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TESTING IN HIGH-DIMENSIONAL SPIKED MODELS

By Iain M. Johnstone∗ and Alexei Onatski†

Stanford University and University of Cambridge

We consider the five classes of multivariate statistical problems
identified by James (1964), which together cover much of classical
multivariate analysis, plus a simpler limiting case, symmetric ma-
trix denoising. Each of James’ problems involves the eigenvalues of
E−1H where H and E are proportional to high dimensional Wishart
matrices. Under the null hypothesis, both Wisharts are central with
identity covariance. Under the alternative, the non-centrality or the
covariance parameter ofH has a single eigenvalue, a spike, that stands
alone. When the spike is smaller than a case-specific phase transition
threshold, none of the sample eigenvalues separate from the bulk,
making the testing problem challenging. Using a unified strategy for
the six cases, we show that the log likelihood ratio processes param-
eterized by the value of the sub-critical spike converge to Gaussian
processes with logarithmic correlation. We then derive asymptotic
power envelopes for tests for the presence of a spike.

1. Introduction. High-dimensional multivariate models and methods, such as
regression, principal components, and canonical correlation analysis, repay study in
frameworks where the dimensionality diverges to infinity together with the sample
size. “Spiked” models that deviate from a reference model along a small fixed number
of unknown directions have proven to be a fruitful abstraction and research tool in
this context. A basic statistical question that arises in the analysis of such models
is how to test for the presence of spikes in the data.

James (1964) arranges multivariate statistical problems in five different groups
with broadly similar features. His remarkable classification, recalled in Table 1, relies
on the five most common hypergeometric functions pFq. In this paper, we describe
rank-one spiked models that represent each of James’ classes in a high dimensional
setting. We derive the asymptotic behavior of the corresponding likelihood ratios in
a regime where the dimensionality p of the data and the degrees of freedom n1, n2
increase proportionally. Specifically, we study the ratios of the joint densities of the
relevant data under the alternative hypothesis, which assumes the presence of a
spike, to that under the null of no spike. The relevant data consist, in each case, of
the maximal invariant statistic represented by eigenvalues of a large random matrix.
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Table 1

The five cases of James (1964)

Statistical method n1H n2E

0F0 PCA Principal components analysis Wp(n1,Σ +Φ) n2Σ
[latent roots of covariance matrix]

1F0 SigD Signal Detection Wp(n1,Σ +Φ) Wp(n2,Σ)
[equality of covariance matrices]

0F1 REG0 Multivariate regression, known error Wp(n1,Σ, n1Φ) n2Σ
covariance [non-central means]

1F1 REG Multivariate regression, unknown error Wp(n1,Σ, n1Φ) Wp(n2,Σ)
covariance [non-central latent roots]

2F1 CCA Canonical correlation analysis Wp(n1,Σ,Φ(Y )) Wp(n2,Σ)

James’ names for the cases, when different from ours, are shown in brackets. Final two columns
interpret H and E of (SM1) for Gaussian data, so that Wp denotes a p-variate central or
noncentral Wishart distribution, see Definitions. Matrix Φ has low rank, equal to one in this

paper. For CCA, Φ(Y ) is a random noncentrality matrix, see Supplementary Material (SM) 3.2
for definition. In cases 1 and 3, E is deterministic, Σ is known, and n2 disappears. Otherwise E

is assumed independent of H.

We find that the joint distributions of the eigenvalues under the alternative hy-
pothesis and under the null are mutually contiguous when the values of the spike is
below a phase transition threshold. The value of the threshold depends on the prob-
lem type. Furthermore, we find that the log likelihood ratio processes parametrized
by the value of the spike are asymptotically Gaussian, with logarithmic mean and
autocovariance functions. These findings allow us to compute the asymptotic power
envelopes for the tests for the presence of spikes in five multivariate models repre-
senting each of James’ classes.

Our analysis is based on classical results that assume Gaussian data. All the
likelihood ratios that we study correspond to the joint densities of the solutions to
the basic equation of classical multivariate statistics,

(1) det (H − λE) = 0,

where the hypothesis H and error sums of squares E are proportional to Wishart
matrices, as summarized for the various cases in Table 1. The five cases can be
linked via sufficiency and invariance arguments to the statistical problems listed in
the table. We briefly discuss these links in the next section.

James’ classification suggests common features that call for a systematic ap-
proach. Thus the main steps of our asymptotic analysis are the same for all the five
cases. The likelihood ratios have explicit forms that involve hypergeometric func-
tions of two high-dimensional matrix arguments. However, one of the arguments
has low rank under our spiked model alternatives. Indeed, for tractability, we focus
on the rank one setting. We can then represent the hypergeometric function of two
high-dimensional matrix arguments in the form of a contour integral that involves a
scalar hypergeometric function of the same type, Lemma 1, using the recent result
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of [16]. Then we deform the contour of integration so that the integral becomes
amenable to Laplace approximation analysis, extending [36, ch. 4].

Using the Laplace approximation technique, we show that the log likelihood ratios
are asymptotically equivalent to simpler random functions of the spike parameters,
Theorems 10 and 11. The randomness enters via a linear spectral statistic of a
large random matrix of either sample covariance or F -ratio type. Using central
limit theorems for the two cases, due to [6] and [53] respectively, we derive the
asymptotic Gaussianity and obtain the mean and the autocovariance functions of
the log likelihood ratio processes, Theorem 12.

These asymptotics of the log likelihood processes show that the corresponding
statistical experiments do not converge to Gaussian shift models. In other words,
the experiments that consist of observing the solutions to equation (1) parameter-
ized by the value of the spike under the alternative hypothesis are not of Locally
Asymptotically Normal (LAN) type. This implies that there are no ready-to-use
optimality results associated with LAN experiments that can be applied in our set-
ting. However at the fundamental level, the derived asymptotics of the log likelihood
ratio processes is all that is needed for the asymptotic analysis of the risk of the
corresponding statistical decisions.

In this paper, we use the derived asymptotics together with the Neyman-Pearson
lemma and Le Cam’s third lemma to find simple analytic expressions for the asymp-
totic power envelopes for the statistical tests of the null hypothesis of no spike in the
data, Theorem 13. The form of the envelope depends only on whether both H and
E in equation (1) are Wisharts or only H is Wishart whereas E is deterministic.

For most of the cases, as the value of the spike under the alternative increases,
the envelope, at first, rises very slowly. Then, as the spike approaches the phase
transition, the rise quickly accelerates and the envelope ‘hits’ unity at the threshold.
However, in cases of two Wisharts and when the dimensionality is not much smaller
than the degrees of freedom of E, the envelope rises more rapidly. In such cases, the
information in all the eigenvalues of E−1H might be useful for detecting population
spikes which lie far below the phase transition threshold.

A type of the analysis performed in this paper has been previously implemented
in the study of the principal components case by [39]. Our work here identifies
common features in James’ classification of multivariate statistical problems and
uses them to extend the analysis to the full system. One of the hardest challenges
in such an extension is the rigorous implementation of the Laplace approximation
step. With this goal in mind, we have developed asymptotic approximations to the
hypergeometric functions 1F1 and 2F1 which are uniform in certain domains of the
complex plane, Lemma 3.

The simple observation that the solutions to equation (1) can be interpreted as
the eigenvalues of random matrix E−1H relates our work to the vast literature on
the spectrum of large random matrices. Three extensively studied classical ensem-
bles of random matrices are the Gaussian, Laguerre and Jacobi ensembles, e.g. [30].
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However, only the Laguerre and Jacobi ensembles appear in high-dimensional anal-
ysis of James’ five-fold classification. This prompts us to look for a “missing” class
in James’ system that could be linked to the Gaussian ensemble.

Such a class is easy to obtain by taking the limit of
√
n1 (H − Σ) with Σ = Ip

as n1 → ∞, for p fixed. We call the corresponding statistical problem “symmetric
matrix denoising”(SMD). Under the null hypothesis, the observations are given by
a p × p matrix Z/

√
p with Z from the Gaussian Orthogonal Ensemble. Under the

alternative, the observations are given by Z/
√
p + Φ, where Φ is a deterministic

symmetric matrix of low rank, again of rank one for this paper. We add this “case
zero”to James’ classification and derive the asymptotics of the corresponding log
likelihood ratio and power envelope.

To summarize, the contributions of this paper are as follows.

• We revisit James’ classification, which covers a large part of classical multi-
variate analysis, now in the setting of high-dimensional data and show that
the classification accommodates low rank structures as departures from the
classical null hypotheses.

• We show that in such high dimensional settings with rank-one structure, ran-
dom matrix theory allows tractable approximations to the joint eigenvalue
density functions, in place of slowly converging zonal polynomial series.

• We show that the log likelihood ratio processes, when parametrized by spike
magnitude, converge to Gaussian process limits in the sub-critical interval.

• Hence, we show that informative tests are possible based on all the eigenvalues
whereas tests based on the largest eigenvalue alone are uninformative.

• As a tool, we develop new uniform approximations to certain hypergeometric
functions.

• We identify symmetric matrix denoising as a limiting case of each of James’
models. It is the simplest model displaying all the phenomena seen in the
paper. We clarify the manner in which the simpler cases are limits of the more
complex ones.

The rest of the paper fleshes out this program and its conclusions. The proofs
are largely deferred to the extensive Supplementary Material (SM). They reflect
substantial effort to identify and exploit common structure in the six cases. Indeed
some of this common structure appears remarkable and not yet fully explained.

Definitions and global assumptions. Let Z be an n × p data matrix with rows
drawn i.i.d. from Np(0,Σ), a p-dimensional normal distribution with mean 0 and
covariance Σ. Suppose that M is also n× p, but deterministic. If Y =M +Z, then
H = Y ′Y has a p dimensional Wishart distribution Wp(n,Σ,Ψ) with n degrees of
freedom, covariance matrix Σ and non-centrality matrix Ψ = Σ−1M ′M . The central
Wishart distribution, corresponding to M = 0, is denoted Wp(n,Σ).

Throughout the paper, we shall assume that

p ≤ min {n1, n2} ,
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where p is the dimensionality of matrices H and E, and n1, n2 are the degrees of
freedom of the corresponding Wishart distributions, as summarized in Table 1. The
assumption p ≤ n2 ensures almost sure invertibility of matrix E in (1), whereas the
assumption p ≤ n1 while not essential, is made for brevity, as it reduces the number
of various situations which need to be considered.

2. Links to statistical problems. We briefly review examples of statistical
problems, old and new, that lead to each of James’ five cases, plus symmetric matrix
denoising, and explain our choice of labels for those cases.

PCA. In the first case n1 i.i.d. Np (0,Ω) observations are used to test the null
hypothesis that the population covariance Ω equals a given matrix Σ. The alternative
of interest is

Ω = Σ + Φ with Φ = θψψ′,

where θ > 0 and ψ are unknown, and ψ is normalized so that ‖Σ−1/2ψ‖ = 1.
Without loss of generality (wlog), we may assume that Σ = Ip. Then under the

null, the data are isotropic noise, whereas under the alternative, the first princi-
pal component explains a larger portion of the variation than the other principal
components.

The null and the alternative hypotheses can be formulated in terms of the spectral
‘spike’ parameter θ as

(2) H0 : θ0 = 0 and H1 : θ0 = θ > 0,

where θ0 is the true value of the ‘spike’. This testing problem remains invariant
under the multiplication of the p × n1 data matrix from the left and from the
right by orthogonal matrices, and under the corresponding transformation in the
parameter space. A maximal invariant statistic consists of the solutions λ1 ≥ ... ≥ λp
of equation (1) with n1H equal to the sample covariance matrix and E = Σ. We
restrict attention to the invariant tests. Therefore, the relevant data are summarized
by λ1, ..., λp. For convenience, details of the invariance and sufficiency arguments for
all cases are in SM 2.1.

SigD. Consider testing the equality of covariance matrices, Ω and Σ, correspond-
ing to two independent p-dimensional zero-mean Gaussian samples of sizes n1 and
n2. The alternative hypothesis is the same as for case PCA. Invariance considera-
tions lead to tests based on the eigenvalues of the F -ratio of the sample covariance
matrices. Matrix H from (1) equals the sample covariance corresponding to the ob-
servations that might contain a ‘signal’ responsible for the covariance spike, whereas
matrix E equals the other ‘noise’ sample covariance matrix. We again can assume
that the population covariance of the ‘noise’ Σ = Ip, although this time it is un-
known to the statistician (SM 2.1 explains why such an assumption involves no loss
of generality). Here, we find it more convenient to work with the p solutions to the
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equation

(3) det

(

H − λ

(

E +
n1
n2
H

))

= 0,

which we also denote λ1 ≥ ... ≥ λp to make the notations as uniform across the
different cases as possible. Note that as the second sample size n2 → ∞, while n1
and p are held constant, equation (3) reduces to equation (1), E converges to Σ,
and SigD reduces to PCA.

REG0, REG. Now consider linear regression with multivariate response

Y = Xβ + ε

when the goal is to test linear restrictions on the matrix of coefficients β. In case
REG0 the covariance matrix Σ of the i.i.d. Gaussian rows of the error matrix ε is
assumed known. REG corresponds to unknown Σ.

As explained in [33, pp. 433–434], the problem of testing linear restrictions on
β can be cast in the canonical form, where the matrix of transformed response
variables is split into three parts, Y1, Y2, and Y3. Matrix Y1 is n1× p, where p is the
number of response variables and n1 is the number of linear restrictions (per each
of the p columns of matrix β). Under the null hypothesis, EY1 = 0, whereas under
the alternative,

(4) EY1 =
√

n1θϕψ
′,

where θ > 0, ‖Σ−1/2ψ‖ = 1, and ‖ϕ‖ = 1. Matrices Y2 and Y3 are (q − n1)× p and
(T − q)×p, respectively, where q is the number of regressors and T is the number of
observations. These matrices have, respectively, unrestricted and zero means under
both the null and the alternative. SM 2.1 contains a discussion of the relationship
between alternative (4) and a corresponding constraint on the coefficients of the
untransformed regression model.

