {Y}) and H = (∅, {Z}) therefore:

extractclr (mogclr,f ) = {{1}} ⊗ {{2}} = {{1}, {2}}

i.e., either the first or second parameter of the head clause r should
be bound.

Lemma 4.17. The extract function is monotonically increasing.

∀cl, f ,д. f ⪯ д =⇒ extractcl(mogcl,f ) ≤ extractcl(mogcl,д)

4.4 Extracting subgoal orders out of a MOG

Now that we have a constraint for the clause, we explain how to
build a partial function that gives the subgoal order of a clause for a
given adornment. It is a partial function as for some adornments no
ordering of subgoals leads to a well-moded program. So it will only
be defined for adornments that are consistent with the constraint
of the clause.
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We define a function collectmog , parameterised by a MOG, which
maps atomic constraints to sets of subgoal orderings. It does it
in two steps. First, it finds all paths from the root to the terminal
vertices with accumulated obligations such that these obligations
correspond to the atomic constraint. Second, it expands the compact
orderings represented by these paths into subgoal orderings.

In general, a MOGmay provide multiple valid orderings for bind-
ing patterns as there may be multiple distinct atomic constraints
consistent with a given adornment. We assume a choose function
that selects from a set of orderings. This function can be based
on a metric defined on orderings. For example, it may use a met-
ric that measures the distance from the original source ordering
and pick the one that is closest. This is useful for preserving some
optimisations based on estimated relation sizes.

Equipped with these definitions, we build a partial function that
gives an ordering of a clause for a particular adornment under a
constraint function f :

reorderingcl, f (a) ≜ choose(
⋃

AC∈C
collectmogcl, f (AC))

where C = findAC(a, extractcl(mogcl,f ))

4.5 Results

Lemma 4.18. If any of the subgoals of a clause cl have the ill
constraint according to constraint function f , the constraint for the
clause is also ill.

∀sub ∈ body(cl). f (pred(sub)) = ∅ =⇒ extractcl(mogcl,f ) = ∅

Lemma 4.19 (Intra-clausal soundness). For a given clause, cl
with head predicate q and a constraint function, f , if an adornment
is consistent with the constraint generated by intra-clausal analysis,
then the adornments of all the subgoals of the adorned clause (with the
reordering function from the intra-clausal analysis) are also consistent
with respect to f .

∀a. a ◁ extractcl(mogcl,f ) =⇒ wellModed(cl, a, f , reordercl,f (a))

Proof. Pick an arbitrary adornment a that is consistent with
the extracted constraint from the MOG, i.e., a ◁ extractcl(mogcl,f )
(see Definition 3.12 for ◁). This implies reorderingcl, f is defined at
a, which can only happen if there is a path p in mogcl,f leading to
this ordering.

We proceed by establishing a contradiction if p represents an
unsound path i.e. there is at least one subgoal on the path with an
adornment inconsistent with the constraint function f .

Let s(X) to be the earliest subgoal (where X is a list of variables)
that is inconsistent with its constraint after adorning the clause
with a and pi be the edge that contains this subgoal in its label. Let
b be that inconsistent binding pattern of s and C be its constraint
from f , thenwe have ∀AC ∈ C . b ◀̸ AC by definition of consistency.
This can only happen if for each atomic constraint there is at least
one index j such that Xj is adorned free because all indices in ACs
are bound by definition of ◀̸. Let F be the set of all such offending
variables. Since all of F has to be free at the point s is scheduled,
none of F can appear in the head of the clause as bound or as an
argument to any subgoals before pi .

There are two ways s could have been scheduled. Either in an
edge with (possibly) other natural subgoals (extension by natural

subgoals) or by extending the accumulated obligation (extension
by non-natural subgoals).

Consider extension by natural subgoals, requiring an alterna-
tive in the source of pi of the form (s, {∅}). At the root vertex,
the alternatives include (s,min cToOss (C)). Each obligation in this
alternative must have at least one element from F as they are gen-
erated from C . This cannot be the case as none of F appeared as an
argument before pi and hence these variables cannot be released
with ⊖, thus we cannot obtain the alternative (s, {∅}) or schedule
s at pi .

Consider extension by non-natural subgoals. As before we know
that the alternatives at the source of pi each contain at least one
member of F . This means regardless of which alternative is used,
the accumulated obligation at the destination of pi must contain
a member of F . Hence, the terminal vertex’s accumulator must
contain at least one member of F . All variables in this accumulator
must be bound in the head due to the fact that the reordering is
generated using a terminal vertex with an accumulated obligation
corresponding to an atomic constraint of the head. This contradicts
our assumption that the offending variable is free in the head.

Since having an inconsistent subgoal in the path contradicts the
formation of the path, all subgoals must be consistent with their
constraints when the head is adorned with a. Since a was arbitrary,
the lemma holds. □

Intra-clausal completeness is more involved. It states that:

∀a. (∃r . wellModed(cl, a, f , r (a))) =⇒ a ◁ extractcl(mogcl,f )

(full statement in Lemma 4.34). That is, if there exists a local ordering
r that makes a clause well-moded with respect to head binding
pattern a, then a is consistent with the constraint computed by
our analysis. We prove completeness by showing than an arbitrary
ordering r is captured (in some way) by our MOG construction, i.e.,
that mogcl,f is complete. This involves first converting arbitrary
orderings to scheduling graphs, and showing that paths in such a
graph can be transformed into effectively equivalent paths in our
MOG. Key to this is the property that MOG paths are greedy.

