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In this write-up we review and update our recent lattice QCD calculation of B→ K∗, Bs → φ ,
and Bs→ K∗ form factors [1]. These unquenched calculations, performed in the low-recoil kine-
matic regime, provide a significant improvement over the use of extrapolated light cone sum rule
results. The fits presented here include further kinematic constraints and estimates of additional
correlations between the different form factor shape parameters. We use these form factors along
with Standard Model determinations of Wilson coefficients to give Standard Model predictions
for several observables [2]. The modest improvements to the form factor fits lead to improved
determinations of FL, the fraction of longitudinally polarized vector mesons, but have little effect
on most other observables.
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1. Introduction

Measurements of the flavor-changing, neutral current (FCNC) decay b→ s are rapidly growing
in number. In particular, the semi-leptonic FCNC decays of B and Bs mesons to the vector mesons,
K∗ and φ respectively, have afforded us the opportunity to compare several associated observables
with theoretical predictions [3, 4, 5, 6]. The experimental data presently show a few deviations from
the Standard Model, including a smaller-than-predicted differential branching fraction in low-recoil
kinematic bins. These could be explained by beyond-the-Standard-Model (BSM) contributions to
one or two Wilson coefficients in the effective b→ s Hamiltonian [7, 8, 9, 10, 2, 11, 12]. However,
none of the analyses claim the Standard Model is an unacceptable description of the data. In fact it
is not yet certain that all theoretical uncertainties are under firm control.

The largest theoretical uncertainties in these observables are due to QCD interactions. Lattice
QCD (LQCD) calculations of the B(s)→ K∗/φ form factors can reduce a class of these uncertain-
ties, improving upon the determinations from sum rules. We recently completed a necessary first
step toward accurate, first-principles calculations of the form factors [1]. Below we briefly summa-
rize the results of computing matrix elements of the full basis of b→ s currents. The key improve-
ments made compared to previous lattice studies come through using high statistics, physical-mass
bottom quarks, and 2+ 1 flavors of sea quarks. In Sec. 3 we provide a minor improvement to the
method used to fit the form factor shapes. We close in Sec. 4 by touching upon issues which must
be confronted in order to improve the theoretical determinations of these observables.

2. Summary of the matrix element calculation

The effective Hamiltonian governing b→ s decay is

H b→s
eff = − 4GF√

2
V ∗tsVtb ∑

i
(CiOi +C′iO

′
i) . (2.1)

For the following operators in H b→s
eff , matrix elements factorize into local hadronic matrix ele-

ments, which are parametrized by seven form factors:

O7
(′) =

mbe
16π2 s̄σ

µνPR(L)bFµν , O9
(′) =

e2

16π2 s̄γ
µPL(R)b ¯̀γµ` , and O10

(′) =
e2

16π2 s̄γ
µPL(R)b ¯̀γµγ

5` ,

(2.2)
where PL/R = 1

2(1∓ γ5) and σ µν = i
2 [γ

µ ,γν ]. The bulk of this write-up focuses on the details of
the form factor calculation and consequences; however, we will comment on contributions to b→ s
from nonlocal matrix elements and other open issues at the end.

We used a subset of the MILC Collaboration gauge field configurations which include effects
of 2+ 1 flavors of O(a2), tadpole-improved (asqtad) sea quarks. We chose three ensembles, al-
lowing for modest tests of discretization and quark mass effects. We correctly anticipated that
obtaining a good signal over statistical noise would be a challenge. In order to address this issue
we used eight light quark sources on each configuration, obtaining over 30000 estimates of each
correlation function on each of the three ensembles.

The calculations were done with nonrelativistic b quarks, formulated in the B(s) rest frame
and accurate through O(v4). The matching of the effective field theory currents to the physical
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ones, done to O(α2
s ,αsΛQCD/mb,Λ

2
QCD/m2

b), is the source of the largest controlled systematic un-
certainty.

The momentum of the K∗ or φ meson varied from 0 to no greater than 4π/L (≈ 1 GeV) in
magnitude, primarily due to signal-to-noise degradation. Thus the lattice calculations are done in
the low recoil regime, i.e. at large q2, the lepton-pair invariant mass-squared.