In the important example of comparison of q group means, i.e. one-way MANOVA,
the null hypothesis imposes equality of all means, while a rank one alternative would
posit that the q mean vectors lie along a line, for example µk = µ1 + skψ for scalar
sk, k = 2, . . . , q and ψ ∈ R

p. This will be a plausible reduction of a global alternative
hypothesis in some applications.

For REG0, sufficiency and invariance arguments lead to tests based on the solu-
tions λ1, ..., λp of (1) with

H = Y ′
1Y1/n1 and E = Σ.

These solutions represent a multivariate analog of the difference between the sum
of squared residuals in the restricted and unrestricted regressions. Under the null
hypothesis, n1H is distributed as Wp(n1,Σ) whereas under the alternative, it is
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distributed as Wp(n1,Σ, n1Φ), where Φ = θΣ−1ψψ′. Without loss of generality, we
may assume that Σ = Ip.

The canonical form of REG0 is essentially equivalent to the recently studied set-
ting of matrix denoising

Y1 =M + Z.

References which point to a variety of applications include [15, 47, 34, 19]. Often M
is assumed to have low rank, and the matrix valued noise Z to have i.i.d. Gaussian
entries. Here we test M = 0 versus a rank one alternative.

For REG, similar arguments lead to tests based on the p solutions λ1, ..., λp of (3)
with

H = Y ′
1Y1/n1 and E = Y ′

3Y3/n2,

where the error d.f. n2 = T − q. These solutions represent a multivariate analog of
the F ratio: the difference between the sum of squared residuals in the restricted and
unrestricted regressions to the sum of squared residuals in the restricted regression.
Again, we may assume wlog that Σ, although unknown to the statistician, equals
Ip. Note that, as n2 → ∞ while n1 and p are held constant, REG reduces to REG0.

CCA. Consider testing for independence between Gaussian vectors xt ∈ R
p

and yt ∈ R
n1 , given zero mean observations with t = 1, ..., n1 + n2. Partition the

population and sample covariance matrices of the observations (x′t, y
′
t)
′ into

(

Σxx Σxy

Σyx Σyy

)

and

(

Sxx Sxy
Syx Syy

)

,

respectively. Under H0 : Σxy = 0, the alternative of interest is

(5) Σxy =

√

n1θ

n1θ + n1 + n2
ψϕ′,

where the vectors of nuisance parameters ψ ∈ R
p and ϕ ∈ R

n1 are normalized so
that

‖Σ−1/2
xx ψ‖ = ‖Σ−1/2

yy ϕ‖ = 1.

The peculiar parameterizations of the alternative θ 6= 0 in (4) and (5) are chosen
to allow unified treatments of PCA and REG0 and of SigD, REG and CCA in our
main results, Theorems 11 and 12 below.

The test can be based on the squared sample canonical correlations λ1, ..., λp,
which are solutions to (1) with

H = SxyS
−1
yy Syx and E = Sxx.

Remarkably, the squared sample canonical correlations also solve (3) with different
H and E, such that E is a central Wishart matrix and H is a non-central Wishart
matrix conditionally on a random non-centrality parameter (see SM 3.2).
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SMD. We observe a p×p matrix X = Φ+Z/
√
p, where Z is a noise matrix from

the Gaussian Orthogonal Ensemble (GOE), i.e. it is symmetric and

Zii ∼ N (0, 2) and Zij ∼ N (0, 1) if i > j.

We seek to make inference about a symmetric rank-one “signal” matrix Φ = θψψ′.
The null and the alternative hypotheses are given by (2). The nuisance vector ψ ∈ R

p

is normalized so that ‖ψ‖ = 1. The problem remains invariant under the multiplica-
tion of X from the left by an orthogonal matrix, and from the right by its transpose.
A maximal invariant statistic consists of the solutions λ1, ..., λp to (1) with H = X
and E = Ip. We consider tests based on λ1, ..., λp.

The SMD case can be viewed as a degenerate version of each of the above cases.
For example, consider PCA with p held fixed and n1 → ∞. Take Σ = Ip for conve-
nience and set Ω = Ip +

√

p/n1Φ with Φ = θψψ′, so that the original value of the
spike is rescaled to be a local perturbation. Now write H in the form Ω1/2ȞΩ1/2

where Ȟ ∼Wp(n1, Ip). A standard matrix central limit theorem for p fixed, e.g. [20,
Th. 2.5.1], says that

Ȟ = Ip + Z/
√
n1 + oP(n

−1/2
1 ),

where Z belongs to GOE. Writing Ω1/2 = Ip+
1
2

√

p/n1Φ+o(n
−1/2
1 ), and introducing

µ =
√

n1/p (λ− 1), we can rewrite

det(H − λIp) = (p/n1)
p/2 det[Φ + Z/

√
p− µIp + oP(1)],

so that PCA degenerates to SMD. Compare also [4].
Indeed, each of the cases eventually degenerate to SMD via sequential asymptotic

links (SM 2.2 has details). For convenience, we summarize links between the different
cases and the definitions of the corresponding matrices H and E in Figure 1. We
note that the SMD model has been studied recently, e.g. [10, 28] and references
therein, though not with our techniques.

Cases SMD, PCA, and REG0, forming the upper half of the diagram, correspond
to random H and deterministic E. The cases in the lower half of the diagram corre-
spond to both H and E being random. Cases PCA and SigD are “parallel” to cases
REG0 and REG in the sense that the alternative hypothesis is characterized by a
rank one perturbation of the covariance and of the non-centrality parameter of H
for the former and for the latter two cases, respectively. Case CCA “stands alone”
because of the different structure of H and E. As discussed above, CCA can be
reinterpreted in terms of H and E such that E is Wishart, but H is a non-central
Wishart only after conditioning on a random non-centrality parameter.

3. The likelihood ratios. Our goal is to study the asymptotic behavior of
likelihood ratios based on the observed eigenvalues

Λ = diag {λ1, ..., λp} .
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H = SxyS
−1
yy Syx

E = Sxx

CCA
n1H = Wp(n1, Ip, n1Φ)
n2E =Wp(n2, Ip)

REG

n1H = Wp(n1, Ip, n1Φ)
E = Ip

REG0

n2 → ∞ n2 → ∞

SigD
n1H = Wp(n1, Ip +Φ)
n2E =Wp(n2, Ip)

PCA
n1H = Wp(n1, Ip +Φ)
E = Ip

n1 → ∞
θ →

√

p/n1θ

n1 → ∞
θ →

√

p/n1θ

H = GOE/
√
p+Φ

E = Ip

SMD

n2 → ∞

Fig 1. Matrices H and E, and links between the different cases. Without loss of generality, matrix
E or, in SigD, REG, and CCA cases, its population counterpart Σ is assumed to be equal to Ip.
Matrix Φ has the form θψψ′ with θ ≥ 0 and ‖ψ‖ = 1.



10 I. M. JOHNSTONE AND A. ONATSKI

Let p(Λ; θ) be the joint density of the eigenvalues under the alternative and p(Λ; 0)
the corresponding density under the null. James’ formulas for these joint densities
lead to our starting point, which is a unified form for the likelihood ratio

(6) L(θ; Λ) =
p(Λ; θ)

p(Λ; 0)
= α (θ) pFq(a, b; Ψ,Λ) ,

where Ψ = Ψ(θ) is a p-dimensional matrix diag {Ψ11, 0, ..., 0} , and the values of Ψ11,
α (θ), p, q, a, and b are as given in Table 8.

For SMD, we prove that L (θ; Λ) is as in (6) in SM 3.1. For PCA, the explicit form
of the likelihood ratio is derived in [39]. For SigD, REG0, and REG, the expressions
(6) follow, respectively, from equations (65), (68), and (73) of [23]. For CCA, the
expression is a corollary of [33, Th. 11.3.2]. Further details appear in SM 3.2.

Recall that hypergeometric functions of two matrix arguments Ψ and Λ are de-
fined as

pFq (a, b; Ψ,Λ) =
∞
∑

k=0

1

k!

∑

κ⊢k

(a1)κ ... (ap)κ
(b1)κ ... (bq)κ

Cκ (Ψ)Cκ (Λ)

Cκ (Ip)
,

where a = (a1, ..., ap) and b = (b1, ...., bq) are parameters, κ are partitions of the
integer k, (aj)κ and (bi)κ are the generalized Pochhammer symbols, and Cκ are
the zonal polynomials, e.g. [33, Def. 7.3.2.]. Note that some links between the cases
illustrated in Figure 1 can also be established via asymptotic relations between the
hypergeometric functions. For example, the confluence relations

0F0 (Ψ,Λ) = lim
a→∞ 1F0

(

a; a−1Ψ,Λ
)

and

0F1 (b; Ψ,Λ) = lim
a→∞ 1F1

(

a, b; a−1Ψ,Λ
)

e.g. [37, eq. 35.8.9], imply the links SigD 7→ PCA and REG 7→ REG0 as n2 → ∞
for p and n1 held constant.

In the next section, we shall study the asymptotic behavior of the likelihood ratios
(6) as n1, n2, and p go to infinity so that

(7) c1 ≡ p/n1 → γ1 ∈ (0, 1) and c2 ≡ p/n2 → γ2 ∈ (0, 1] .

Table 2

Parameters of the explicit expression (6) for the likelihood ratios. Here n ≡ n1 + n2.

Case pFq α (θ) a b Ψ11

SMD 0F0 exp
(

−pθ2/4
)

θp/2

PCA 0F0 (1 + θ)−n1/2 θn1/(2 (1 + θ))

SigD 1F0 (1 + θ)−n1/2 n/2 θn1/ (n2 (1 + θ))

REG0 0F1 exp (−n1θ/2) n1/2 θn2
1/4

REG 1F1 exp (−n1θ/2) n/2 n1/2 θn2
1/ (2n2)

CCA 2F1 (1 + n1θ/n)
−n/2 (n/2, n/2) n1/2 θn2

1/
(

n2
2 + n2n1 (1 + θ)

)
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Table 3

Semi-circle, Marchenko-Pastur and scaled Wachter distributions

Case F lim
γ Density, λ ∈ [β−, β+] β± Threshold θ̄

SMD SC
R(λ)

2π
±2 1

PCA
REG0

MP
R(λ)

2πγ1λ
(1±√

γ1)
2 √

γ1

SigD
REG
CCA

W
(γ1 + γ2)R(λ)

2πγ1λ(γ1 − γ2λ)
γ1

(

ρ± 1

ρ± γ2

)2
ρ+ γ2
1− γ2

R(λ) =
√

(β+ − λ)(λ− β−) ρ =
√
γ1 + γ2 − γ1γ2

We denote this asymptotic regime by n, p →γ ∞, where n = {n1, n2} and γ =
{γ1, γ2} . To make our exposition as uniform as possible, we use this notation for all
the cases, even though the simpler ones, such as SMD, do not refer to n. We briefly
discuss possible extensions of our analysis to the situations with γ1 ≥ 1 in Section
7.

We are interested in the asymptotics of the likelihood ratios under the null hypoth-
esis, that is when the true value of the spike, θ0, equals zero. First, some background
on the eigenvalues. Under the null, λ1, ..., λp are the eigenvalues of GOE/

√
p in the

SMD case; of Wp (n1, Ip) /n1 for PCA and REG0; and of a p-dimensional multivari-
ate beta matrix, e.g. [32, p. 110], with parameters n1/2 and n2/2 and here scaled
by a factor of n2/n1, in the SigD, REG, and CCA cases. The empirical distribution
of λ1, ..., λp

F̂ =
1

p

p
∑

j=1

I{λj ≤ λ}

is well known, [3], to converge weakly almost surely (a.s.) in each case:

F̂ ⇒ Fγ =











F SC for SMD

FMP for PCA, REG0

FW for SigD, REG, CCA,

the semi-circle, Marchenko-Pastur and (scaled) Wachter distributions respectively.
Table 3 recalls the explicit forms of these limiting distributions. The cumulative
distribution functions F lim

γ
(λ) are linked in the sense that

FW
γ (λ) → FMP

γ1 (λ) as γ2 → 0,

FMP
γ1 (

√
γ1λ+ 1) → F SC(λ) as γ1 → 0.
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If ϕ is a ‘well-behaved’ function, the centered linear spectral statistic

(8)

p
∑

j=1

ϕ (λj)− p

∫

ϕ (λ) dF lim
c

(λ) ,

converges in distribution to a Gaussian random variable in each of the semicircle
[8], Marchenko-Pastur [6] and Wachter [53] cases. Note that the centering constant
is defined in terms of Fc, where c = {c1, c2} . That is, the “correct centering” can
be computed using the densities from Table 3, where γ1 and γ2 are replaced by
c1 ≡ p/n1 and c2 ≡ p/n2, respectively.

Finally, let us recall the behavior of the largest eigenvalue λ1 under the alternative
hypothesis. As long as θ ≤ θ̄, the phase transition threshold reported in Table 3,
the top eigenvalue λ1 → β+, the upper boundary of support of Fγ , almost surely.
When θ > θ̄, λ1 separates from ‘the bulk’ of the other eigenvalues and a.s. converges
to a point strictly above β+. For details, we refer to [29, 9, 35, 38, 16, 11] for the
respective cases SMD, PCA, SigD, REG0, REG, and CCA.

The fact that λ1 converges to different limits under the null and under the al-
ternative hypothesis sheds light on the behavior of the likelihood ratio when θ is
above the phase transition threshold θ̄. In such super-critical cases, the likelihood
ratio degenerates. The sequences of measures corresponding to the distributions of
Λ under the null and under super-critical alternatives are asymptotically mutually
singular as n, p →γ ∞, as shown in [29] and [39] for SMD and PCA respectively. In
contrast, as we show below, the sequences of measures corresponding to the distri-
butions of Λ under the null and under sub-critical alternatives θ < θ̄ are mutually
contiguous, and the likelihood ratio converges to a Gaussian process. In the super-
critical setting, an analysis of the likelihood ratios under local alternatives appears
in [17].