Definition 4.20 (Ordering to scheduling graph). Given a clause cl
with n subgoals, a constraint function f defined for all predicates
invoked in cl, a binding pattern a, and an ordering σ of cl giving
an adorned and reordered clause cl′ = adorn(cl, a,σ ), then there is
a scheduling graph д = schedule(cl, a, f ,σ ), where:

V(д) =
⋃

0≤i<n
Vi E(д) =

⋃
0≤i<n

Ei

V0 = Rootcl,f E0 = ∅ Vi = dst(Ei )

Ei = {mkEdge(v, (s,o)) | v ∈ Vi−1, (s, obgs) ∈ v, s = cl′i ,

o ∈ obgs, adornment(s) ◁ osToCs ({o})}

Lemma 4.21 (Well-moded ordering to terminal path). For
a constraint function f , clause cl, binding pattern a, and ordering
σ where wellModed(cl, a, f ,σ ), then a generated scheduling graph
д = schedule(cl, a, f ,σ ) has a path p ∈ paths(д) where terminal(p).

Definition 4.22 (Conversion). We convert scheduling graph paths,
where each edge has a singleton set label, into greedy paths.

8
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Find the earliest vertex, pi , that has a subgoal with the trivial
obligation in its alternatives. For all such subgoals in pi , use the
swap operation (below) to place them in adjacent edges starting
from pi in any order. Usemerge repeatedly to merge all these edges.
Repeat this process until the path cannot be changed anymore.

Definition 4.23 (Swap). The swap operation on a path p in a
scheduling graph takes an index i and assuming pi and pi+1 exist,
produces a new path where the subgoals in the edge pi comes
before the subgoals in the edge pi+1. The operation is applied when
all the subgoals in the edge pi+1 have trivial obligations in pi and
consequently at pi+1.

Let L be the edge label at pi and R be the edge label at pi+1.The
new path is q is as follows:

∀j < i . qj = pj

qj = mkEdge(src(pj),R)

qj+1 = mkEdge(dst(qj ), {(s,o \
⋃

(s ′,o)∈R

vars(s ′)) | (s,o) ∈ L})

∀j > i + 1. qj = mkEdge(dst(qj−1), label(pj ))

Lemma 4.24 (Trivial obligation consistency). If a scheduling
graph vertex v has a subgoal s with obligation {∅} in its alternative
set, any ordering with a partial ordering derived from the root to v
has the predicate s consistent with respect to any binding pattern.

Lemma 4.25 (Swap well-modedness). For a path p well-moded
with respect to a binding pattern a and some constraint function the
swap operation preserves well-modedness.

Lemma 4.26 (Swap scheduling path). If a path p is in a sched-
uling graph before swapping, it remains to be in one after.

Definition 4.27 (Merge). Let p be a path in a scheduling graph, a
merge of edges pi and pi+1 removes them both and replaces it with
a single edge with a label that is the union of all the labels. The
operation is applied if and all subgoals in both of these edges have
the trivial obligation at the source of pi . Let q be the resulting path
with the following specification:

∀j < i . qj = pj

qi = (src(pi), label(pi ) ∪ label(pi+1), dst(pi+1))

∀j > i . qj = pj+1

Lemma 4.28 (Merge well-modedness). If a path in a scheduling
graph is well-moded with respect to some adornment and a constraint
function, then the path produced by a merge is also well-moded.

Lemma 4.29 (Merge scheduling graph). If p is a path in a
scheduling graph, amerge performed somewhere on this path produces
another path the is also in a scheduling graph.

Lemma 4.30 (Conversion greed). If a path is in a scheduling
graph, then its conversion is a greedy path in a scheduling graph.

Proof. Swap and merge preserve scheduling graph structure.
By construction subgoals in edges are positioned such that they
follow the trivial obligation, since a subgoal cannot appear in more
than one edge, greediness requirement is satisfied. □

Lemma 4.31 (Conversion preserves well-modedness). If the
path is well-moded, then so is the converted path.

Thus, we have shown that conversion creates greedy schedul-
ing paths, and preserves well-modedness of paths. We then show
such paths are in the MOG (Lemma 4.32) and are consistent with
adornment (Lemma 4.33), finally leading to completeness.

Lemma 4.32 (Greedy path completeness). For a clause cl, every
greedy scheduling path ending in a terminal vertex and conforming
to a constraint function is present in the MOG determined by cl and
the constraint function f .

∀p, a. greedy(p)∧wellModedPath(p, a, cl, f ) =⇒ p ∈ paths(mogcl,f )

Lemma 4.33 (Path extract connection). For a fixed binding
pattern a, existence of a well-moded path in aMOG implies consistency
of a with the constraint extracted from the MOG.

∀a p. wellModedPath(p, a, cl, f ) ∧ p ∈ paths(mogcl,f )
=⇒ a ◁ extractcl,f (mogcl,f )

Lemma 4.34 (Intra-clausal completeness). For a given clause,
cl, a constraint function, f , and an adornment a for the head of cl, if
there is a local reordering that makes the adornment of the subgoals
consistent with their constraints, the head adornment is consistent
with the constraint extracted from the MOG. That is:

∀a. (∃r . wellModed(cl, a, f , r (a))) =⇒ a ◁ extractcl(mogcl,f )

Proof. Fix an arbitrary adornment a and assume the antecedent.
We need to show thatmogcl,f contains a path that ends in a terminal
vertex leading to an atomic constraint consistent with a.

By Definition 4.20, we convert the ordering for a into a schedul-
ing graphд = schedule(cl, a, f , r (a)). Since,wellModed(cl, a, f , r (a)),
there exists at least one path p which is terminal in д (Lemma 4.21).
From Definition 4.22 (with Lemma 4.30) we convert this path p into
a greedy path p′, which is terminal and well moded (Lemma 4.31,
Lemma 4.30). Since the path p′ is well moded and terminal we have
that, wellModedPath(p, a, cl, f ) (Definition 4.5).

Using Lemma 4.32 (greedy path completeness), it then follows
that p′ ∈ paths(mogcl,f ), i.e., that p′ is constructed by our MOG-
based analysis. Combined with Lemma 4.33 (well-moded MOG path
implies extract consistency) then a ◁ extractcl,f (mogcl,f ). □

5 INTER-CLAUSAL ANALYSIS

Having defined how to determine a moding constraint for a given
clause, we are ready to find a constraint for a given program com-
prising multiple predicates each comprising one or more clauses.