From the imaginary-time correlation functions, we performed bootstrapped fits to extract nu-
merical estimates of the seven linearly independent form factors. The basis we use is {V,A0, A1,
A12, T1, T2, T23} (see [1] for definitions). Once these are determined on each ensemble, for sev-
eral values of final state momentum, it remains for us to parametrize the shape and give results
corresponding to the physical limit.

3. Updated fits

This section describes a minor update of our published results [1]. We fit each form factor,
generically denoted F(t), using the following parametrization

F(t) =
1

1− t/(mB(s) +∆mF)2

[
aF

0
(
1+ cF

01∆x+ cF
01s∆xs

)
+aF

1 z(t; t0)
]

(3.1)

where ∆x = (m2
π −m2

π,phys)/(4π fπ)
2 and ∆xs = (m2

ηs
−m2

ηs,phys)/(4π fπ)
2. Thus the parameters

cF
01 and cF

01s quantify the dependence of the form factors on the light and strange quark masses,
respectively. The splitting ∆mF between the B(s) mass and the relevant resonance is taken to be a
fixed value, but variations of up to 20% had no effect on the resulting physical form factors. We
determine cF

01s from a combined fit to B→ K∗, Bs→ φ , and Bs→ K∗ data [1] and include it as a
Gaussian prior in the subsequent fits to determine aF

0 , aF
1 , and cF

01. Physical results are obtained
by using our fit results for aF

0 and aF
1 with ∆x = ∆xs = 0. We tried several fits which allowed for

discretization effects, but no statistical signal was seen for the corresponding parameters.
At two kinematic points the form factors are not all linearly independent. When q2 = 0,

equations of motion may be used to relate matrix elements, giving two constraints on the form
factors. At the kinematic endpoint, q2 = t− = (mB −mV )

2, two pairs of form factors become
linearly dependent:

A12(0) =
m2

B−m2
V

8mBmV
A0(0) A12(t−) =

(mB +mV )(m2
B−m2

V − t−)
16mBm2

V
A1(t−)

T1(0) = T2(0) T23(t−) =
(mB +mV )(m2

B +3m2
V − t−)

8mBm2
V

T2(t−) . (3.2)

In our published work fits were done to individual form factors separately, with the exception of
a joint fit to T1 and T2, so that the constraint T1(0) = T2(0) could be implemented. This was the
most important constraint for existing measurements such as B(B→ K∗γ). In these proceedings
we implement all constraints in (3.2) by performing simultaneous fits to the vector and axial vector
form factors {V,A0,A1,A12} and to the tensor and pseudotensor form factors {T1,T2,T23}. This
will ensure that endpoint relations such as FL = 1

3 are precisely satisfied [13]. The constraints are
implemented by adding a fake “data point” to the fit requiring that the left-hand and right-hand
sides (in the physical mass limit) are equal up to some uncertainty. For q2 = 0 this uncertainty is
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Figure 1: Lattice QCD determinations of B→ K∗ (left), Bs→ φ (middle), and Bs→ K∗ (right) form factors
in the physical limit. Error bands include statistical and systematic uncertainties.

set to be 1%, an estimate for the size of O(z2) terms truncated from our fit ansatz. For q2 = q2
max

we take the uncertainty to be 10−4 since we have data in the high-q2 range. In practice, results do
not change if either of these is reduced.

We have tried including cross-correlations between all of the form factor data in order to
estimate the correlations between the full set of fit parameters. The data covariance matrix was not
determined well enough to allow for a single fit, so several fits to sets of 3 or 4 form factors were
done. We suspect that the data covariance matrices were still not entirely well-determined. For
example, when we included cross-correlations but no new kinematic constraints compared to our
published fits, we found deviations of approximately 1 standard deviation, despite the fact that the
fit parameters were independent of each other. Therefore, for our final fit we include only the data
correlations between A0 and A12 and between T1 and T2. These are the pairs of form factors which
must satisfy kinematic constraints (3.2) at q2 = 0. Figure 1 shows the results for the form factors
in the physical limit. Further details and results of these fits are appended to the end of the arXiv
version of this write-up [arXiv:1501.00367].