4. Contour integral representation. The asymptotic behavior of the like-
lihood ratios (6) depends on that of pFq (a, b; Ψ,Λ). When the dimension of the
matrix arguments remains fixed, there is a large and well established literature on
the asymptotics of pFq (a, b; Ψ,Λ) for large parameters and norm of the matrix ar-
guments, see [32] for a review. In contrast, relatively little is known about when the
dimensionality of the matrix arguments Ψ,Λ diverge to infinity. It is this regime we
study in this paper, noting that in single-spiked models, the matrix argument Ψ has
rank one. This allows us to represent pFq (a, b; Ψ,Λ) in the form of a contour integral
of a hypergeometric function with a single scalar argument. Such a representation
implies contour integral representations for the corresponding likelihood ratios.

Lemma 1. Assume that p ≤ min {n1, n2} . Let K be a contour in the complex
plane C that starts at −∞, encircles 0 and λ1, ..., λp counterclockwise, and returns



TESTING IN SPIKED MODELS 13

to −∞. Then

(9) L (θ; Λ) =
Γ (s+ 1)α (θ) qs

Ψs
112πi

∫

K
pFq (a− s, b− s; Ψ11z)

p
∏

j=1

(z − λj)
−1/2 dz,

where s = p/2− 1, the values of α (θ) , Ψ11, a, b, p, and q for the different cases are
given in Table 8; a − s and b − s denote vectors with elements aj − s and bj − s,
respectively; and

qs =

p
∏

j=1

Γ (aj − s)

Γ (aj)

q
∏

i=1

Γ (bi)

Γ (bi − s)
.

In cases SigD and CCA, we require, in addition, that the contour K does not intersect
[

Ψ−1
11 ,∞

)

, which ensures the analyticity of the integrand in an open subset of C that
includes K.

The statement of the lemma immediately follows from [16, Prop. 1] and from
equation (6). Our next step is to apply the Laplace approximation to integrals (9).
To this end, we shall transform the right hand side of (9) so that it has a “Laplace
form”

(10) L (θ; Λ) =
√
πp

1

2πi

∫

K
exp {−(p/2)f(z; θ)} g(z; θ)dz.

The dependence on θ will usually not be shown explicitly. Leaving
√
πp/ (2πi) sepa-

rate from g(z) allows us to choose f(z) and g(z) that are bounded in probability, and
makes some of the expressions below more compact. In order to apply the Laplace
approximation, we shall deform the contour of integration so that it passes through
a critical point z0 of f(z) and is such that Re f(z) is strictly increasing as z moves
away from z0 along the contour, at least in a vicinity of z0.

4.1. The Laplace form. We shall transform (9) to (10) in three steps. As a result,
functions f and g will have the forms of a sum and a product,

f (z) = fc + fe (z) + fh (z) and(11)

g(z) = gc × ge (z)× gh(z),

where fc and gc do not depend on z. The subscripts (c,e,h) are mnemonic for ‘coef-
ficient’, ‘eigenvalues’ and ‘hypergeometric’.

First, using the definitions of α (θ) , qs, Ψ11 and employing Stirling’s approxima-
tion, we obtain a decomposition

(12)
Γ (s+ 1)α (θ) qs√

πpΨs
11

= exp {−(p/2)fc} gc,

where gc remains bounded as n, p→γ ∞. The values of fc and gc are given in Table
4. Details of the derivation are given in SM 4.1.
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Table 4

Values of fc and ǧc = gc/(1 + o(1)) for the different cases. The terms o(1) do not depend on θ and
converge to zero as n, p→γ ∞. In the table, l(θ) = 1 + (1 + θ)c2/c1 and r2 = c1 + c2 − c1c2.

Case fc ǧc = gc/(1 + o(1))

SMD 1 + θ2/2 + log θ θ

PCA 1 +
1− c1
c1

log(1 + θ) + log
θ

c1
θ(1 + θ)−1c−1

1

SigD fPCA
c + f10 ǧPCA

c ǧ10

REG0 1 +
θ + c1
c1

+ log
θ

c1
+

1− c1
c1

log(1− c1) θc−1
1 (1− c1)

−1/2

REG fREG0
c + f10 ǧREG0

c ǧ10

CCA fREG
c + f21 ǧREG

c ǧ10/l(θ)

f10 = −1− r2

c1c2
log

r2

c1 + c2
+ log

c1 + c2
c1

ǧ10 = c−1
1 r(c1 + c2)

1/2

f21 = −1− θ

c1
− r2

c1c2
log

r2

c1l(θ)

Second, we consider the decomposition

(13)

p
∏

j=1

(z − λj)
−1/2 = exp {−(p/2)fe(z)} ge(z),

where

(14) fe(z) =

∫

ln (z − λ) dFc(λ),

and

(15) ge(z) = exp

{

−(p/2)

∫

ln (z − λ) d
(

F̂ (λ)− Fc (λ)
)

}

.

For fe(z) and ge(z) to be well-defined we need z not to belong to the support of Fc,
which we assume. In addition, z /∈ supp(F̂ ) since by definition contour K encircles
it. Note that ge(z) is the exponent of a linear spectral statistic, which converges to
a Gaussian random variable as n, p→γ ∞ under the null hypothesis.

Third and finally, we describe a decomposition

(16) pFq (a− s, b− s; Ψ11z) = exp {−(p/2)fh(z)} gh(z).
For the q = 0 cases, the corresponding pFq can be expressed in terms of elementary
functions. Indeed, 0F0(z) = ez and 1F0(a; z) = (1− z)−a. We set

(17) fh(z) =







−zθ for SMD
−zθ/ (c1 (1 + θ)) for PCA
ln [1− c2zθ/ {c1 (1 + θ)}] r2/ (c1c2) for SigD,
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and

(18) gh(z) =

{

1 for SMD and PCA

[1− c2zθ/ {c1 (1 + θ)}]−1 for SigD.

Unfortunately, for the q = 1 cases, the corresponding pFq do not admit exact
representations in terms of elementary functions. Therefore, we shall consider their
asymptotic approximations instead. Let

m = (n1 − p) /2 and κ = (n− p) / (n1 − p) .

Further, let

(19) ηj =







zθ/ (1− c1)
2 for j = 0

zθc2/ [c1 (1− c1)] for j = 1
zθc22/

[

c21l (θ)
]

for j = 2

,

where

(20) l (θ) = 1 + (1 + θ) c2/c1.

With this notation, we have

(21) pFq =







0F1

(

m+ 1;m2η0
)

≡ F0 for REG0

1F1 (mκ+ 1;m+ 1;mη1) ≡ F1 for REG

2F1 (mκ+ 1,mκ+ 1;m+ 1; η2) ≡ F2 for CCA.

The function F0(z) can be expressed in terms of the modified Bessel function of
the first kind Im (·), see [2, eq. 9.6.47], as

(22) F0 = Γ (m+ 1)
(

m2η0
)−m/2

Im
(

2mη
1/2
0

)

.

This representation allows us to use a known uniform asymptotic approximation of
the Bessel function [2, eq. 9.7.7] to obtain Lemma 2, proven in SM 4.2. To state it
let

(23) ϕ0 (t) = ln t− t− η0/t+ 1 and t0 =
(

1 +
√

1 + 4η0

)

/2.

Further, for any δ > 0, let Ω0δ be the set of η0 ∈ C such that

|arg η0| ≤ π − δ, and η0 6= 0.

Lemma 2. As m→ ∞, we have

(24) F0 = (1 + 4η0)
−1/4 exp {−mϕ0 (t0)} (1 + o(1)) .

The convergence o(1) → 0 holds uniformly with respect to η0 ∈ Ω0δ for any δ > 0.
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To foreshadow our results for F1(z) and F2(z), we note that the right hand side
of (24) can be formally linked, via (22), to the saddle-point approximation of the
integral representation, see [51, p. 181],

Im

(

2mη
1/2
0

)

=
η
m/2
0 em

2πi

∫ (0+)

−∞
exp {−mϕ0 (t)} t−1dt.

Point t0 can be interpreted as a saddle point of ϕ0 (t) , and the term (1 + 4η0)
−1/4

in (24) can be interpreted as a factor of (ϕ′′
0 (t0))

−1/2.
Turning now to functions F1(z) and F2(z), to obtain uniform asymptotic ap-

proximations, we use the contour integral representations, see [37, eqs. 13.4.9 and
15.6.2],

(25) Fj =
Cm

2πi

∫ (1+)

0
exp {−mϕj (t)}ψj (t) dt,

where

(26) Cm =
Γ (m+ 1) Γ (m (κ− 1) + 1)

Γ (mκ+ 1)
,

(27) ϕj(t) =

{

−ηjt− κ ln t+ (κ− 1) ln (t− 1) for j = 1
−κ ln (t/ (1− ηjt)) + (κ− 1) ln (t− 1) for j = 2

,

and

(28) ψj (t) =

{

(t− 1)−1 for j = 1

(t− 1)−1 (1− ηjt)
−1 for j = 2

.

For j = 2, the contour does not encircle 1/η2, and the representation is valid for η2
such that |arg (1− η2)| < π. We derive a saddle-point approximation to the integral
in (25) to be summarized in Lemma 3 below. The relevant saddle points are

(29) tj =







1
2ηj

{

ηj − 1 +
√

(ηj − 1)2 + 4κηj

}

for j = 1

1
2ηj(κ−1)

{

−1 +
√

1 + 4κ (κ− 1) ηj
}

for j = 2
.

We shall need the following additional notation. Let

(30) ωj = argϕ′′
j (tj) + π and ω0j = arg (tj − 1) ,

where the branches of arg (·) are chosen so that |ωj + 2ω0j | ≤ π/2.

Lemma 3. As m→ ∞, we have for j = 1, 2

(31) Fj = Cmψj (tj) e
−iωj/2

∣

∣2πmϕ′′
j (tj)

∣

∣

−1/2
exp {−mϕj (tj)} (1 + o(1)) .

The convergence o(1) → 0 holds uniformly with respect to (κ, η) ∈ Ωjδ for any δ > 0,
where Ωjδ are as defined in Table 5.
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Point-wise asymptotic approximation (31) was established in [43] for j = 1, and
in [41, 42] for j = 2. However, those papers do not study the uniformity of the
approximation error, which is important for our analysis. Lemma 3 is proved at
length in SM 4.3. It is fair to say that the corresponding derivations constitute
the technically most challenging part of our analysis. This further highlights the
technical difficulties that occur when going from SMD, PCA, and SigD cases to
REG0, REG, and CCA.

Using Lemmas 2 and 3, and Stirling’s approximation

(32) Cm =

√

πp (1− c1)

r
exp {m (κ− 1) ln (κ− 1)−mκ ln κ} (1 + o(1))

we set the components of the “Laplace form” (16) of pFq for the q = 1 cases as
follows

(33) fh(z) =

{

1−c1
c1

ϕ0 (t0) REG0

1−c1
c1

(ϕj (tj) + κ lnκ− (κ− 1) ln (κ− 1)) REG, CCA

and

(34) gh(z) =







(1 + 4η0)
−1/4 (1 + o (1)) REG0

√

c1/r2e
−iωj/2

∣

∣

∣
ϕ′′
j (tj)

∣

∣

∣

−1/2
ψj (tj) (1 + o (1)) REG, CCA

To express tj and ηj in terms of z, one should use (29) and (SM97). We do not need
to know how exactly the o (1) in (34) depend on z. For our purposes, the knowledge
of the fact that o (1) are analytic functions of ηj that converge to zero uniformly
with respect to (κ, ηj) ∈ Ωjδ is sufficient. The analyticity of o(1) follows from the
analyticity of the functions on the left hand sides, and of the factors of 1 + o(1) on
the right hand sides of the equations (24) and (31).

Confluences of functions f . As c2 → 0 with c1 held fixed, we have

fSigD(z) → fPCA(z),

fREG(z), fCCA(z) → fREG0(z).
(35)

Table 5

Definition of Ωjδ from Lemma 3.

Ωjδ = Ωδ ∩ Ω̂jδ with the following Ωδ and Ω̂jδ

Set Definition: pairs (x, z) ∈ R× C s.t.

Ωδ δ ≤ x− 1 ≤ 1/δ, |z| ≤ 1/δ, and infy∈R\[0,∞) |z − y| ≥ δ

Ω̂1δ Re z ≥ −2x+ 1

Ω̂2δ infy∈R\(−∞,1] |z − y| ≥ δ and x is unconstrained.
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Also, as c1 → 0,

(36) fPCA(z), fREG0(z) → fSMD(z),

after making the substitutions θ → √
c1θ and z → √

c1z + 1 on the left hand side.
Some details appear in SM 4.4.

4.2. Saddlepoints and Contours of steep descent. We shall now show how to
deform contours K in (10) into the contours of steep descent. First, we find saddle
points of functions f(z) for each of the six cases. Note that

−dfe(z)/dz =

∫

(λ− z)−1dFc(λ) = mc (z) ,

the Stieltjes transform of Fc. Although the Stieltjes transform is formally defined
on C

+, the definition remains valid on the part of the real line outside the support
[b−, b+] of Fc. Since we assume that p ≤ n1, Fc does not have any non-trivial mass
at 0.

To find saddle points z0 of f(z) we therefore solve the equation

(37) mc (z) = dfh(z)/dz.

A proof of the following lemma appears in SM 4.5.

Lemma 4. The saddle points z0(θ, c) of f(z) satisfy

(38) z0(θ, c) =







θ + 1/θ for SMD
(1 + θ) (θ + c1) /θ for PCA and REG0

(1 + θ) (θ + c1) / [θl (θ)] for SigD, REG, and CCA.

For θ ∈
(

0, θ̄c
)

, z0 > b+, where θ̄c is the threshold corresponding to Fc, which is an
analogue of the threshold θ̄γ ≡ θ̄ corresponding to Fγ given in Table 3.

As c2 → 0 while c1 stays constant, the value of z0 for SigD, REG, and CCA
converges to that for PCA and REG0. The latter value in its turn converges to
the value of z0 for SMD when c1 → 0, after the transformations θ 7→ √

c1θ and
z0 7→

√
c1z0 + 1. Precisely, solving equation

√
c1z0 + 1 = (1 +

√
c1θ) (

√
c1θ + c1) / (

√
c1θ)

for z0 and taking limit as c1 → 0 yields z0 = θ + 1/θ.