Any of the clauses of a predicate can be used to evaluate a subgoal
invoking that predicate. This means that for a subgoal invocation to
be safe, the bodies of clauses of the invoked predicate must be safe.
This implies the constraint of a predicate is a combination of the
constraints of its clauses, which we capture with the ⊕ operator:

Definition 5.1. If A and B are in the constraint domain Dp , we
define A ⊕ B as min {a ∪ b | a ∈ A,b ∈ B}.

This captures the idea of joint constraints because it produces
an atomic constraint for each possible pair of atomic constraints
and union ensures the requirements of both clauses are reflected

9
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in the newly generated atomic constraint. As with the ⊗ operator,
min eliminates the redundancies.

Example 5.2. Consider the following clauses belonging to a pred-
icate r, each with the same head:
1 r(X,Y,Z) :- f+??(X,Y,Z).
2 r(X,Y,Z) :- g{++?,?++}(X,Y,Z).
3 r(X,Y,Z) :- h??+(X,Y,Z).

Use of rmust reflect the constraints of all these clauses. Individually,
the constraints for each clause are {{1}}, {{1, 2}, {2, 3}}, and {{3}}
respectively. The only way these three constraints are satisfied is if
all three arguments are constrained; ⊕ computes this:

{{1}} ⊕ {{1, 2}, {2, 3}} ⊕ {{3}} =
min {{1, 2}, {1, 2, 3}} ⊕ {{3}} = {{1, 2}} ⊕ {{3}} = {{1, 2, 3}}

Lemma 5.3 (⊕ consistency homomorphism). A binding pattern
is consistent with two constraints combined with ⊕ iff that binding
pattern is consistent with each constraint individually, i.e.:

∀a,C1,C2. a ◁ (C1 ⊕ C2) ⇐⇒ a ◁C1 ∧ a ◁C2

Definition 5.4 (Whole-program analysis). Whole-program anal-
ysis is then computed as a fixpoint computation over functions
from predicates to constraints. In each iteration, the constraints of
the clauses with a shared head are combined with the ⊕ operator
and constraints belonging to predicates without clauses (such as
built-in predicates) are preserved without modification.

analysePr (f ) ≜

{
f if f = stepPr (f )
analysePr (stepPr (f )) otherwise

stepPr (f )(p) ≜

{⊕
cl∈Prp extractcl(mogcl,f ) if Prp , ∅

f (p) otherwise

In the definition of step, we use the ⊕ operator over constraints
for each clause belonging to predicate p, extracted from the MOG
by extract (Definition 4.15) which is defined in terms of ⊗ over
constraints.

Note that if Prp = ∅ this implies that the predicate is externally
defined, so we default to extracting its constraint f (p) coming from
some external mode declaration.

Lemma 5.5. Every constraint function generated from a moding
function gets more restrictive when step is applied to it.

∀mv. JmvKF ⪯ stepPr (JmvKF )

Lemma 5.6 (Step monotonicity). The step function is monotoni-
cally increasing (making constraints more restrictive):

∀Pr, f ,д. f ⪯ д =⇒ stepPr (f ) ⪯ stepPr (д)

Proof. Follows from monotonicity of extract (Lemma 4.17) and
⊕ consistency (Lemma 5.3). □

Lemma 5.7. Every constraint function generated from a moding
function gets more restrictive by application of analyse.

∀mv. JmvKF ⪯ analysePr (JmvKF )

Proof. Observe that analyse is simply repeated application of
step. The lemma follows from Lemma 5.5 and Lemma 5.6. □

A necessary property is that ⊕ is closed on constraints. This is
indeed the case and is implied by the following semiring structure
which relates the two operators ⊕ and ⊗.

Proposition 5.8. (Dp , ⊕, ⊗, {∅}, ∅) is an idempotent commuta-
tive semiring where {∅} is the additive identity and ∅ is the multi-
plicative identity.

This is known as Martelli’s semiring, originally used to compute
cutsets of a graph [11, 12].

Proof. Straightforward, previously given by Martelli [11]. □

In order to transform the program during adornment we need a
consistent reordering function. This can be constructed as a higher-
order function from clauses to functions that map adornments to
orderings. The inner function is constructed using the MOGs of the
predicate as in Section 4.4.

reorderProgramf (cl) ≜ reorderingcl, f

5.1 Results

We now show that inter-clausal analysis (our full analysis) is fast-
failing, terminating, sound, and complete.

Fast failure for ill-moded predicates is a strength of our analysis.
Ill-moded constraints quickly propogate using the step function.

Proposition 5.9 (Fast failure). After a single application of
step, the ill constraint propagates from the body of a clause to the
entire head predicate constraint.

∀f , cl, sub ∈ cl. f (pred(sub)) = ∅ =⇒ stepPr (f )(pred(head(cl))) = ∅

Corollary 5.10. The number of step applications it takes to con-
verge to the ill constraint is bounded by the static call distance between
two predicates.

Proof. Follows immediately from Proposition 5.9. □

Theorem 5.11. For all Datalog programs, Pr, and mode functions,
mv, inter-clausal analysis, analysePr (JmvK), terminates.

Proof. We know that step function terminates because intra-
clausal analysis is a function of MOG construction which termi-
nates by Lemma 4.9. All there is left to show is that analyse always
reach a fixpoint. This is the case as step forms a chain (Lemma 5.6,
Lemma 5.5) and ⪯ is bounded (Lemma 3.17). □

Theorem 5.12 (Inter-clausal soundness). Given a program Pr
containing a query clq with head predicate q and a mode function
mv, if the analysis yields the trivial constraint for q, Pr is well-moded
with respect to query clause clq and mode function mv.

analysePr (JmvKF )(q) = {∅}

=⇒ wellModedProgram(Pr, clq , JmvKF , reorderProgramf (cl))

Proof. Let f and af be the constraint functions JmvKF and
analysePr (JmvKF ) respectively.