We use these new form factor fits, including the constraints (3.2) and the estimated correlation
matrix, to determine several B0 → K∗0µ+µ−, B± → K∗±µ+µ−, and Bs → φ µ+µ− observables.
For most quantities, notably the differential branching fraction, we find only negligible changes
to our published results fits [2]. Fig. 2 shows our Standard Model differential branching fraction
compared to experimental data, with the data consistently lower than the theoretical prediction (see
also Table 1). Tables 2 and 3 give Standard Model predictions for angular observables. The most
significant change compared to [2] is to FL, which shifts and is more precisely determined. This
is due to the inclusion of the A12(t−)/A1(t−) constraint. There is also a . 1σ shift in the central
value of S3 in the case of Bs→ φ µ+µ−.

We have repeated our beyond-the-Standard-Model fit to large-q2 experimental data for B0→
K∗0µ+µ− and Bs→ φ µ+µ−, allowing the Wilson coefficients C9 =CSM

9 +CNP
9 and C′9 to deviate
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Figure 2: Differential branching fractions for B0→ K∗0µ+µ− (left), B±→ K∗±µ+µ− (middle), and Bs→
φ µ+µ− (right). Experimental results shown are from [3, 6, 5], respectively.

q2 bin (GeV2) B0→ K∗0µ+µ− B±→ K∗±µ+µ− Bs→ φ µ+µ−

[14.18,16.00] 7.8(1.2)×10−8 8.4(1.3)×10−8 7.7(1.0)×10−8

[16.00,19.00] 5.73(79)×10−8 6.19(85)×10−8 5.14(67)×10−8

[14.18,19.00] 6.52(94)×10−8 7.0(1.0)×10−8 6.11(80)×10−8

Table 1: Standard model predictions for branching fractions dB/dq2(GeV−2) in bins of q2.

q2 bin (GeV2) FL AFB S3 P′4 P′5
[14.18,16.00] 0.360(42) 0.410(35) −0.160(29) 0.612(17) −0.702(59)
[16.00,19.00] 0.336(25) 0.347(21) −0.230(17) 0.650(08) −0.541(35)
[14.18,19.00] 0.347(32) 0.375(26) −0.198(22) 0.633(12) −0.614(45)

Table 2: Standard model predictions for B0→ K∗0µ+µ− angular observables in bins of q2.

q2 bin (GeV2) FL S3 P′4
[14.18,16.00] 0.382(20) −0.172(13) 0.624(8)
[16.00,19.00] 0.347(12) −0.242(08) 0.659(4)
[14.18,19.00] 0.364(15) −0.209(10) 0.642(5)

Table 3: Standard model predictions for Bs→ φ µ+µ− angular observables in bins of q2.

from their Standard Model values (C′9
SM ≈ 0). This yields CNP

9 = −1.1± 0.5 and C′9 = 1.2± 0.9,
comparable to what we found before [2]. Figure 3 shows a contour plot of the likelihood function
of this fit.

4. Open issues

One uncontrolled approximation in our calculation is that we fit correlation functions using a
single interpolating operator for the vector meson final state, assuming that it corresponds to the
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Figure 3: The likelihood function of a 2-parameter fit to B0→ K∗0µ+µ− and Bs→ φ µ+µ− experimental
data with q2 > 14.18 GeV2. The Standard Model (SM) value lies just outside the 2σ contour.

K∗ or φ . A fully controlled calculation would include scattering states in the analysis. In order
to do so, a much more expensive and complicated set of calculations must be undertaken. The
path forward was set out in a paper which appeared during this conference [14]. Work to study the
spectrum of Kπ and Kη states has recently begun [15, 16, 17], marking the first major step toward
a full lattice calculation of B→ K∗(→ Kπ) matrix elements. In the interim, the use of our form
factor results comes with the assumption that threshold effects will be small. One might expect
them to be smaller for Bs → φ than for B→ K∗ since the φ is relatively narrow. One might also
note that heavy meson chiral perturbation theory predicts percent-level threshold effects in B→D∗

form factors [18, 19] and hope that such is the case for lighter-mass mesons. Nevertheless at least
there is a plan to systematically include this effect in the future.