Remark 5. For all the six cases that we study, f(z0) equals zero. SM 4.6 has a
verification of this important fact.
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K1

K2

i2z0

−i2z0

z0

Fig 2. Deformed contour K for SMD, PCA, and SigD.

Remark 6. As n, p →γ ∞, z0(θ, c) → z0(θ,γ) > β+, where the latter inequality

holds for any θ ∈
(

0, θ̄
)

. Since λ1
a.s.→ β+ the inequality z0(θ, c) > λ1 must hold with

probability approaching one as n, p →γ ∞.

For the rest of the paper, assume that θ ∈
(

0, θ̄
)

. We deform contour K in (10) so
that it passes through the saddle point z0 as follows. Let K = K+ ∪ K−, where K−
is the complex conjugate of K+ and K+ = K1 ∪ K2. For SMD, PCA, and SigD, let

K1 = {z0 + it : 0 ≤ t ≤ 2z0} and(39)

K2 = {x+ i2z0 : −∞ < x ≤ z0} .(40)

The deformed contour is shown on Figure 2.
Note that the singularities of the integrand in (10) are situated at z = λj (plus

an additional singularity at z = c1(1 + θ)/ (θc2) < z0 for SigD). Since z0 > λ1 holds
with probability approaching one as n, p→γ ∞, Cauchy’s theorem ensures that the
deformation of the contour does not change the value of L (θ; Λ) with probability
approaching one as n, p →γ ∞.

Strictly speaking, the deformation of the contour is not continuous because K+

does not approach K− at −∞. In particular, in contrast to the original contour,
the deformed one is not “closed” at −∞. Nevertheless, such an “opening up” at
−∞ does not lead to the change of the value of the integral because the integrand
converges fast to zero in absolute value as Re z → −∞.

Remark 7. In the event of asymptotically negligible probability that the de-
formed contour K does not encircle all λj , we not only lose the equality (10) but
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z0z1

K2

K1

Fig 3. Deformed contour K for REG0 and CCA.

also face the difficulty that function g(z) ceases to be well defined as the definition
of ge(z) contains a logarithm of a non-positive number. To eliminate any ambiguity,
if such an event holds we shall redefine ge(z) as unity.

For REG0 and CCA, let

z1 =

{

− (1− c1)
2 / [4θ] for REG0

−c1 (1− c1)
2 l (θ) /

[

4θr2
]

for CCA
,

and let

K1 = {z1 + |z0 − z1| exp {iγ} : γ ∈ [0, π/2]} and

K2 = {z1 − x+ |z0 − z1| exp {iπ/2} : x ≥ 0} .
The corresponding contour K is shown on Figure 3. Similarly to the SMD, PCA and
SigD cases, the deformation of the contour in (10) to K does not change the value
of L (θ; Λ) with probability approaching one as n, p →γ ∞.

For REG, deformed contour K in z-plane is simpler to describe as an image of a
contour C in τ -plane, where τ = η1t1 with

(41) η1 = zθc2/ [c1 (1− c1)]

and t1 as defined in (29). Let C = C+ ∪ C−, where C− is the complex conjugate of
C+ and C+ = C1 ∪ C2, and let

C1 = {−κ+ |τ0 + κ| exp {iγ} : γ ∈ [0, π/2]} and

C2 = {−κ− x+ |τ0 + κ| exp {iπ/2} : x ≥ 0} ,
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where τ0 = (θ + c1) / (1− c1) .
Using (41) and the identity

(42) η1 = τ (τ + 1) /(τ + κ),

we obtain

(43) z =
c1 (1− c1)

θc2

τ (τ + 1)

τ + κ
.

We define the deformed contour K in z-plane as the image of C under the transfor-
mation τ → z given by (43). The parts K+,K−,K1 and K2 of K are defined as the
images of the corresponding parts of C. Note that τ0 is transformed to z0 so that K
passes through the saddle point z0.

The next lemma, proven in SM 4.7, shows that K1 are contours of steep descent
of −Re f (z) for all the six cases, SMD, PCA, SigD, REG0, REG, and CCA.

Lemma 8. For any of the six cases that we study, as z moves along the corre-
sponding K1 away from z0, −Re f (z) is strictly decreasing.

5. Laplace approximation. The goal of this section is to derive Laplace ap-
proximations to the integral (9) for the six cases that we study. First, consider a
general integral

Ip,ω =

∫

Kp,ω

e−pφp,ω(z)χp,ω(z)dz,

where p is large, ω ∈ Ω ⊂ R
k is a k-dimensional parameter, and Kp,ω is a path in

C that starts at ap,ω and ends at bp,ω. We allow χp,ω(z) to be a random element
of the normed space of continuous functions on Kp,ω with the supremum norm.
Assume that there is a domain Tp,ω ⊃ Kp,ω on which for sufficiently large p, φp,ω(z)
and χp,ω(z) are single-valued holomorphic functions of z, in the case of χp,ω with
probability increasing to 1.

We describe an extension of the Laplace approximation detailed by Olver [36, p.
127] to a situation in which functions φ, χ and contour K depend on p and ω and in
addition χ is random. In Olver’s original theorem, both functions and contour are
fixed. In what follows, however, we omit subscripts p and ω from φp,ω, χp,ω, Kp,ω,
etc. to lighten notation.

Suppose that φ′(z) = 0 at z0 which is an interior point of K, and suppose that
Reφ(z) is strictly increasing as z moves away from z0 along the path. In other words,
the path K is a contour of steep descent of −Reφ(z). Denote a closed segment of K
contained between z1 and z2 as [z1, z2]K. Similarly denote the segments that exclude
one or both endpoints as [z1, z2)K , (z1, z2]K , and (z1, z2)K. Let β be the limiting
value of arg (z − z0) on the principal branch as z → z0 along (z0, b)K. Finally, let φs
and χs be the coefficients in the power series representations

(44) φ (z) =

∞
∑

s=0

φs (z − z0)
s , χ(z) =

∞
∑

s=0

χs (z − z0)
s .
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We assume that there exist positive constants C1, ..., C4 that do not depend on p
or ω, such that for all ω ∈ Ω, for sufficiently large p :

A0 The length of the path K is bounded, uniformly over ω ∈ Ω and all sufficiently
large p. Furthermore,

sup
z∈(z0,b)K

|z − z0| > C1, and sup
z∈(a,z0)K

|z − z0| > C1

A1 Functions φ (z) and χ(z) are holomorphic in the ball |z − z0| ≤ C1

A2 The coefficient φ2 satisfies C2 ≤ |φ2| ≤ C3

A3 The third derivative of φ (z) satisfies inequality

sup
|z−z0|≤C1

∣

∣d3φ (z) /dz3
∣

∣ ≤ C4

A4 For any positive ε < C1, which does not depend on p and ω, and for all z1 ∈ K
such that |z1 − z0| = ε, there exist positive constants C5, C6, such that

Re (φ (z1)− φ0) > C5 and |Im (φ (z1)− φ0)| < C6

A5 For a subset Θ of C that consists of all points whose Euclidean distance from
K is no larger than C1,

sup
z∈Θ

|χ(z)| = OP(1)

as p→ ∞, where OP(1) is uniform in ω ∈ Ω.

Assumptions A0–A5 ensure that Olver’s proof of the Laplace approximation the-
orem (Theorem 7.1 on p. 127 of Olver (1997)) can be extended to cases where
functions φ(z) and χ(z), as well as the contour K, depend on p and ω. Note that in
Olver’s notations, φ(z), χ(z), and p are, respectively p(t), q(t), and z.

The first part of A0, which requires the boundedness of |K|, taken together with
A5 and the assumption that K is a contour of steep descent guarantee the absolute
convergence of the integral

∫

K e
−p(φ(z)−φ0)χ(z)dz, in probability. The second part of

A0 ensures that as p→ ∞, K does not collapse to a point.
Assumption A1 excludes situations where z0 approaches singular points of φ(z)

or χ(z) as p → ∞. Assumption A2 guarantees that the second derivative of φ(z)
at z0 does not degenerate to 0 or infinity as p → ∞. Assumption A3 implies that
|φ(z) − φ(z0)| can be bounded from below by a fixed quadratic function of z in a

vicinity of z0 as p→ ∞. This ensures a regular behavior of function (φ(z)− φ(z0))
1/2.

Assumption A4 implies that |arg (φ(z) − φ(z0))| < π/2 is some neighborhood of z0
as p → ∞. We need this condition to be able to use an asymptotic expansion of
an incomplete Gamma function in our proofs (Section 5.1 of SM). Assumption A5
ensures that |χ (z)| remains bounded in probability as p→ ∞.
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Table 6

The values of D2 ≡ θ2(−d2f(z0)/dz
2)−1 for the different cases.

Case Value of D2 Case Value of D2

SMD 1− θ2 REG0 c1 (1 + c1 + 2θ)
(

c1 − θ2
)

PCA c1
(

c1 − θ2
)

(1 + θ)2 REG c1h (c1 + θ + (1 + θ) l) /l4

SigD r2h (1 + θ)2 /l4 CCA c21h (2 (c1 + θ) + l (1− c1)) /
(

l3 (c1 + c2)
)

l ≡ l(θ) = 1 + (1 + θ)c2/c1 h ≡ h(θ) = c1 + c2(1 + θ)2 − θ2

Lemma 9. Under assumptions A0-A5, for any positive integer k, as p→ ∞, we
have

Ip,ω = 2e−pφ0

[

k−1
∑

s=0

Γ

(

s+
1

2

)

a2s

ps+1/2
+
OP (1)

pk+1/2

]

,

where OP (1) is uniform in ω ∈ Ω and the coefficients a2s can be expressed through

φs and χs defined above. In particular we have a0 = χ0/[2φ
1/2
2 ], where φ

1/2
2 =

exp {(log |φ2|+ i arg φ2) /2} with the branch of arg φ2 chosen so that |arg φ2 + 2β| ≤
π/2.

Lemma 9 is proved in SM 5.1. We use it to obtain the Laplace approximation to

(45) L1 (θ; Λ) =
√
πp

1

2πi

∫

K1∪K̄1

e−(p/2)f(z)g(z)dz.

Then we show that L1 (θ; Λ) asymptotically dominates the “residual” L (θ; Λ) −
L1 (θ; Λ). For this analysis, it is important to know the values of f(z0) and d2f(z0)/dz

2.
As was mentioned in Remark 5, f(z0) = 0 for all the six cases that we study. The
values of d2f(z0)/dz

2 are derived in SM 5.2. All of them are negative. The ex-

plicit form of D2 ≡ θ2
(

−d2f(z0)/dz
2
)−1

, which is somewhat shorter than that for
d2f(z0)/dz

2, is reported in Table 6. We formulate the main result of this section in
the following theorem, proven in SM 5.3.

Theorem 10. Suppose that the null hypothesis holds, that is, θ0 = 0. Let θ̄ be
the threshold corresponding to Fγ as given in Table 3, and let ε be an arbitrarily
small fixed positive number. Then for any θ ∈

(

0, θ̄ − ε
]

, as n, p→γ ∞, we have

(46) L (θ; Λ) =
g(z0)

√

−d2f(z0)/dz2
+OP

(

p−1
)

,

where OP

(

p−1
)

is uniform in θ ∈
(

0, θ̄ − ε
]

and the principal branch of the square
root is taken.
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6. Asymptotics of LR. Combining the results of Theorem 10 with the defini-
tions of g(z) and the values of −d2f(z0)/dz

2, given in Table 6, it is straightforward
to establish the following theorem, details in SM 6.1. Let

∆p(θ) = p

∫

ln (z0(θ)− λ) d
(

F̂ (λ)− Fc (λ)
)

.

In accordance with Remark 7, we define ∆p(θ) as zero in the event of asymptotically
negligible probability that z0 ≤ λ1.

Theorem 11. Suppose that the null hypothesis holds, that is θ0 = 0. Let θ̄ be
the threshold corresponding to Fγ as given in Table 3, and let ε be an arbitrarily
small fixed positive number. Then for any θ ∈

(

0, θ̄ − ε
]

, as n, p→γ ∞, we have

L (θ; Λ) = exp

{

−1

2
∆p(θ) +

1

2
ln
(

1− [δp (θ)]
2
)

}

(1 + oP(1)) ,

where

δp (θ) =







θ for SMD
θ/

√
c1 for PCA and REG0

θr/ (c1l (θ)) for SigD, REG, and CCA,

r2 = c1 + c2 − c1c2 and oP(1) is uniform in θ ∈
(

0, θ̄ − ε
]

.

Statistic ∆p(θ) is a linear spectral statistic. As follows from the CLT for such
statistics derived by [8], [6], and [53] for the Semi-circle, Marchenko-Pastur, and
Wachter limiting distributions Fc , respectively, statistic ∆p(θ) weakly converges to
a Gaussian process indexed by θ ∈

(

0, θ̄ − ε
]

. The explicit form of the mean and the
covariance structure can be obtained from the general formulae for the asymptotic
mean and covariance of linear spectral statistics given in [8, Th. 1.1] for SMD, in [6,
Th. 1.1] for PCA and REG0, and in [53, Th. 4.1 and Exmpl. 4.1] for the remaining
cases. SM 6.2 provides details on the use of [8, 6, 53] to establish convergence of
∆p(θ), and the use of Theorem 11 to obtain the following theorem.

Theorem 12. Suppose that the null hypothesis holds, that is θ0 = 0. Let θ̄ be the
threshold corresponding to Fγ as given in Table 3, and let ε be an arbitrarily small
fixed positive number. Further, let C

[

0, θ̄ − ε
]

be the space of continuous functions
on
[

0, θ̄ − ε
]

equipped with the supremum norm. Then lnL (θ; Λ) viewed as random
elements of C

[

0, θ̄ − ε
]

converge weakly to L (θ) with Gaussian finite dimensional
distributions such that

EL (θ) = 1
4 ln(1− δ2(θ))

and
Cov (L (θ1) ,L (θ2)) = −1

2 ln (1− δ (θ1) δ (θ2))
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with

δ (θ) =







θ for SMD
θ/

√
γ1 for PCA and REG0

θρ/ (γ1 + γ2 + θγ2) for SigD, REG, and CCA
.