We know by (Lemma 5.7) f ⪯ af , that is for any predicate p
and adornment a being if a is consistent with af (p), then it is also
consistent with f (p).

Assume the antecedent of the proposition. Recall that {∅} is the
trivial constraint with which all binding patterns are consistent.
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This means under all binding patterns, there is an ordering for
the subgoals of clq , where the binding patterns derived for the
subgoals are consistent with the constraints of af and by ⪯ also
with f . Otherwise, we would contradict intra-clausal soundness
(Lemma 4.19).

The predicate constraints of subgoals in the body of clq may
arise from two sources. If the predicate in question is external,
we know by assumption it is consistent with af and hence with
f . If it is an internal predicate, then it is a combination of clause
constraints via ⊕. We know by Lemma 5.3 that each of the clause
constraints are consistent with the binding pattern given to the
subgoal in clq . These clause constraints can only be generated by
intra-clausal analysis. We can apply the same reasoning recursively
to the body of these clauses to show that all constraints of the
external predicates in the body are satisfied. Hence, all external
predicate constraints according to f are satisfied as required.

The reason we need a fixpoint rather than a single application of
step is that intra-clausal soundness ensures soundness with respect
to the input constraint function but intra-clausal analysis poten-
tially produces a more strict restrictive constraint function due to
(mutual) recursion of clauses. At the fixpoint the output constraint
function and the input constraint function are one and the same,
hence all dataflow constraints are satisfied. □

Theorem 5.13 (Inter-clausal completeness).

∃gr . wellModedProgram(Pr, clq , JmvKF , gr)

=⇒ analysePr (JmvKF )(q) = {∅}

Proof. We proceed with a proof-by-contradiction: we start by
assuming that the antecedent is true and that analysePr (JmvKF )(q) ,
{∅}. Since a query only has one clause, ⊕ is never invoked in
analysePr for q and thus each step only ever extracts a constraint
for the query from a single MOG. For the constraint to end up non-
trivial, the MOG construction for clq must on all paths generate a
non-trivial obligation in the accumulator (since a trivial obligation
would dominate via the definition of ⊗). Therefore, we must need
to bind a variable, say X, in the head of the query q. However, by the
antecedent and the definition of adornProgram, there is an order-
ing gr such that all variables in the head of query can be adorned
with f (free) and all subsequent clauses are consistent with JmvKF .
Thus, we have reached a contradiction. Therefore, the statement of
completeness holds.

□

Corollary 5.14 (Global reordering existence). For every
program that can be well-moded with reordering, we can construct a
global reordering function.

Proof. By Theorem 5.13, we know that if a global reordering
function exists, analysis will find the trivial constraint for the head.
This means for each clause as a part of the analysis we construct
local reordering functions that are defined for all relevant binding
patterns. By combining these local reordering functions, we can
construct the desired global reordering function. □

Our analysis algorithm preserves the work that has been done
on a program if it is extended by additional clauses.

Theorem 5.15 (Incremental analysis). For a given program
Pr, an arbitrary clause cl, and a mode function mv defined on all
predicates appearing in Pr and cl, inter-clausal analysis can be incre-
mentally computed by computing a constraint function for Pr first
and using this as a basis for computing constraints for Pr ∪ {cl}.

analysePr∪{cl }(JmvKF ) = analysePr∪{cl }(analysePr (JmvKF ))

Proof. By (Lemma 5.7), we have JmvKF ⪯ analysePr (JmvKF )
We also have the following inequality:

analysePr (JmvKF ) ⪯ analysePr∪{cl }(JmvKF )

This holds because if the head of cl is not a head in Pr , the
constraint of the head of cl is {∅} which is the bottom. If it appears
as a head, this means at each application of step there will be an
additional constraint that needs to be combined using ⊕. We have
C1 ≤ C1 ⊕ C2 by Lemma 5.3 and Definition 3.16.

By applying analysisPr∪{cl } to both inequalities we obtain:

analysePr∪{cl }(JmvKF )

⪯ analysePr∪{cl }(analysePr (JmvKF ))

⪯ analysePr∪{cl }(analysePr∪{cl }(JmvKF ))

Additionally, analyse reaches a fixpoint (Theorem 5.11), thus

analysePr∪{cl }(JmvKF )

⪯ analysePr∪{cl }(analysePr (JmvKF ))

⪯ analysePr∪{cl }(JmvKF )

Since ⪯ is anti-symmetric, the lemma holds. □

We achieve a stronger incremental computation result if the
clause extending the program has a fresh head. It allows us to
perform the analysis without performing intra-clausal analysis on
the original program.

Corollary 5.16 (Fresh head incremental). If additionally, we
know that the head predicate of cl does not feature in Pr, we need
not consider the clauses of Pr when extending the constraint function.
That is:

analysePr∪{cl }(JmvKF ) = analyse{cl }(analysePr (JmvKF ))

A stronger result still is achieved when the extending clause is
non-recursive. Despite the restrictions on the clause, this captures
queries in an interactive system. We can determine well-modedness
of a query using a single application of the intra-clausal analysis.

Corollary 5.17 (Fast convergence). If cl is also non-recursive,
analyse converges to a fixpoint in a single step.

analysePr∪{cl }(JmvKF ) = step{cl }(analysePr (JmvKF ))

6 EXTENDING DATALOG

The analysis so far accommodates Datalog programs with external
predicates that are assumed to have no side-effects. However, most
implementations extend Datalog in various ways. In this section,
we explore how to accommodate extensions in our mode analysis.
Namely, we discuss preserving order of effectful predicates, negated
subgoals, and wildcards.

Additionally, we note that aggregate computations [8, Chapter
2] despite affecting flow of values are compatible with our analysis
without any modifications.
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6.1 Preserving order of effectful predicates

Since this work is motivated by incorporating external predicates,
effectful predicate evaluation is a natural extension. This poses
a problem for our analysis, since we reorder subgoals to achieve
well-modedness. It is unsound for effectful predicates e.g. we may
reorder the subgoals so that the subgoal that reads a file precedes
the one that opens it.