Perhaps a larger open question regards the extent to which form factors are sufficient to deter-
mine the hadronic contributions to observables. In addition to matrix elements of 2-quark operators
(2.2), there are matrix elements of non-local operators Oi(x) jµ(y), notably where Oi is a 4-quark
b→ s operator which creates a c̄c pair, annihilated at another point by the vector current jµ . It was
expected that these matrix elements would make theoretical predictions unreliable for

√
q2 ≈mJ/ψ

or mψ ′ . Within the context of an operator product expansion, leading-order contributions from these
non-local operators can be (and, in our work, have been) included [20, 21]. However, contributions
from the ψ(4160) to the B+→ K+µ+µ− are larger than anticipated [22] and the same appears to
be true for decays to vector mesons. Understanding nonfactorizable contributions is probably the
most important open issue which theoretical predictions must confront [23].

5. Conclusions

This write-up summarizes our recent calculation of B→ K∗, Bs→ φ , and Bs→ K∗ form fac-
tors. Here we give a slightly improved set of fits to the form factor shapes, including all four
kinematic constraints and estimates of the more significant correlations between form factor pa-
rameters. Given that this update is only a minor improvement upon our published work and has
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a small effect on observables, we would be grateful if those authors using the form factor results
presented here would cite Ref. [1] in addition to this work.
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Form factor F B→ K∗ Bs→ φ Bs→ K∗

A0 87 0 −87
V , T1 135 45 −42

A1, A12, T2, T23 550 440 350

Table 4: Mass differences ∆mF (in MeV), between the initial state and pertinent resonance (or effective
pole) contributing to form factor F .

A. Supplemental material

In this Appendix we give detailed tables in order for readers to use our new fits to reconstruct
the form factors (in the physical limit). We also compare the new fits to the published ones [1].

Table 4 gives the mass differences between the B or Bs and the resonance (or effective pole)
relevant for the various form factors. These enter the prefactor of the form factor shape (3.1). The
remaining tables give results for the constant and linear coefficients (a0 and a1) of z in the form
factor shape (3.1): Tables 5 and 6 for B→ K∗ decays and Tables 7 and 8 for Bs → φ decays. In
Tables 9 and 10 we give results for Bs→ K∗ decays, such as the b→ u decay Bs→ K∗`ν and the
b→ d decay Bs→ K∗``. These fit results come from separate fits for each Table, with correlations
included only between A0 and A12 and between T1 and T2. Other data correlations were not included
for reasons discussed in Sec. 3.1

Those wishing to use our form factor calculations for predictions of observables need not
include all the correlation data. Large q2 observables predominantly depend on V and A1, and
their fit parameters are not very correlated. On the other hand, the parameters for individual form
factors, a0 and a1, are highly correlated, so the uncertainty of the LQCD-determined form factor
F(t) [Eq. (3.1)] is given (in the physical limit) by

δF(t) =
1

1− t/(mB(s) +∆mF)2

[
(δaF

0 )
2 + (δaF

1 )
2z(t; t0)2 + 2CaF

0 ,a
F
1
(δaF

0 )(δaF
1 )z(t; t0)

] 1
2
. (A.1)

Since physical results are obtained by setting ∆x = ∆xs = 0 in (3.1), one does not need our results
for c01 or c01s except to look at the quark-mass dependence of the form factors. Data files containing
the fit results as tabulated in Tables 5-10 are included as ancillary files with the arXiv submission.

Figures 4, 5, and 6 show the fit results presented here compared to our published results [1].
The most visible difference in the Figures is the reduction of uncertainty in A0 at low values of q2

(positive z) due to the constraint that it equals A12 at q2 = 0 up to a known multiplicative factor.
The inclusion of the q2 = t− constraints ensures endpoint relations are accurately satisfied [13].
Together these improvements to the fits yield slightly more precise and accurate predictions for
several observables. Table 11 gives values for each of the form factors at a few reference kinematic
points.