Here ρ, γ1, γ2 are the limits of r, c1, c2 as n, p→γ ∞.

Let {Pp,θ} and {Pp,0} be the sequences of measures corresponding to the joint
distributions of λ1, ..., λp when θ0 = θ and when θ0 = 0 respectively. Then Theorem
12 implies, via Le Cam’s first lemma, the mutual contiguity of {Pp,θ} and {Pp,0}
as n, p →γ ∞, for each θ < θ̄. This reveals the statistical meaning of the phase
transition thresholds as the upper boundaries of the contiguity regions for spiked
models.

The precise form of the autocovariance of L (θ) shows that,1 although the ex-
periment of observing λ1, ..., λp is asymptotically normal, it does not converge to a
Gaussian shift experiment. In particular, the optimality results available for Gaus-
sian shifts cannot be used in our framework. To analyze asymptotic risks of various
statistical problems related to the experiment of observing λ1, ..., λp, one should
directly use Theorem 12.

Here we use it to derive the asymptotic power envelopes for tests of the null
hypothesis θ0 = 0 against the point alternative θ0 > 0. By the Neyman-Pearson
lemma, the most powerful test would reject the null when lnL (θ; Λ) is above a
critical value. By Theorem 12 and Le Cam’s third lemma (see [49, Ch. 6]),

lnL (θ; Λ)
d→ N

(

±1
4 ln(1− δ2(θ)),−1

2 ln(1− δ2(θ))
)

with the plus sign holding under the null, and the minus under the alternative. This
implies the following theorem.

Theorem 13. Let θ̄ be the threshold corresponding to Fγ as given in Table 3.
For any θ ∈

[

0, θ̄
)

, the value of the asymptotic power envelope for the tests of the
null θ0 = 0 against the alternative θ0 > 0 which are based on λ1, ..., λp and have
asymptotic size α is given by

PE (θ) = 1− Φ
[

Φ−1 (1− α)− σ(θ)
]

, σ(θ) =
√

−1
2 ln(1− δ2(θ)).

Here Φ denotes the standard normal cumulative distribution function. For θ ≥ θ̄ the
value of the asymptotic power envelope equals one.

1[21] has an interesting discussion of ubiquity of random processes with logarithmic covariance
structure in physics and engineering applications. In that paper, such processes appear as limiting
objects related to the behavior of the characteristic polynomials of large matrices from Gaussian
Unitary Ensemble.
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The envelopes differ only for cases with different limiting spectral distributions:
Semi-circle, Marchenko-Pastur, and Wachter, denoted PESC(θ), PEMP(θ, γ1) and
PEW(θ,γ) respectively. Figure 4 shows the graphs of the envelopes for α = 0.05
and γ1 = γ2 = 0.9. Such large values of γ1 and γ2 correspond to situations where
the dimensionality p is not very different from the degrees of freedom n1 and n2.
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θ-axis
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Fig 4. The asymptotic power envelopes PESC(θ), PEMP(θ, γ1), and PEW(θ,γ) for α = 0.05,
γ1 = γ2 = 0.9.

Envelope PEMP (θ, γ1) can be obtained from PEW (θ,γ) by sending γ2 to zero.
Further, PESC (θ) can be obtained from PEMP (θ, γ1) by transformation θ 7−→√
γ1θ. Further, note the difference in the horizontal scale of the bottom panel of

Figure 4 relative to the two other panels. For γ1 = γ2 = 0.9 the phase transition
threshold corresponding to the Wachter distribution is relatively large. It equals
(γ2 + ρ) /(1 − γ2) ≈ 18.9. Moreover, the value of PEW (θ) becomes substantially
larger than the nominal size α = 0.05 for θ that are situated far below this threshold.
This suggests that the information in all the eigenvalues λ1, ..., λp might be effectively
used to detect spikes that are small relative to the phase transition threshold in two
sample problems. We leave a confirmation or rejection of this speculation for future
research.

7. Concluding remarks. Note that Theorem 12 establishes the weak conver-
gence of the log likelihood ratio viewed as a random element of the space of con-



TESTING IN SPIKED MODELS 27

tinuous functions. This is much stronger than simply the convergence of the finite
dimensional distributions of the log likelihood process. In particular, the theorem
can be used to find the asymptotic distribution of the supremum of the likelihood
ratio, and thus, to find the asymptotic critical values of the likelihood ratio test. It
also can be used to construct asymptotic confidence intervals for a sub-critical spike
as well as to describe the asymptotic properties of its maximum likelihood estimator.
We do not pursue this line of research here, but provide a general outline.

Consider the log likelihood ratio lnL (θ; Λ)− lnL (θ0; Λ) . According to Theorem
12, this ratio converges to X (θ) ≡ L (θ)−L (θ0) . By Le Cam’s third lemma, under
the null hypothesis that the true value of the spike equals θ0, X (θ) is a Gaussian
process with mean

EX (θ) =
1

4
ln

(

1− δ2 (θ)
) (

1− δ2 (θ0)
)

(1− δ (θ) δ (θ0))
2

and covariance function

Cov (X (θ1) ,X (θ2)) = −1

2
ln

(1− δ (θ1) δ (θ2)) (1− δ (θ0) δ (θ0))

(1− δ (θ1) δ (θ0)) (1− δ (θ2) δ (θ0))
.

An approximation to the distribution of the supremum of such a process over
θ ∈

[

0, θ̄ − ε
]

can be obtained via simulation. Alternatively, it might be expressed
analytically in the form of converging Rice series (see e.g. [1]). Quantiles of the
distribution can be used as asymptotic critical values for the likelihood ratio test of
the hypothesis θ = θ0. Inverting the test, we obtain asymptotic confidence intervals
for the true value of a sub-critical spike.

The maximum likelihood estimator for the spike, θ̂ML, equals the argmax of
lnL (θ; Λ) − lnL (θ0; Λ) over θ ∈

[

0, θ̄ − ε
]

. By Lemma 2.6 of [27], the limiting
process X (θ) achieves maximum at a unique point with probability one. Therefore
by the argmax continuous mapping theorem, θ̂ML converges in distribution to the
argmax of X (θ). The distribution of such an argmax can be approximated using
simulations.

Unfortunately, the quality of the estimator θ̂ML cannot be “good”. For PCA, we
were able to prove that no estimator of θ has root mean squared error better than
the order of magnitude of the sub-critical parameter θ. This result will appear in
another work.

Our asymptotic discussion of James’ framework can likely be extended to a fixed
number of sub-critical spikes. Such an extension would require developing Laplace
approximations to multiple contour integrals, and uniform approximations to hy-
pergeometric functions of two matrix arguments in terms of elementary functions.
Alternatively, one may employ large deviation analysis of spherical integrals as in
[40], which covers the PCA case. As this paper is already long, the extension will
appear separately.

Addressing the case of slowly increasing number of spikes may require new tech-
niques, perhaps, similar to those developed in [18]. In such a case, relatively little is
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known even about the phase transition phenomenon. For sample covariance matri-
ces, Theorem 1.1 of [5] can be used to show that the phase transition still happens
at the usual threshold θ̄ =

√
γ1. However, it is not clear whether the experiments

of observing sample covariance eigenvalues corresponding to the null case and an
alternative with a growing number of sub-critical eigenvalues remain mutually con-
tiguous.

Note that, intuitively, the asymptotic power of the likelihood ratio test of the null
hypothesis of no spikes against the alternative of one spike should not decrease if
the rank-one assumption on the alternative is wrong and there are additional spikes.
In SM 7.1, we confirm this intuition for SMD and PCA cases. A confirmation or
refutation of the intuition for the other James’ cases requires further analysis and
is left for future research.

In this paper, we make the assumption that n2 ≥ p to ensure the invertibility of
matrix E in (1) with probability one. However, we also make the assumption n1 ≥ p,
mostly to simplify our exposition. It can probably be lifted without a substantial
reformulation of the problem. Indeed, for SMD the assumption is irrelevant. For
PCA the case p > n1 was explicitly covered in [39]. For REG0 the assumption can
be relaxed using the symmetry of the problem. Specifically, the canonical REG0

problem tests restriction M = 0 in the model Y = M + ε, where each matrix is
n1 × p and ε has i.i.d. standard normal components. Clearly, interchanging roles of
n1 and p yields essentially the same problem.

For CCA, the sample canonical correlations are not well defined for p > n1. For
SigD, our derivations (not reported here) show that the equivalent of (6) for p > n1
involves the hypergeometric function 2F1. Therefore, SigD with p > n1 represents the
fifth, rather than the second, group of multivariate statistical problems according
to James’ (1964) classification. For REG, an equivalent of (6) for p > n1 can be
obtained using [23, eq. (74)]. However, further analysis of SigD and REG in the
situation where p > n1 needs more substantial changes to our derivations. We leave
such an analysis for future research.

Finally, many existing results in the random matrix literature do not require that
the data are Gaussian. This suggests that some results about tests for the presence of
the spikes in the data may remain valid without the Gaussian assumption. We hope
that the results of this paper might provide a benchmark for such future studies.
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HIGH-DIMENSIONAL SPIKED MODELS.”

By Iain M. Johnstone and Alexei Onatski

This note contains supplementary material for Johnstone and Onatski
(2018) (JO in what follows). It is lined up with sections in the main
text to make it relatively easy to see how and where the proof details
fit in.
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2. Links to classical statistical problems.

2.1. Sufficiency and invariance considerations. In this subsection, we clarify
which sufficiency and invariance arguments lead us to consider tests based on the
solutions of

(SM1) det (H − λE) = 0

and

(SM2) det

(

H − λ

(

E +
n1
n2
H

))

= 0

for SMD, PCA, SigD, RED0, REG, and CCA problems. Most of this discussion is
standard and can be found, for example, in Muirhead (1982).

SMD: Consider the group of transformations

(SM3) G = {U : U ∈ O(p)} ,

where O(p) is the group of p× p orthogonal matrices, acting on the space of p × p
symmetric matrices X = θψψ′ +GOE/

√
p by

U ◦X = UXU ′.

The corresponding induced group of transformations on the parameter space of
points (ψ, θ) is given by

U ◦ (ψ, θ) = (Uψ, θ) .

A maximal invariant in the parameter space is θ, whereas that in the sample space
is given by the ordered eigenvalues λ1 ≥ ... ≥ λp of X. Since neither the null nor the
alternative hypothesis,

(SM4) H0 : θ0 = 0 and H1 : θ0 > 0,

is affected by the transformations, it is natural to base the test on the maximal
invariant in the sample space.

PCA: In this case, the data are given byX ∼ N (0,Ω⊗ In1) , where Ω = Σ+θψψ′,
where Σ is a known positive definite symmetric matrix and

∥

∥Σ−1/2ψ
∥

∥ = 1. Without
loss of generality, we can set Σ = Ip. A sufficient statistic is H = XX ′/n1. Consider
the group of transformations (SM3) that acts on the sample space of the sufficient
statistic by

U ◦H = UHU ′,

and on the parameter space by

U ◦ (ψ, θ) = (Uψ, θ) .
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The maximal invariant in the parameter space is θ, and we base the test of (SM4)
on a maximal invariant in the sample space of the sufficient statistic, which is given
by the ordered eigenvalues of the sample covariance matrix H.

SigD: The data are given by independent matrices

X ∼ N (0,Ω ⊗ In1) and Y ∼ N (0,Σ ⊗ In2) ,

where Ω = Σ + θψψ′, Σ is an unknown positive definite symmetric matrix, and
∥

∥Σ−1/2ψ
∥

∥ = 1. A sufficient statistic consists of the sample covariance matrices
H = XX ′/n1 and E = Y Y ′/n2. Let GL (p) be the group of non-singular p × p
matrices. Consider the group of transformations G = {B : B ∈ GL (p)} that acts
on the space of points (H,E) ∈ Sp × Sp, where Sp is the space of positive definite
symmetric p× p matrices, by

B ◦ (H,E) =
(

BHB′, BEB′)

and on the parameter space by

B ◦ (Σ, ψ, θ) =
(

BΣB′, Bψ, θ
)

.

Note that we restrict the sample space to Sp×Sp, that is we exclude from considera-
tion zero-probability event where the matrix HE is singular. The maximal invariant
in the parameter space is θ and we base the test of (SM4) on a maximal invariant in
the sample space of the sufficient statistic, which is given by the ordered solutions to
(SM1) or to (SM2) (see Theorem 8.2.2 of Muirhead (1982)). The links between SigD
and PCA become particularly clear when we work with the solutions to (SM2).

Note that we can assume that Σ = Ip wlog. It is because λ1 ≥ ... ≥ λp that solve
equation (SM2) are invariant with respect to the transformation

(H,E) 7→ (Σ−1/2HΣ−1/2,Σ−1/2EΣ−1/2).

In particular, the joint distribution of λ1 ≥ ... ≥ λp under the null hypothesis H0 :
Ω = Σ is the same as in the case where Ω = Σ = Ip. Similarly, the joint distribution
of λ1 ≥ ... ≥ λp under the alternative H1 : Ω = Σ + θψψ′ with

∥

∥Σ−1/2ψ
∥

∥ = 1 is the
same as in the situation where Ω = Ip + θψψ′ with ‖ψ‖ = 1 and Σ = Ip.

REG0: Consider linear regression Y = Xβ + ε, where Y is T × p, X is T × q, β
is q × p, and ε has i.i.d. N(0,Σ) rows. For REG0, Σ is a know symmetric positive
definite matrix, which can be set to Ip wlog. We would like to test a general linear
hypothesis Cβ = 0, where C is a known n1 × q matrix of rank n1.

As explained in Muirhead (1982, pp 433-434), the problem can be cast in the
canonical form, where the matrix of transformed response variables is split into
three parts: an n1 × p matrix Y1, a (q − n1) × p matrix Y2, and an n2 × p matrix
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Y3 with n2 = T − q. Under the null hypothesis, M ≡ EY1 = 0, whereas under the
alternative,

(SM5) M =
√

n1θϕψ
′,

where θ > 0, ‖Σ−1/2ψ‖ = 1, and ‖ϕ‖ = 1. Matrices Y2 and Y3 have, respectively,
unrestricted and zero means under both the null and the alternative.