We assume a coarse-grained effect system where each effectful
predicate can interfere with any other, so the syntactic order of all
effectful predicates need to be preserved. For each clause assume a
list of the effectful subgoals, l , matching their syntactic order. We
modify the rules for generating new edges in the MOG construction
so that l appears in order in the edges.

For non-natural edges, if the subgoal selected for labelling is in
source vertex list l , then it has to be the head of l otherwise we do
not generate the edge. For natural edges, the set of subgoals in the
label can contain at most one element from l and if it does it must
be the head of l .

As this modification forces the edges to respect the syntactic or-
der of effectful subgoals, we no longer produce unsound orderings.

6.2 Negated subgoals

Negation allows a subgoal to hold when it is not satisfied. There are
various ways of accommodating it in Datalog with radical effects
on language semantics but dataflow-wise they behave identically.

Example 6.1. If we evaluate the following program naïvely, the
values for outOfStock will be the set of all finite strings except
“Milk”. This is undesirable as it compromises termination of bottom-
up semantics.

1 inStock("Milk").
2 outOfStock(X) :- not(inStock(X)).

The usual solution to this problem is to require the variables
inside a negated subgoal to be bound. This is easy to express within
our analysis by changing the generation of alternatives at the root
of theMOG. Say we have a negated subgoalnwith predicatep. If the
constraint function has ∅ forp hence it cannot be evaluated, then the
alternative at the root node is (n, ∅) as before. Otherwise, we require
all the variables to be bound, so the alternative is (n, {vars(n)}).

6.3 Wildcards

Wildcards allow the value of a subgoal argument to be ignored. For
example, p(X,_) ignores its second argument. This is equivalent to
using an existential variable i.e. one that appears once in the body.

If a wildcard is used as an argument to a subgoal with mode + at
that argument position, the dataflow requirements for that pred-
icate cannot be satisfied. If the wildcards are eliminated through
introduction of a fresh existential variable for each wildcard, no
modification to our analysis is needed. However, if the analysis
is performed without assigning fresh variables, we need two ad-
justments to the intra-clausal analysis. First, vars should ignore
wildcards. Second, cToOs should add a special wildcard variable
each time an atomic constraint indexes a wild card variable in the
subgoal. Since vars ignores wildcards and head cannot have a wild-
card, there will not be any way of scheduling these alternatives.

7 RELATEDWORK

Mellish [13] introduces mode inference through abstract interpreta-
tion for Prolog programs. Debray andWarren [6] improves on this
work by precise handling of aliasing. Both perform inference on
the programs as they are written without reordering of subgoals.

Mercury [14] and HAL [5] mode systems are closest to ours
in spirit. They both reorder subgoals to satisfy mode restrictions
and both use constraint-based analysis. Both of these are higher-
order languages and allow function symbols. Hence, they provide
more sophisticated modes that express partial instantiations of
variables e.g. a list with unbound variables is more instantiated
than just a variable and less instantiated than a list with ground
elements. Much of the analysis is thus concerned with precise
aliasing tracking. By contrast, lack of function symbols simplify
our mode analysis. In particular, Overton et al. [14] reports their
constraint-based analysis is 10 to 100 times slower compared to
their previous brute force search based algorithm on benchmark
programs. Additionally, HAL only reorders subgoals during mode
checking withmode specifications whereas we also do reordering in
the absence of specifications. Another difference is that both of these
are typed languages and their analyses rely on type of predicates
for mode analysis. This is not possible for untyped Datalog.

More recently, Yedalog [4] and Dyna [7] were developed, in-
spired by Datalog. They both add function symbols and face the
same aliasing problems described above. Both provide static mode
systems and refer to Mercury as inspiration but without an explicit
account of the underlying algorithm.

In addition to the order preservation method for subgoals with
side-effects in Section 6.1, there is an alternative involving modes.
Henderson et al. [9, Chapter 5] reify the external world as a value
to be passed around. Use of mode constraints on external world
arguments establishes mode dependencies between effectful clauses
which would allow our analysis to remain sound without modifica-
tion. This is similar to use of phantom types [3] in typed languages.
The downside of this approach is that the external world has to be
shuffled manually or a variable inserting transformation is needed.

Overall, we differ from the literature by targeting Datalog in its
standard form without function symbols and types. This simplifies
the analysis and allowed us to prove soundness and completeness.
Additionally, unlike other approaches, our analysis is incremental
allowing performant mode checking in interactive systems.

8 CONCLUSIONS

We presented a static mode analysis for Datalog to allow programs
to be well-moded through reordering whenever possible. The com-
binatorial explosion of global permutation search is tackled by
exploiting dataflow restrictions within the clauses and allowing in-
cremental analysis of programs particularly for interactive systems.
We showed that the algorithm is terminating, sound, and complete
with respect to exhaustive global order search.
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A OMITTED PROOFS

Lemma 3.15 (Ill and trivial constraints). The trivial con-
straint {∅} is consistent with all binding patterns and the ill constraint
∅ is consistent with none.

Proof. The ◀ relation is universally quantified so it holds triv-
ially for the atomic constraint ∅, hencefindAC is never empty for the
trivial constraint. On the other hand, for the ill constraint, findAC
is always the empty set as there are no atomic constraints. □

Lemma 3.17. For a fixed predicate p, ≤ is a bounded partial order
(PO) with ∅ as the top element and {∅} as the bottom element. For a
fixed domain ⪯ is also a bounded partial order with constant functions
∅ and {∅} as top and bottom elements respectively.

Proof. The fact that the relation ≤ is a partial order follows
from properties of implication. Nothing is consistent with ∅ which
confirms the top element and any adornment is consistent with
∅ which confirms the bottom element (Lemma 3.15). Pointwise
extension preserves all of these properties. □

Lemma 3.18 (PO to atomic constraint relation). If a con-
straintC2 is more restrictive thanC1, this meansC1 has amore relaxed

atomic constraint for each atomic constraint in C2.