1ArXiv version 1 of this write-up gave an estimate of the full correlation matrix using fits to subsets of form factors.
However, the resulting matrix was not positive semi-definite. One could devise a method for removing the negative
eigenvalues, but since the differences between the fits given in versions 1 and 2 of these proceedings are not significant
compared to other uncertainties, we believe the neglected correlations are presently insignificant.
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p value Cp,aV
0

Cp,aV
1

C
p,a

A0
0

C
p,a

A0
1

C
p,aA1

0
C

p,aA1
1

C
p,aA12

0

aV
0 0.4975(667)

aV
1 −2.015(916) 0.8590

aA0
0 0.5023(370) 0.0000 0.0000

aA0
1 −1.608(447) 0.0000 0.0000 0.6673

aA1
0 0.2848(233) 0.0000 0.0000 0.0002 −0.0401

aA1
1 0.191(280) 0.0000 0.0000 0.0000 0.0104 0.9483

aA12
0 0.2195(238) 0.0000 0.0000 0.9043 0.9091 0.0073 −0.0019

aA12
1 0.332(300) 0.0000 0.0000 0.8878 0.9272 −0.0487 0.0126 0.9756

Table 5: Fit parameters and correlation matrix elements for B→ K∗ form factors V , A0, A1, and A12.

p value C
p,aT1

0
C

p,aT1
1

C
p,aT2

0
C

p,aT2
1

C
p,a

T23
0

aT1
0 0.4197(241)

aT1
1 −1.363(259) 0.5005

aT2
0 0.27997(1948) 0.8503 0.8015

aT2
1 0.117(236) 0.8205 0.8364 0.9324

aT23
0 0.5235(451) 0.0064 −0.0022 0.0117 −0.0061

aT23
1 −0.271(579) −0.0341 0.0118 −0.0628 0.0325 0.9520

Table 6: Fit parameters and correlation matrix elements for B→ K∗ form factors T1, T2, and T23.

p value Cp,aV
0

Cp,aV
1

C
p,a

A0
0

C
p,a

A0
1

C
p,aA1

0
C

p,aA1
1

C
p,aA12

0

aV
0 0.4525(303)

aV
1 −2.399(496) 0.8044

aA0
0 0.52935(1633) 0.0000 0.0000

aA0
1 −1.592(243) 0.0000 0.0000 0.7791

aA1
0 0.28283(1107) 0.0000 0.0000 −0.0097 −0.0774

aA1
1 0.1238(1501) 0.0000 0.0000 −0.0006 −0.0047 0.9353

aA12
0 0.20661(978) 0.0000 0.0000 0.9322 0.9364 0.0022 0.0001

aA12
1 0.4763(1473) 0.0000 0.0000 0.9111 0.9598 −0.0904 −0.0055 0.9690

Table 7: Fit parameters and correlation matrix elements for Bs→ φ form factors V , A0, A1, and A12.

p value C
p,aT1

0
C

p,aT1
1

C
p,aT2

0
C

p,aT2
1

C
p,a

T23
0

aT1
0 0.40160(1057)

aT1
1 −1.1340(1325) 0.3041

aT2
0 0.28297(752) 0.7021 0.6263

aT2
1 0.2487(975) 0.6767 0.6467 0.9273

aT23
0 0.52193(1566) 0.0202 0.0104 0.0351 0.0080

aT23
1 0.384(236) −0.0689 −0.0357 −0.1199 −0.0273 0.9455

Table 8: Fit parameters and correlation matrix elements for Bs→ φ form factors T1, T2, and T23.
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p value Cp,aV
0