More explicitly, if X = QR is the thin QR decomposition of X, so that Q ∈ O(T )
and R is q×q (upper triangular and) invertible, and with a corresponding decompo-
sition CR−1 = ŘQ̌, then Muirhead shows that M = Ř−1Cβ. In particular, M = 0
if and only if Cβ = 0. Alternative (SM5) corresponds to a rank-one alternative
Cβ =

√
n1θϕ̃ψ

′ in the original model, where vector ϕ̃ = Řϕ.
A sufficient statistic for

√
n1θϕψ

′ is Y1. Consider a group of transformations

G = {(U, V ) : U ∈ O (p) , V ∈ O (n1)}

that acts on the points Y1 of the sample space R
n1×p by

(U, V ) ◦ Y1 = V Y1U
′

and on the parameter space by

(U, V ) ◦ (ϕ,ψ, θ) = (V ϕ,Uψ, θ) .

A maximal invariant in the parameter space is θ, whereas the maximal invariant
statistic consists of the ordered eigenvalues of H = Y1Y

′
1/n1.

REG: The difference between the cases REG and REG0 is that in REG Σ is
assumed to be an unknown matrix from Sp. The sufficient statistic now is (Y1, Y2, E) ,
where E = Y ′

3Y3/n2. Consider a group of transformations

G =
{

(B,V,A) : B ∈ GL (p) , V ∈ O (n1) , A ∈ R
(T−n1−n2)×p

}

that acts on the points (Y1, Y2, E) of the sample space Rn1×p ×R
T−n1−n2×p ×Sp by

(B,V,A) ◦ (Y1, Y2, E) =
(

V Y1B
′, Y2B

′ +A,BEB′)

and on the parameter space by

(B,V,A) ◦ (ϕ,ψ, θ,M,Σ) =
(

V ϕ,Bψ, θ,MB′ +A,BΣB′) .

A maximal invariant in the parameter space is θ, whereas the maximal invariant
in the sample space consists of the ordered roots of equation (SM2), where H =
Y1′Y1/n1 and E = Y ′

3Y3/n2 (see Theorem 10.2.1 on page 437 of Muirhead (1982)).
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CCA: For this case, the sufficient statistic is S =

(

Sxx Sxy
Syx Syy

)

. Consider a

group of transformations

G = {B : B = diag {B1, B2} , B1 ∈ GL (p) , B2 ∈ GL (n1)}

acting on the sample space, restricted so that Sxx and Syy are invertible, by

B ◦ S = BSB′.

On the parameter space, the group acts by

B ◦ (Σxx,Σyy, ψ, ϕ, θ) =
(

B1ΣxxB
′
1, B2ΣyyB

′
2, B1ψ,B2ϕ, θ

)

.

As follows from Muirhead’s (1982) Theorem 11.2.2, a maximal invariant in the
parameter space is θ and that in the sample space consists of the solutions to (SM1)
with

H = SxyS
−1
yy Syx and E = Sxx.

2.2. Sequential asymptotic links between the cases. PCA→SMD: Recall that the
relevant data for PCA case are represented by the solutions to equation (SM1) with
E = Σ and n1H ∼Wp (n1,Ω). Let

(SM6) Ω = Σ +
√

p/n1θψψ
′

with
∥

∥Σ−1/2ψ
∥

∥ = 1. That is, let the value of the spike in the original version of PCA

be scaled by
√

p/n1. Equation (SM6) implies that

Σ−1 = Ω−1 +

√

p/n1θ

1 +
√

p/n1θ
Σ−1ψψ′Σ−1,

and therefore, equation (SM1) is equivalent to

det

((

Ω−1 +

√

p/n1θ

1 +
√

p/n1θ
Σ−1ψψ′Σ−1

)

H − λIp

)

= 0,

which, in its turn, is equivalent to

(SM7) det
(

Ω−1/2HΩ−1/2 +
√

p/n1θηη
′Ω−1/2HΩ−1/2 − λIp

)

= 0,

where

η = Ω1/2Σ−1ψ/
(

1 +
√

p/n1θ
)1/2

is such that ‖η‖ = 1. The latter equality follows from the fact ψ′Σ−1ΩΣ−1ψ = 1 +
√

p/n1θ, which is a consequence of (SM6) and of the normalization
∥

∥Σ−1/2ψ
∥

∥ = 1.
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Now assume that n1 diverges to infinity while p is held constant. Then, by a CLT

(SM8) Ω−1/2HΩ−1/2 = Ip + Z/
√
n1 + oP

(

n
−1/2
1

)

,

where Z belongs to GOE. Multiplying (SM7) by (n1/p)
p/2 and using (SM8), we see

that, as n1 → ∞, equation (SM7) degenerates to

det
(

Z/
√
p+ θηη′ − µIp

)

= 0 with µ =
√

n1/p (λ− 1) .

Hence, PCA degenerates to SMD.

SigD→PCA: As shown in JO, SigD degenerates to PCA as n2 → ∞ while n1 and
p are held constant. Therefore, SigD can be linked to SMD via PCA.

REG0 →SMD: Consider REG0 with

EY1 =

√

(p/n1)
1/2 n1θϕψ

′,

so that the original value of the spike θ (see equation (JO4)) is scaled by (p/n1)
1/2.

Suppose now that n1 diverges to infinity while p is held constant. Then, by a CLT,

(SM9) Σ−1/2HΣ−1/2 − Ip = Z/
√
n1 +

√

p/n1θηη
′ + oP

(

n
−1/2
1

)

,

where Z belongs to GOE and η = Σ−1/2ψ. On the other hand, equation (SM1) is
equivalent to

(SM10) det
(

Σ−1/2HΣ−1/2 − λIp

)

= 0.

Multiplying it by (n1/p)
p/2 and using (SM9), we see that equation (SM10) degen-

erates to
det
(

Z/
√
p+ θηη′ − µIp

)

= 0 with µ =
√

n1/p (λ− 1) .

Hence, REG0 degenerates to SMD.

REG→REG0: The REG case degenerates to REG0 as n2 → ∞ while n1 and p
are held constant. Therefore, REG can be linked to SMD via REG0.

CCA→REG0: Recall that the CCA case is based on the solutions to equation
(SM1) with

H = SxyS
−1
yy Syx and E = Sxx,

where Sxx and Syy are sample covariance matrices corresponding to i.i.d. N (0,Σxx)
sample xt ∈ R

p, t = 1, ..., n1 + n2, and i.i.d. N (0,Σyy) sample yt ∈ R
n1 , t =

1, ..., n1+n2, respectively. Matrices Sxy and Syx are the corresponding sample cross-

covariance matrices. Since the transformations xt 7→ Σ
−1/2
xx xt and yt 7→ Σ

−1/2
yy yt
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do not affect the roots of (SM1), we shall assume without loss of generality that
Σxx = Ip and Σyy = In1 . Recall that, by assumption,

Σxy =

√

n1θ

n1θ + n1 + n2
ψϕ′.

Suppose that n2 diverges to infinity while n1 and p are held constant. Then, by
a CLT,

Sxx = Ip + oP (1) , Syy = In1 + oP (1) ,

whereas
Sxy = Σxy + Zxy/

√
n1 + n2 + oP

(

(n1 + n2)
−1/2

)

,

where Zxy is a p × n1 matrix with i.i.d. N(0, 1) entries. Therefore, equation (SM1)
degenerates to

(SM11) det

(

1

n1

(

Σ̃xy + Zxy

)(

Σ̃xy + Zxy

)′
− νIp

)

= 0

with
Σ̃xy =

√

n1θψϕ
′

and
ν = (1 + n2/n1)λ.

Hence, CCA degenerates to REG0. It can further be linked to SMD via REG0.

3. The likelihood ratios.

3.1. SMD entry of Table JO8. The explicit expression for L(SMD) (θ; Λ) given in
Table JO8 follows from the following lemma.

Lemma 14. For SMD case, the joint density of the diagonal elements of Λ eval-
uated at the diagonal elements of x = diag {x1, ..., xp} with x1 ≥ ... ≥ xp equals

(SM12) cp (x) exp
{

−pθ2/4
}

0F0 (Ψ, x) ,

where cp (x) is a quantity that depends on p and x, but not on θ, and Ψ = diag {θp/2, 0, ..., 0}.
The density under the null hypothesis is obtained from the above expression by setting
θ = 0.

Proof: The proof is based on the “symmetrization trick” used by James (1955)
to derive the density of non-central Wishart distribution. Let Y = U ′XU, where U
is a random matrix from O(p) and X = Z/

√
p+ ηθη′ with Z from GOE, θ ≥ 0, and
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‖η‖ = 1. Note that the eigenvalues of X and Y are the same. The joint density of
the functionally independent elements of Y evaluated at y is

(2π/p)−p(p+1)/4 2−p/2

∫

O(p)
etr
{

−p
4

(

uyu′ − ηθη′
)2
}

(du),

where etr{·} denotes the exponential trace function, and (du) is the normalized
uniform measure over O(p). Taking the square under etr and factorizing, we obtain
an equivalent expression

(2π/p)−p(p+1)/4 2−p/2 exp
{

−p
4
θ2
}

etr
{

−p
4
y2
}

∫

O(p)
etr

{

pθ

2
uyu′ηη′

}

(du).

Now change the variables from y to (H,x) , where y = HxH ′ is the spectral decom-
position of y. Using the strategy of the proof of Muirhead’s (1982) Theorem 3.2.17,
integrate H out to obtain (SM12) with

cp (x) =
pp(p+1)/4πp(p−1)/4

2p(p−1)/4+pΓp (p/2)
etr
(

−p
4
x2
)

p
∏

i<j

(xi − xj) ,

where Γp (p/2) is the multivariate Gamma function. �

3.2. Identification of the parameters of expression (JO6). For the reader’s con-
venience, we provide some extra detail on the identification of the parameters of
expression (JO6) for the likelihood ratio L(θ; Λ) summarized in Table JO8. To have
a self-contained source for derivations, we refer below to Muirhead (1982), hence-
forth [M], in addition to James (1964), [J] below.

Some Notational conventions. |A| = det(A), and cpn for a constant depending
only on p, n. The hypergeometric function

pFq(a, b;A,B) =

∫

O(p)
pFq(a, b;AHBH

′)(dH),

We sometimes drop explicit mention of the parameter vectors a, b, and write pFq[A;B].
In particular, we have

(SM13) pFq[A;B] = pFq[B;A] and pFq[cA;B] = pFq[A; cB],

and

pFq[A; 0] = pFq[0] = 1

For 0F0(A) = etr(A) we also have

(SM14) 0F0(A, I + C) = etr(A) 0F0(A,C).
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To indicate the extension to rank r perturbations, we write ψ = [ψ1 · · ·ψr] for a
p × r matrix with ψ′Σ−1ψ = Ir, θ = diag(θ1, . . . , θr), 1 + θ for Ir + θ and

√
θ for

diag(
√
θ1, . . . ,

√
θr).

PCA. [J, eq. (58)], [M, Th. 9.4.1]. We assume a p×n1 matrix X ∼ N(0,Ω⊗In1)
with Ω = Σ+ψθψ′ for Σ > 0 and ψ′Σ−1ψ = Ir. Without loss of generality we can set
Σ = Ip. The matrix n1H = XX ′ has eigenvalues Λ = diag(λi). Using the dictionary

M: S m n Σ L

JO: H p n1 Ω Λ
,

[M, Th. 9.4.1] gives the joint density of Λ as

p(Λ|Ω) = cpn1 |Ω|−n1/2|Λ|(n1−p−1)/2v(Λ) 0F0(−1
2n1Λ,Ω

−1),

where

v(Λ) =

p
∏

i<j

(λi − λj).

Since 0F0(A, I) = etr(A), the likelihood ratio

L(θ; Λ) =
p(Λ|Ω)
p(Λ|I) = |Ω|−n1/2 etr(12n1Λ) 0F0(−1

2n1Λ,Ω
−1).

We have |Ω| = |I + θ|, and Ω−1 = I −ψθ(1+ θ)−1ψ′, and referring to (SM14), we
obtain

0F0(−1
2n1Λ,Ω

−1) = etr(−1
2n1Λ) 0F0(

1
2n1Λ, ψθ(1 + θ)−1ψ′),

and arrive at

L(θ; Λ) = |1 + θ|−n1/2
0F0(

1
2n1ψθ(1 + θ)−1ψ′,Λ).

SigD. [J, eq. (65), citing Constantine (unpublished)], [M, Th. 8.2.8]. Now
assume independent matrices

X ∼ N(0,Ω ⊗ In1) and Y ∼ N(0,Σ ⊗ In2),

with dimensions p × n1 and p × n2, and Ω = Σ + ψθψ′ for Σ > 0 unknown and
ψ′Σ−1ψ = Ir. Without loss of generality (wlog) we can again set Σ = Ip. The
sample covariance matrices are given by

H = XX ′/n1 and E = Y Y ′/n2.

Using now the dictionary

M: A1 A2 m n1 n2 Σ1 Σ2 ∆

JO: n1H n2E p n1 n2 Ω Ip Ω
,
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[M, Th. 8.2.8] gives the joint density of the eigenvalues F = diag(f1, . . . , fp) of

(SM15) det(n1H − fin2E) = 0

as
p(F |Ω) = cpn1n2 |Ω|−n1/2|F |(n1−p−1)/2v(F ) 1F0(

1
2n;−Ω−1, F ),

where n = n1 +n2. It is helpful to transform the hypergeometric function using [M,
Lemma 8.2.10], due to Khatri (1967), which says here that

1F0[−Ω−1, F ] = |I + F |−n/2
1F0[I − Ω−1, F (I + F )−1]

Note that, as for PCA, I − Ω−1 = ψθ(1 + θ)−1ψ′. The (generalized) eigenvalues
Λ = diag(λ1, . . . , λp) of (JOSM2) are seen to be related to those of (SM15) via
the transformation Λ = (n2/n1)F (I + F )−1. In forming the likelihood ratio, terms
not depending on θ cancel, including the Jacobian of this transformation. Hence we
arrive at

L(θ; Λ) =
p(Λ|Ω)
p(Λ|I) =

p(F |Ω)
p(F |I) = |1 + θ|−n1/2

1F0[(n1/n2)ψθ(1 + θ)−1ψ′,Λ].