∀C1,C2. C1 ≤ C2 =⇒ ∀AC ∈ C2 ∃AC ′ ∈ C1. AC ′ ⊆ AC

Proof. Unfolding definitions of ◁ and ◀, it is readily seen that
the more restrictive constraint requires more arguments at par-
ticular locations to be bound than the less restrictive one, which
establishes the subset relation. □

Lemma 4.8. MOG construction leads to a scheduling graph.

Proof. The first two properties of the valid scheduling property
is satisfied trivially as new vertices use nextAcc and nextAcc as
defined in property statements. The edge labels are selected using
pickLabel which satisfies the third condition as it selects subgoals
from the source vertex alternatives as well as the obligation it is
coupled with.

Labels must not have obligation variables that do not appear in
the head. When scheduling natural subgoals as they have empty
obligations, that is the case. When scheduling non-natural ones, the
condition is embedded inside nonNats selector used by pickLabel,
hence that too is satisfied.

The root vertex is also chosen as it is defined in the scheduling
graph.

All conditions of a scheduling graph are satisfied. □

Lemma 4.9 (MOG termination). For any clause cl , and any
constraint function f , the MOG construction mogcl,f terminates.

Proof. Apart from the root, the vertices are generated through
edges. So it is sufficient to show that we can only generate finitely
many edges. As a finite union of finite sets is finite, it suffices to
show there is an n such that for allm bigger than to n, E(mogmcl,f )
is empty.

This is indeed the case since the edges can only be added using
pickLabel and nextAlt from a given vertex. The pickLabel function
can only select labels from the alternatives of the preceding vertex
and nextAlt removes the subgoals involved in edge labels from the
succeeding alternative set. Hence, together they produce alternative
sets strictly smaller than the edge’s source vertex. Since we start
with finite number of alternatives, we cannot generate infinite
number of vertices. □

Lemma 4.17. The extract function is monotonically increasing.

∀cl, f ,д. f ⪯ д =⇒ extractcl(mogcl,f ) ≤ extractcl(mogcl,д)

Proof. Fix a clause cl and assume f ⪯ д for some f and д. This
implies at each point p in these functions we have f (p) ≤ д(p). It is
sufficient to show that every terminal path that can be reached via
д is also reachable with f (in the sense that it has the same number
of edges sharing the same subgoals on the edges but paired possibly
with different obligations) and the accumulator at the end of each
these paths is a subset of that of д.

By Lemma 3.18, we know for each predicate p, for all atomic
constraints of д(p), there is an atomic constraint in f (p) that is
smaller. This property trivially transfers to obligations in clause
context. This means each time we can extend a vertex using д we
can extend it with f and the obligation is at most as big as that of
come from д. Hence, the accumulated obligation yields the desired
subset property for each path.
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There may be other terminal paths generated by f . If any of
those leads to smaller accumulators, then the property still holds.
If they do not, it does not matter because atomic constraints are
minimised, so the redundant atomic constraints are removed. □

Lemma 4.18. If any of the subgoals of a clause cl have the ill
constraint according to constraint function f , the constraint for the
clause is also ill.

∀sub ∈ body(cl). f (pred(sub)) = ∅ =⇒ extractcl(mogcl,f ) = ∅

Proof. The extract function derives constraints using terminal
vertices. However, mogcl,f cannot have a terminal vertex because
the alternatives contain a subgoal sub with empty set of obligations.
This obligation is not {∅} so we cannot schedule sub using the first
case of pickLabel for natural subgoals. We also cannot use the other
case of pickLabel which uses nonNats, as the side condition for the
new edge includes o ∈ os and os in this case is empty. Since there is
no way of scheduling sub, there is no way of reaching a terminal
vertex. □

Lemma 4.21 (Well-moded ordering to terminal path). For
a constraint function f , clause cl, binding pattern a, and ordering
σ where wellModed(cl, a, f ,σ ), then a generated scheduling graph
д = schedule(cl, a, f ,σ ) has a path p ∈ paths(д) where terminal(p).

Proof. For at least one path to be terminating, it follows that
Ei must be non-empty for every 0 ≤ i < n. By the above construc-
tion and the well scheduling properties, this would then imply that
{(∅,Acc)} ∈ En for some Acc, i.e. that terminal(p) for some path p.

Since the root node fills all the obligations for each subgoal
from f , i.e., V0 = {({(s,min cToOss (f (pred(s)))) | s ∈ body(cl)}
then each singleton obligation {o} for a subgoal s is derived from
f (pred(s)).

From well-modedness, we have that adornment(s) ◁ f (pred(s))
for each subgoal s ∈ body(adorn(cl, a,σ )), therefore, where we let
b = adornment(s):

b ◁ f (pred(s))

⇐⇒ b ◁ osToCs (cToOss (f (pred(s))))

=⇒ b ◁ osToCs ({o}) where ∃o ∈ cToOss (f (pred(s)))

⇐⇒ b ◁ osToCs ({o}) where ∃o ∈ min cToOss (f (pred(s)))

Therefore, from well-modedness, we can always satisfy the condi-
tions of the Ei set comprehension for at least one pair (s,o). Thus,
Ei , ∅ for all 0 ≤ i < n. Therefore, there is at least one terminal
path p ∈ schedule(cl, a, f ,σ ). □

Lemma 4.24 (Trivial obligation consistency). If a scheduling
graph vertex v has a subgoal s with obligation {∅} in its alternative
set, any ordering with a partial ordering derived from the root to v
has the predicate s consistent with respect to any binding pattern.

Proof. Due to the invariants of the scheduling graph, the only
way v has s with the trivial obligation in its alternative set is if it
had it that way at its root vertex or subgoals scheduled on p before
v released variables in its obligation.