Cp,aV
1

C
p,a

A0
0

C
p,a

A0
1

C
p,aA1

0
C

p,aA1
1

C
p,aA12

0

aV
0 0.3367(466)

aV
1 −2.879(661) 0.9037

aA0
0 0.50344(1856) 0.0000 0.0000

aA0
1 −1.855(235) 0.0000 0.0000 0.5757

aA1
0 0.23390(1151) 0.0000 0.0000 −0.0173 −0.0681

aA1
1 0.0907(1316) 0.0000 0.0000 0.0140 0.0554 0.9119

aA12
0 0.20303(1233) 0.0000 0.0000 0.8777 0.8804 −0.0175 0.0142

aA12
1 0.4442(1509) 0.0000 0.0000 0.8480 0.9095 −0.0785 0.0638 0.9637

Table 9: Fit parameters and correlation matrix elements for Bs→ K∗ form factors V , A0, A1, and A12.

p value C
p,aT1

0
C

p,aT1
1

C
p,aT2

0
C

p,aT2
1

C
p,a

T23
0

aT1
0 0.34878(1423)

aT1
1 −0.9807(1783) 0.1851

aT2
0 0.24243(1063) 0.6786 0.6929

aT2
1 0.2051(1220) 0.6440 0.7236 0.9296

aT23
0 0.4701(237) −0.0026 0.0018 −0.0052 0.0044

aT23
1 0.138(291) −0.0356 0.0244 −0.0703 0.0595 0.9468

Table 10: Fit parameters and correlation matrix elements for Bs→ K∗ form factors T1, T2, and T23.

B→ K∗

q2 V A0 A1 A12 T1 T2 T23

q2
max 1.92(15) 1.90(13) 0.620(35) 0.444(25) 1.54(10) 0.623(35) 1.255(71)
16 1.28(11) 1.280(90) 0.523(36) 0.389(30) 1.049(70) 0.520(33) 1.010(67)
12 0.84(12) 0.861(77) 0.440(42) 0.339(40) 0.711(54) 0.433(37) 0.809(81)
0 0.31(15) 0.351(74) 0.303(51) 0.251(53) 0.291(44) 0.291(44) 0.50(10)

Bs→ φ

q2 V A0 A1 A12 T1 T2 T23

q2
max 1.74(10) 1.856(98) 0.624(32) 0.396(21) 1.351(75) 0.605(31) 1.128(58)
16 1.195(73) 1.325(71) 0.529(29) 0.359(20) 0.979(54) 0.521(27) 0.966(51)
12 0.767(64) 0.907(53) 0.439(28) 0.321(22) 0.680(38) 0.439(25) 0.810(47)
0 0.244(71) 0.391(40) 0.294(28) 0.248(26) 0.303(23) 0.305(22) 0.555(45)

Bs→ K∗

q2 V A0 A1 A12 T1 T2 T23

q2
max 1.99(13) 2.35(13) 0.582(32) 0.424(23) 1.470(98) 0.578(31) 1.180(63)
16 1.035(78) 1.355(77) 0.451(26) 0.363(22) 0.890(56) 0.459(26) 0.910(52)
12 0.584(86) 0.884(55) 0.370(26) 0.321(25) 0.605(39) 0.383(25) 0.743(53)
0 0.07(10) 0.335(39) 0.242(26) 0.243(29) 0.259(27) 0.261(25) 0.483(55)

Table 11: Form factor values (and total estimated uncertainties) at several reference values of q2 (in GeV2)
using updated fits to our lattice results.
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Figure 4: Comparison of B→ K∗ form factor fits presented here (blue dashed and dotted lines) compared to
published fits [1] (teal bands). Black symbols are LQCD results at unphysical quark masses, whereas curves
and bands are extrapolated to the physical limit.
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Figure 5: Comparison of Bs→ φ form factor fits presented here (blue dashed and dotted lines) to published
fits [1] (pink bands). Black symbols are LQCD results at unphysical quark masses, whereas curves and
bands are extrapolated to the physical limit.
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Figure 6: Comparison of Bs→ K∗ form factor fits presented here (blue dashed and dotted lines) compared
to published fits [1] (orange bands). Black symbols are LQCD results at unphysical quark masses, whereas
curves and bands are extrapolated to the physical limit.
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