REG0. [J, eq. (68)], [M, Exer. 10.9]. After reduction to canonical form, we
assume that we observe an n1 × p matrix Y1 ∼ N(M, In1 ⊗ Σ). The unnormalized
sample covariance matrix n1H = Y ′

1Y1 has a non-central Wishart distribution with
non-centrality matrix Ω = Σ−1M ′M . Without loss of generality we can set Σ = Ip.
Using the dictionary

M: A m n

JO: n1H p n1
,

[M, Exer. 10.9] gives the joint density of the eigenvalues W = diag(wi) of n1H as

p(W |Ω) = cpn1 etr(−1
2Ω) etr(−1

2W )|W |(n1−p−1)/2v(W ) 0F1(
1
2n1;

1
4Ω,W ).

The low rank assumption (JO4) positsM =
√
n1ϕ

√
θψ′ with ϕ′ϕ = ψ′Σ−1ψ = Ir,

so that with Σ = Ip, we have Ω = Ωθ = n1ψθψ
′. Note that EH = I + ψθψ′, which

explains the normalization chosen for M .
The eigenvalues Λ of H are related to the eigenvalues W of n1H by Λ = W/n1

and so

L(θ; Λ) =
p(Λ|Ωθ)

p(Λ|Ω0)
=
p(W |Ωθ)

p(W |Ω0)
= etr{−1

2n1θ} 0F1[
1
4n1ψθψ

′, n1Λ]

= etr{−1
2n1θ} 0F1[

1
4n

2
1ψθψ

′,Λ],

where we used (SM13).
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REG. [J, eq. (73), citing Constantine (1963)], [M, Th. 10.4.2]. We are in the
situation of REG0, but with Σ unknown and estimated by an independent Wishart
matrix n2E ∼ Wp(n2,Σ). [M, Th. 10.4.2] gives the joint density of the eigenvalues
F of equation (SM15). Using the dictionary

M: A B m r n− p Σ Ω

JO: n1H n2E p n1 n2 Ip Ω
,

this may be written as

p(F |Ω) = cpn1n2 etr(−1
2Ω)w(F ) 1F1(

1
2n,

1
2n1;

1
2Ω, F (I + F )−1).

where w(F ) = |F |(n1−p−1)/2|I + F |−(n1+n2)/2v(F ) does not depend on θ.
As for SigD, we make the transformation Λ = (n2/n1)F (I +F )−1 to the general-

ized eigenvalues of (JOSM2). So, as in previous cases,

L(θ; Λ) =
p(Λ|Ωθ)

p(Λ|Ω0)
=
p(F |Ωθ)

p(F |Ω0)
= etr{−1

2n1θ} 1F1[
1
2n1ψθψ

′, (n1/n2)Λ]

= etr{−1
2n1θ} 1F1[

1
2 (n

2
1/n2)ψθψ

′,Λ].

CCA. [J, eq. (76), citing Constantine (1963)], [M, Th. 11.3.2]. We recall some
of the steps from [M, Th. 11.2.6], borrowing some text from Johnstone and Nadler
(2015). The canonical correlation problem is invariant under change of basis for each
of the two sets of variables, e.g. [M, Th. 11.2.2]. We may therefore assume that the
matrix Σ takes the canonical form

Σ =

(

Ip P̃

P̃ ′ In1

)

, P̃ = [P 0], P = diag(ρ1, . . . , ρr, 0, . . . , 0)

where P̃ is p × n1 and the matrix P is of size p × p with r non-zero population
canonical correlations ρ1, ...ρr. Furthermore, in this new basis, we decompose the
sample covariance matrix as follows,

(SM16) nS =

(

X ′X X ′Y
Y ′X Y ′Y

)

where the columns of the n × p matrix X contain the first p variables of the n ≡
n1+n2 samples, now assumed to have mean 0, represented in the transformed basis.
Similarly, the columns of n × n1 matrix Y contain the remaining n1 variables. For
future use, we note that the matrix Y ′Y ∼Wn1(n, In1).

The squared canonical correlations {r2i } are the eigenvalues of S−1
xx SxyS

−1
yy Syx.

According to [M, Th. 11.3.2], the joint density of R2 = diag(r21 , . . . , r
2
p) is given by

p(R2|P 2) = cpn1n2 |Ip − P 2|n/2w(R2) 2F1(
1
2n,

1
2n;

1
2n1;P

2, R2),
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where w(R2) = |R2|(n1−p−1)/2|Ip − R2|(n2−p−1)/2v(R2) does not depend on P 2. Be-
low, we abbreviate the hypergeometric function as 2F1[P

2, R2] since the parameters
(12n,

1
2n;

1
2n1) don’t change.

If we set PY = Y (Y ′Y )−1Y ′ the canonical correlations r2i can be rewritten as the
roots of det(r2X ′X − X ′PYX) = 0. Now set n1H = X ′PYX and n2E = X ′(I −
PY )X: the previous equation becomes

(SM17) det(n1H − r2(n1H + n2E)) = 0.

We now recall a standard partitioned Wishart argument. Conditional on Y , matrix
X is Gaussian with independent rows, and mean and covariance matrices

M(Y ) = Y Σ−1
yy Σyx = Y P̃ ′

Σxx·y = Σxx − ΣxyΣ
−1
yy Σyx = I − P 2.

Conditional on Y , and using Cochran’s theorem, the matrices

n1H ∼Wp(n,Σxx·y,Φ(Y )) and n2E ∼Wp(n2,Σxx·y)

are independent, where the noncentrality matrix

Φ(Y ) = Σ−1
xx·yM(Y )′M(Y ).

The generalized eigenvalues λi of (JOSM2) are related to the canonical correla-
tions r2i , the generalized eigenvalues of (SM17), by λi = (n2/n1)r

2
i . Thus we obtain

the interpretation of the roots of (JOSM2) in terms of a pair of matrices n1H and
n2E which are conditionally independently Wishart given (part of the data) Y .
Further, as for the previous cases, we can write the likelihood ratio as

p(Λ|P 2)

p(Λ|0) =
p(R2|P 2)

p(R2|0) = |Ip − P 2|n/2 2F1[P
2, R2]

= |Ip − P 2|n/2 2F1[(n1/n2)P
2,Λ].

Now in our rank r setting, P 2 =
∑r

1 ρ
2
i eie

′
i with ρ

2
i = n1θi/(n1θi + n1 + n2). From

the previous display we obtain, after setting ψ = [Ir 0r×(p−r)]
′,

L(θ,Λ) =
p(Λ|P 2)

p(Λ|0) = |Ir + n1θ/n|−n/2
2F1[n

2
1ψθ(n

2
2Ir + n2n1(Ir + θ))−1ψ′,Λ].

4. Contour integral representation.

4.1. Derivations for Table JO4. In this subsection, we obtain decomposition
(JO12)

A ≡ Γ (s+ 1)α (θ) qs√
πpΨs

11

= exp {− (p/2) fc} gc,
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where s = p/2 − 1, and gc and fc remain bounded as n, p →γ ∞, for SMD, PCA,
SigD, RED0, REG, and CCA. The values of gc and fc for the different cases are
given in Table JO4.

Structure of the prefactor A. Let us rewrite

(SM18) A = α(θ)
Γ(s+ 1)

(p/2)s
√
πp

[

p/2

Ψ11

]s

qs

as a product of terms Ak = gke
−(p/2)fk(1 + o(1)) where fk, gk depend only on

(c1, c2, θ), p, and q, see (SM24) below. The idea is to show the dependence on p, q.
Referring to Table JO8, we have aj = n/2 and bj = n1/2 whenever they are present,
and so

(SM19) qs =

[

Γ(n/2− s)

Γ(n/2)

]p [ Γ(n1/2)

Γ(n1/2− s)

]q

.

Table JO8 also shows that

(SM20) α(θ) = A(θ)−n1/2,
p/2

Ψ11
=

p

n1

1

B(θ)

(n2/2)
p

(n1/2)q

where A(θ) and B(θ) depend on the particular case in James’ classification. This
dependence is shown in Table 1 below.

Table 1

Terms A(θ),B(θ) in the prefactor pAq, formula (SM24).

Case pFq A(θ) B(θ)

SMD∗
0F0 eθ

2/2 θ

PCA 0F0 1 + θ θ/(1 + θ)
SigD 1F0 1 + θ θ/(1 + θ)

REG0 0F1 eθ θ
REG 1F1 eθ θ

CCA 2F1 (1 + n1θ/n)
n/n1 θ/l(θ)

(∗) replace n1 by p, l(θ) = 1 +
c2
c1

(1 + θ)

Combine like terms in (SM19) and (SM20) to get

(SM21)
(n2/2)

ps

(n1/2)qs
qs =

(n2
n

)ps Θp(n/2, p/2)

Θq(n1/2, p/2)
,
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where we define

(SM22) Θ(N,M) =
NM−1Γ(N −M + 1)

Γ(N)
∼ eM

(

1− M

N

)N−M+1/2

.

[This is verified at the end of this section.] Finally, define

(SM23) E(M) =
Γ(M)

MM−1
√
2πM

∼ e−M .

Combining (SM18), (SM20)–(SM22), we obtain the desired form

(SM24) A = pAq = E(p/2)A(θ)−n1/2B(θ)−s

(

p

n1

)s
(n2
n

)ps Θp(n/2, p/2)

Θq(n1/2, p/2)
.

Each factor in this product is easily cast in the form gke
−(p/2)fk (1 + o(1)), with the

resulting values of fk and gk shown in Table 2. When needed, we factorize gk = ǧkg̃k
to show the leading term ǧk and the term g̃k = 1+o(1), with the specific dependence
of the o(1) term (which comes from the error bound in Stirling’s formula) shown in
the final column of Table 2.

Table 2

Form of each term in (SM24), when expressed as gke
−(p/2)fk , with gk = ǧkg̃k. Here ϑm denotes a

term that is O(m−1).

fk ǧk g̃k

E(p/2) 1 1 1 + ϑp

A(θ)−n1/2 c−1
1 logA(θ) 1 1

B(θ)−s logB(θ) B(θ) 1

(p/n1)
s − log c1 1/c1 1

(n2

n

)s

log
(

1 +
c2
c1

)

1 +
c2
c1

1

Θ(n/2, p/2) −1− r2

c1c2
log

r2

c1 + c2

r

(c1 + c2)1/2
1 + ϑn + ϑn−p

Θ−1(n1/2, p/2) 1 +
1− c1
c1

log(1− c1) (1− c1)
−1/2 1 + ϑn1

+ ϑn1−p

Verification of Table JO4. We write gc = ǧc(1 + o(1)) and g10 = ǧ10(1 + o(1))
when we seek to be explicit about the leading term. The o(1) term differs from row
to row, but depends only on p, n1, n2 (and not θ). The explicit dependence can be
constructed from the rows of Table 2, from which it is seen in fact always to be
O(m−1), where m = min(p, n1 − p).

The lines for SMD, PCA and REG0 in Table JO4 – reproduced here as Table 3
below – are immediately verified from Table 2. Next, we consider ratios in which
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Table 3

Table JO4. Values of fc and ǧc = gc/(1 + o(1)) for the different cases. The terms o(1) do not
depend on θ and converge to zero as n, p→γ ∞. In the table, l(θ) = 1 + (1 + θ)c2/c1 and

r2 = c1 + c2 − c1c2.

Case fc ǧc = gc/(1 + o(1))

SMD 1 + θ2/2 + log θ θ

PCA 1 +
1− c1
c1

log(1 + θ) + log
θ

c1
θ(1 + θ)−1c−1

1

SigD fPCA
c + f10 ǧPCA

c ǧ10

REG0 1 +
θ + c1
c1

+ log
θ

c1
+

1− c1
c1

log(1− c1) θc−1
1 (1− c1)

−1/2

REG fREG0
c + f10 ǧREG0

c ǧ10

CCA fREG
c + f21 ǧREG

c ǧ10/l(θ)

f10 = −1− r2

c1c2
log

r2

c1 + c2
+ log

c1 + c2
c1

ǧ10 = c−1
1 r(c1 + c2)

1/2

f21 = −1− θ

c1
− r2

c1c2
log

r2

c1l(θ)

the p index decreases by one from numerator to denominator. We then have from
(SM24)

ASigD

APCA
=

1A0

0A0
=

AREG

AREG0
=

1A1

0A1
=
(n2
n

)s
Θ(n/2, p/2) = g10e

−(p/2)f10 .

Referring to Table 2, we recover the terms f10 and g10 and hence the lines for SigD
and REG in Table JO4. For future reference, it is useful to decompose

f10 = k1 + k0,

k1 = −1− r2

c1c2
log r2, k0 =

r2

c1c2
log(c1 + c2) + log

c1 + c2
c1

(SM25)

Using (SM24) we have, in an obvious notation,

ACCA

AREG
=

2A1

1A1
=

(

AC

AR

)−n1/2(BC

BR

)−s

·
(n2
n

)s
Θ(n/2, p/2) = R · AREG

AREG0
,

= g21e
−(p/2)f21 .

and referring to Table 2, R = l−1(θ) exp{−(p/2)f20} , where

f20 =
n1
p

log
AC

AR
+ log

BC

BR
=
c1 + c2
c1c2

log
c1l(θ)

c1 + c2
− θ

c1
− log l(θ)(SM26)

= k2 − k0,
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and

(SM27) k2 = − θ

c1
+

r2

c1c2
log c1l(θ).

This establishes the CCA line of Table JO4 after we note that

(SM28) f21 = f20 + f10 = k2 − k0 + k1 + k0 = k2 + k1.