Since the variables in the obligation correspond to variables that
needs to be bound to be consistent with the predicate constraint,
any ordering that follows any one of the partial orderings up to v

has s consistent with its constraint regardless the binding pattern
of the clause head. □

Lemma 4.25 (Swap well-modedness). For a path p well-moded
with respect to a binding pattern a and some constraint function the
swap operation preserves well-modedness.

Proof. Let the sets of subgoals in the edges pi and pi+1 be P
and Q respectively. Consistency depends on the adornment of the
subgoal which depends on the variables bound before adornment.
We already fixed the head adornment a and that does not change
with subgoal swapping.

We proceed by considering different portions of the path:
qj<i The set of bound variables are same as before, so the subgoal

prior to this point remain consistent.
qj>i+1 When regarded atomically, P andQ together bind the same

set of variables regardless the order they are scheduled in.
Hence, the bound variables after the vertex qi+1 remain the
same.

qi+1 The set of variables there were sufficient to make subgoals
in P remain bound when the subgoals in P are moved to
the right. They might be augmented by the addition of vari-
ables inQ but additional bound variables do not compromise
consistency.

qi Because we have the side condition on swap that all subgoals of
Q must have the trivial obligation at pi , we already know all
that needs to be bound to achieve consistency is bound at pi
(Lemma 4.24).

□

Lemma 4.26 (Swap scheduling path). If a path p is in a sched-
uling graph before swapping, it remains to be in one after.

Proof. Structurally, swap does not change the vertices or the
edges.

The vertices conform with the properties of a scheduling path as
they usemkEdge to construct the vertices. It is used in Definition 4.6
and Lemma 4.8 establishes that the vertices produced by it are those
expected by a scheduling graph.

The edges also conform with scheduling graph requirements.
The obligations within the labels being subset of the head variables
is satisfied trivially as changing the position of the label has no
effect on this.

The final requirement is that the elements of the labels (subgoal
obligation pairs) have to be chosen from the alternatives. By as-
sumption the label moved to the left, has the trivial obligations in
the alternatives of the preceding vertex, so the requirement is satis-
fied. In the new intermediate vertex the alternatives may include
shrank obligations due the variables bound the subgoals moved to
the left. But the label is modified to exclude these variables from
the obligations, so the property holds for this new label as well. □

Lemma 4.28 (Merge well-modedness). If a path in a scheduling
graph is well-moded with respect to some adornment and a constraint
function, then the path produced by a merge is also well-moded.

Proof. Let p be the path in question and pi & pi+1 be the edges
being merged. Fix the binding pattern a that the path is consistent
with.

14



1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Automatic reordering for dataflow safety of Datalog Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

A merge only enables new orderings. We need to show each of
these new orderings are still consistent with all of the predicate
constraints when their binding patterns are derived from a.

In the new orderings, the subgoals before pi appear in the po-
sitions they did in the old orderings, in which they were already
consistent. The subgoals after pi+1 also appear in the same posi-
tions as before and changing the positions of the subgoals in pi
and pi+1 do not affect the variables bound during the adornment
of these subgoals, hence they too remain consistent.

The new locations subgoals ofpi can appear in the new orderings
are still after the points we established their consistency, hence
their consistencies are preserved.

Those in pi+1 can appear at locations before the points we es-
tablished their consistencies, but by assumption we only merge if
those subgoals appear with trivial obligations inside the source of
pi . By Lemma 4.24, we know that these predicates also retain their
consistencies. □

Lemma 4.29 (Merge scheduling graph). If p is a path in a
scheduling graph, amerge performed somewhere on this path produces
another path the is also in a scheduling graph.

Proof. We start with a path in the scheduling graph and make
no modification to the vertices before and after the edges being
merged. Hence, it is enough to show that the invariants are satisfied
for the edges being merged.

Accumulator related invariants are trivially satisfied as the obli-
gations on the labels of both of these edges are ∅ (due to third in-
variant of the valid scheduling property), hence they do not change
the accumulator (as they did not before). They subset restriction
on the label obligations are also satisfied, as ∅ is trivially a subset
of the head variables.

The alternative set of the destination of the merged edge is also
the same as before since exactly the same subgoals are removed
from the alternative set and hence the same variables (of these
subgoals) are released. □

Lemma 4.31 (Conversion preserves well-modedness). If the
path is well-moded, then so is the converted path.

Proof. Swap and merge preserves well-modedness of a path.
□

Lemma 4.32 (Greedy path completeness). For a clause cl, every
greedy scheduling path ending in a terminal vertex and conforming
to a constraint function is present in the MOG determined by cl and
the constraint function f .

∀p, a. greedy(p)∧wellModedPath(p, a, cl, f ) =⇒ p ∈ paths(mogcl,f )

Proof. We consider a more general property: that for a greedy,
well-moded path p, a prefix of p of length n is a prefix path of
mogcl,f , where an empty path comprises just the root vertex. We
assume a pathp satisfying the antecedent of the lemma, and proceed
by induction on the length n of the prefix path:
• n = 0. By the definition of scheduling graphs, the root node
V0 is fixed, therefore {V0} = V(mog0cl,f ) trivially; a zero-length
path comprises just the start vertex.

• n = k + 1. Let (s,o) = src(pk+1) and assume the inductive
hypothesis: the path p0 . . .pk is a prefix path of mogcl,f .
We consider then two cases:
– (nats(src(pk+1)) , ∅) therefore by greediness and the well-
scheduling property, trg(pk+1) = mkVertex({(nats(Alt), ∅)})
which is equal to the edge constructed by mogcl,f give the
vertex src(pk+1);

– (nats(src(pk+1)) = ∅) therefore by well-modedness on the
subgoal s we have that adornment(s) ◁ f (pred(s). For the
computed adornment to be consistent with the constraints of
f , it follows that for every variable X in this clause which is
bound in subgoals adornment, its corresponding index i in the
constraint due to f . For X to be bound, it follows that it was
bound earlier on the path, or is bound in the clause head. The
former cannot be true, as if it was bound earlier on the path
it would have been released from the alternative set via ⊖.
Subsequently, it must be bound in the head and therefore its
obligation o ⊆ vars(head(cl)). Therefore, by well-scheduling,
we have a vertex which satisfies the requirements of nonNats
in pickLabel, thus the edge pk+1 is equal to that constructed
by E(mogkcl,f ) at this point given vertex src(pk+1).

Therefore, p0 . . .pkpk+1 is a prefix path of mogcl,f .
Therefore p ∈ paths(mogcl,f ). □

Lemma 4.33 (Path extract connection). For a fixed binding
pattern a, existence of a well-moded path in aMOG implies consistency
of a with the constraint extracted from the MOG.

∀a p. wellModedPath(p, a, cl, f ) ∧ p ∈ paths(mogcl,f )
=⇒ a ◁ extractcl,f (mogcl,f )

Proof. Fix a binding pattern a and a path p and assume the an-
tecedent. To show the consequent, it is enough to show a stronger
statement: the atomic constraintAC extracted from anywell-moded
MOG path p is consistent with the binding pattern a. This gener-
alisation is valid since atomic constraints are combined via ⊗ in
extract which is monotonically decreasing (getting less restrictive
wrt. consistency).

Assuming an arbitrary index i ∈ AC constraining variable X in
the head, it follows that X is in the terminal accumulator and was
scheduling at some point in the pathp by extending the accumulator
with this variable. Let s be the subgoal that causes this augmentation.
Since we know by the premise that p is well-moded with respect
to a and f , we also know the constraint of s in f is satisfied by the
binding pattern at s derived from head binding pattern a by adorn.
Since scheduling s augmented the accumulator, X could not have
appeared in the previous subgoals as the release operator ⊖ would
have eliminated X from the obligation of the alternative. Hence, X
must be bound in the head. This is exactly what is required for the
consistency with AC. As there is nothing particular about i and X,
all indices in AC are similarly bound, hence the atomic constraint
is consistent with a.

If there are no indices in the accumulator at the end of the path,
the extracted constraint has to be trivial as ⊗ takes the minimal
elements. Every binding pattern is consistent with the trivial con-
straint (Lemma 3.15), so the lemma holds. □
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Lemma 5.3 (⊕ consistency homomorphism). A binding pattern
is consistent with two constraints combined with ⊕ iff that binding
pattern is consistent with each constraint individually, i.e.:

∀a,C1,C2. a ◁ (C1 ⊕ C2) ⇐⇒ a ◁C1 ∧ a ◁C2

Proof. (⇒) Assume a ◁ (C1 ⊕ C2). This means that for every
element AC of C1 ⊕ C2, we have a ◀ AC . Unfolding definition of
⊕, we have X and Y that are subsets of AC such that AC is X ∪ Y .
Unfolding definition of ◀, we have ∀i ∈ AC. ai = b. This certainly
holds for all subsets of AC, so we have ∀i ∈ X . ai = b and similarly
for Y . C1 must be a set of such X by definition of ⊕, thus a ◁ C1
holds. Same argument applies to C2 as ⊕ is commutative.

(⇐) Assume a◁C1 and a◁C2.C1 ⊕C2 is a subset ofC1 ×C2, so
it suffices to show a◁C1×C2. This requires showing a is consistent
with every atomic constraint in this set. Since each of these atomic
constraints can be represented as a union of an element from C1
and another element from C2 and that we know a is consistent
with each of these elements, it also has to be consistent with the
union. □

Lemma 5.5. Every constraint function generated from a moding
function gets more restrictive when step is applied to it.

∀mv. JmvKF ⪯ stepPr (JmvKF )

Proof. Unfolding definition of ⪯, it is sufficient to show the
equivalent pointwise property holds:

∀mv,p. JmvKF (p) ≤ stepPr (JmvKF )(p)

By assumption mv only has mode requirements for external
predicates. Let p be an arbitrary predicate within the domain of
JmvKF . Now we consider effect of step depending on whether p is
an internal or an external predicate.

If p is an external predicate, step does nothing, so the lemma
holds by reflexivity of ≤ (Lemma 3.17).

If p is an internal predicate, by assumption JmvKF (p) is {∅},
which is the bottom for ≤ (Lemma 3.17). □

Proposition 5.9 (Fast failure). After a single application of
step, the ill constraint propagates from the body of a clause to the
entire head predicate constraint.

∀f , cl, sub ∈ cl. f (pred(sub)) = ∅ =⇒ stepPr (f )(pred(head(cl))) = ∅

Proof. Fix f , cl, and sub assume the antecedent. By Lemma 4.18,
we know the clause constraint has the ill constraint. By Lemma 5.3,
we know any a that is consistent with a constraint combined using ⊕
with ∅must have a◁∅. There is no such a, thus the overall constraint
for the predicate at the head of the clause is ∅ as required. □

Corollary 5.16 (Fresh head incremental). If additionally, we
know that the head predicate of cl does not feature in Pr, we need
not consider the clauses of Pr when extending the constraint function.
That is:

analysePr∪{cl }(JmvKF ) = analyse{cl }(analysePr (JmvKF ))

Proof. Constraints of clauses are obtained by ⊕ operator and
intra-clausal analysis which is a function of the clause body and
the constraints for those subgoals. Clauses apart from cl are unaf-
fected by the constraint of cl as the head predicate for this clause by
assumption does not feature in other clauses, hence cannot affect

the overall predicate constraints. Since the step function preserves
constraints that are not mentioned in the set of clauses it is param-
etarised over, the lemma holds. □

Corollary 5.17 (Fast convergence). If cl is also non-recursive,
analyse converges to a fixpoint in a single step.

analysePr∪{cl }(JmvKF ) = step{cl }(analysePr (JmvKF ))

Proof. We know the constraints of predicates appearing in Pr
are all stable and body of cl can only feature them and external
predicates for which the constraints do not change. Since the clause
constraint is a function of its body and the constraints at this point,
single iteration is sufficient. □
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