Verification of (SM22). Use Stirling’s formula (SM23) twice:

Γ(N) ∼
√
2πN NN−1e−N , and

Γ(N −M + 1) = (N −M)Γ(N −M)

∼
√

2π(N −M)(N −M)N−Me−N+M

to arrive at

N−1Γ(N −M + 1)

Γ(N)
∼
(

N −M

N

)1/2 (N −M)N−M

NN
eM

and hence formula (SM22).

4.2. Proof of Lemma JO2 (approximation to 0F1). By equation 9.6.47 in Abramowitz
and Stegun (1964), we have

(SM29) F0 = Γ (m+ 1)
(

m2η0
)−m/2

Im

(

2mη
1/2
0

)

,

where the principal branches of the fractional powers are taken, and Im (·) is the
modified Bessel function of the first kind. Using equation 9.7.7 in Abramowitz and
Stegun (1964), we obtain

(SM30) Im

(

2mη
1/2
0

)

=
η
m/2
0

(1 + 4η0)
1/4

√
2πm

em(2t0−1−ln t0) (1 + o(1)) ,

where o(1) → 0 as m→ ∞ uniformly with respect to η0 ∈ Ω0δ for any δ > 0. Using
(SM30) in (SM29), and invoking Stirling’s approximation

Γ (m+ 1) = mme−m
√
2πm (1 + o(1)) ,

we obtain
F0 = (1 + 4η0)

−1/4 e−m(−2t0+2+ln t0) (1 + o(1)) .

Since 1− t0 = −η0/t0, we obtain −2t0 + 2 + ln t0 = ϕ0 (t0) and thus,

F0 = (1 + 4η0)
−1/4 e−mϕ0(t0) (1 + o(1)) .
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4.3. Proof of Lemma JO3 (approximation to 1F1, 2F1). First, let us change vari-
able of integration in

Fj =
Cm

2πi

∫ (1+)

0
exp {−mϕj (t)}ψj (t) dt

from t to τ = tηj . We obtain

(SM31) Fj =
Cmη

−m
j

2πi

∫ (ηj+)

0
exp {−mφj (τ)}χj (τ) dτ,

where

(SM32) φj(τ) =

{

−τ − κ ln τ + (κ− 1) ln (τ − ηj) for j = 1
−κ ln (τ/ (1− τ)) + (κ− 1) ln (τ − ηj) for j = 2

and

χj (τ) =

{

(τ − ηj)
−1 for j = 1

(τ − ηj)
−1 (1− τ)−1 for j = 2

.

Note that, for j = 2, the contour in (SM31) does not encircle 1.
To obtain point-wise asymptotic approximation to (SM31), the method of the

steepest descent (ascent) is very convenient. However, establishing the uniformity of
the approximation requires the knowledge of details of the structure of the steepest
descent paths. For example, this knowledge becomes essential when some of the
steepest descent paths contain two saddle points. Unfortunately, for our problem,
the steepest descent paths are relatively complicated. Therefore, we will consider
very simple paths that are steep (but not the steepest) in a neighborhood of a saddle
point. This strategy allows us to rigorously establish the uniformity for relatively
large sets of parameters κ and ηj . A downside of this approach is that we need to
explicitly characterize the behavior of φj (τ) on the simple paths, which requires
some relatively lengthy but elementary calculus.

We shall prove Lemma JO3 separately for j = 1 (REG) and for j = 2 (CCA).
Therefore, we shall omit subscripts j from the notation below.

Proof of Lemma JO3 for REG.
Saddle points, REG. The saddle points satisfy

d

dτ
φ (τ) = −1− κ

τ
+
κ− 1

τ − η
= −τ

2 + (1− η)τ − κη

τ (τ − η)
= 0.

There are two solutions to this equation

(SM33) τ± = 1
2

{

η + 2κ− 1±
√

(η + 2κ− 1)2 − 4κ (κ− 1)

}

− κ,

where we choose the principal branch of the square root (cut along (−∞, 0]) when
Re η ≥ −2κ+ 1, and the other branch when Re η < −2κ+ 1. The following lemma
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collects facts about the behavior of τ+ for various (κ, η). Suppose that κ > 1 (which
is certainly true if 0 < p < min {n1, n2}). Let β = arg η. Here and in what follows the
principal branch of arg (cut along (−∞, 0]) is considered, unless stated otherwise.

Lemma 15. (i) If Im η > 0, then 0 < arg (τ+ − η) < β; if Im η < 0, then
β < arg (τ+ − η) < 0. For real η > 0, τ+ is real and τ+ > η.

(ii) For η ∈ C\ (−∞, 0] , function Reφ (τ) is strictly increasing as τ moves away
from τ+ (in any direction) along the circle with center η and radius |τ+ − η| until
it reaches a point B on the circle. If Im η > 0, then −π ≤ arg (B − η) ≤ β − π. If
Im η < 0, then π + β ≤ arg (B − η) ≤ π. If η > 0, then B = 2η − τ+.

Proof: (i) For Im η > 0 and the branch of the square root chosen as described
above, we have

Im

√

(η + 2κ− 1)2 − 4κ(κ − 1) > Im (η + 2κ− 1) = Im η.

Since

2 Im (τ+ − η) = − Im η + Im

√

(η + 2κ− 1)2 − 4κ(κ − 1),

we have Im (τ+ − η) > 0. Therefore,

(SM34) if Im η > 0, then 0 < arg (τ+ − η) < π.

Similarly, we can show that if Im η < 0, then −π < arg (τ+ − η) < 0.
Now let ρ = |τ+ − η|. Then, for τ = η + ρeix we have

Reφ (τ) = (κ− 1) ln ρ− Re η − ρ cos x

−κ
2
ln
(

ρ2 + |η|2 + 2ρ |η| cos (x− β)
)

,

and therefore

(SM35)
d

dx
Reφ (τ) = ρ {sinx+ kη (x) sin (x− β)} ,

where

(SM36) kη (x) =
κ |η|

ρ2 + |η|2 + 2ρ |η| cos (x− β)
> 0,

unless cos (x− β) = −1 and ρ = |η|, in which case τ = η+ρeix = 0 and d
dx Reφ (τ) →

−∞ as x ↓ β − π and d
dx Reφ (τ) → +∞ as x ↑ β + π.

For Im η > 0, (SM35) implies that

d

dx
Reφ (τ) > 0 for x ∈ [β, π] , and(SM37)

d

dx
Reφ (τ) < 0 for x ∈ [β − π, 0] .(SM38)
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But, since τ+ is a saddle point of φ (τ),

d

dx
Reφ (τ) = 0 for x = arg (τ+ − η) .

Therefore, inequalities (SM34) and (SM37) guarantee that arg (τ+ − η) ∈ (0, β) .
Similarly, we can show that Im η < 0 implies that arg (τ+ − η) ∈ (β, 0). The part of
(i) that deals with real η > 0 holds by inspection.

(ii) Consider the case Im η > 0. Let us show that there are no zeros of d
dx Reφ (τ)

on (0, β) other than arg (τ+ − η). First, suppose that kη (β/2) < 1, where kη (·) is as
defined in (SM36). Then, since kη (x) is a decreasing function of x ∈ (0, β) , equation
(SM35) implies that all zeros of d

dx Reφ (τ) on x ∈ (0, β) must belong to (0, β/2) .

Furthermore, at any zero x of d
dx Reφ (τ) we must have kη (x) < 1.

Indeed, let x = β/2 + y. Then,

sinx+ kη(x) sin(x− β) = sin(β/2 + y)− kη(x) sin(β/2− y)

On the other hand,

sin(β/2 + y)− sin(β/2 − y) = 2 sin y cos(β/2),

which is positive for 0 < y < β/2 and negative for 0 > y > −β/2. Therefore,
sinx + kη(x) sin(x − β) (and d

dx Reφ (τ)) is positive for x ∈ (β/2, β), and it may
equal zero for some x ∈ (0, β/2) only if kη (x) < 1.

If there are more than one zero for x ∈ (0, β/2), then by the mean-value the-

orem there must exist x1 ∈ (0, β/2) such that, at x = x1,
d2

dx2 Reφ (τ) ≤ 0 and
d
dx Reφ (τ) ≥ 0. The latter inequality and the fact that d

dx Reφ (τ) < 0 at x = 0

implies that some zeros of d
dx Reφ (τ) must be less than or equal to x1, and hence,

kη (x1) < 1.
To summarize, if there are more than one zero of d

dx Reφ (τ) on (0, β/2) , we must
have

(SM39) ρ
{

cos x1 + kη (x1) cos (x1 − β) + k′η (x1) sin (x1 − β)
}

≤ 0

for some x1 ∈ (0, β/2) with kη (x1) < 1. Since

k′η (x1) sin (x1 − β) > 0and (1− kη(x1)) cos x1 > 0,

we must have
cos x1 + cos (x1 − β) < 0.

Therefore,

(SM40) 2 cos (x1 − β/2) cos (β/2) < 0,

which is impossible for x1 ∈ (0, β) and 0 < β < π.
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Now, suppose that kη (β/2) > 1. Then, all zeros of d
dx Reφ (τ) on x ∈ (0, β) belong

to (β/2, β). If there are more than one zero, there must exist x1 ∈ (β/2, β) such that
d2

dx2 Reφ (τ) ≤ 0 at x = x1 with kη (x1) > 1. That is, (SM39) holds. Since

k′η (x1) sin (x1 − β) > 0, cos (x1 − β) > 0, and kη (x1) > 1,

we still must have (SM40), which is impossible.
Finally, if kη (β/2) = 1 then, since kη (x) is decreasing, (SM35) implies that there

is only one zero of d
dx Reφ (τ) on x ∈ (0, β) , which is x = β/2. To summarize, we

have shown that
x+ ≡ arg (τ+ − η)

is the only zero of d
dx Reφ (τ) on (0, β). Similar arguments show that there exists

only one zero, say x−, of d
dx Reφ (τ) on (−π, β − π). (If |η| = ρ so that Reφ (τ) is

singular at x = β − π with d
dx Reφ (τ) → −∞ as x ↓ β − π and d

dx Reφ (τ) → +∞
as x ↑ β + π, we formally define d

dx Reφ (τ) at x = β − π as zero).
We will set

B = η + ρ exp {ix−} .
The uniqueness of the zeros of d

dx Reφ (τ) on (0, β) and on (−π, β − π) , and in-
equalities (SM37,SM38) imply (ii) for the situation where Im η > 0. The analysis
for the cases with Im η < 0 is similar to the above, and we omit it.

It remains to note that for real η such that η > 0, we have

d

dx
Reφ (τ) = ρ {1 + kη (x)} sinx

which implies the validity of (ii) for η > 0. �

Contours of steep descent, REG. We shall choose the contour of integration
in (SM31) so that it passes through τ+, and Reφ (τ) increases as τ moves away
from τ+ along the contour, at least in a neighborhood of τ+. Such contours are
called contours of steep descent (of −Reφ (τ)). The contour consists of a circle with
center η and radius ρ = |τ+ − η| (which, in what follows, we refer to as the circle)
and two overlapping straight segments of opposite orientations.

We consider four situations. The first and the second ones correspond to Re η > 0
and to ρ < |η| and ρ ≥ |η|, respectively. The third and the fourth ones correspond
to Re η ≤ 0 and to ρ < |η| and ρ ≥ |η|, respectively. In situations 1, 3, and 4, the
two straight segments of opposite orientation connect zero and the point A where
the circle is intersected by a half-line that starts at η and passes through zero. In
situation 2, the point A is the intersection point of the circle and a half-line that
starts at τ− and passes through zero. Figure 1 illustrates the choice of the contour.
The points B on the circles are as defined in Lemma 15.

Let us show that in situation 2, that is when Re η > 0 and ρ > |η| , the circle
intersects the straight segment [τ−, 0), as shown in Figure 1. Indeed, by definition
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Fig 1. Contours of steep descent, j = 1.

of τ± we have

(SM41) − (τ− − η) = (τ+ − η) + η + 1.

Since, by Lemma 15 (i), Im (τ+ − η) has the same sign as Im η and Re (τ+ − η) ≥ 0,
and since Re (η + 1) > 0 and Im (η + 1) = Im η, we have

|Re {− (τ− − η)}| > |Re (τ+ − η)| and |Im {− (τ− − η)}| ≥ |Im (τ+ − η)| ,

which implies that the circle must intersect the straight segment [τ−, 0).
We shall split the contour, which we shall call K, in three parts. In situations 1,

3, and 4, the splitting is

(SM42) K = K[0,A] +K[A,τ+,B] +K[B,A,0].

This decomposition assumes that Im η ≥ 0. If the sign of Im η changes to the neg-
ative, so that η 7−→ η̄, then K is transformed to its complex conjugate, and the
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orientation of such a complex conjugate must be changed to the opposite one. The
decomposition then becomes

(SM43) K = K[0,A,B] +K[B,τ+,A] +K[A,0].

In situation 2, when Im η ≥ 0, the splitting is (SM43) because arg (B − η) ≥
arg (A− η). (We will verify the latter inequality shortly.) In what follows, we con-
sider only the case Im η ≥ 0. The complex conjugate case is analyzed similarly, and
we omit details of such an analysis.

As follows from the proof of Lemma 15, Reφ (τ) is strictly increasing as τ is going
along K[A,τ+,B] away from τ+. In other words, K[A,τ+,B] is a contour of steep descent.
Below, we shall use Lemma JO9 to analyze

I
[A,τ+,B]

=

∫

K[A,τ+,B]

e−mφ(τ)χ (τ) dτ.

We shall then show that I[0,A] and I[B,A,0], which are defined similarly to I[A,τ+,B],
are asymptotically dominated by I[A,τ+,B]. However, before we embark on this
agenda, let us show that arg (B − η) ≥ arg (A− η) as was claimed above.

As follows from Lemma 15, to see that the latter inequality holds, it is sufficient
to verify that d

dx Reφ (τ) is positive at τ = A. For such a verification, we will refer
to Figure 2.

First, note that τ+τ− = −κη and (τ+−η)(τ−−η) = (1−κ)η, where by assumption,
κ > 1. The first of these equalities implies that arg τ− = −π + arg η − arg τ+ > −π,
so that point C on Figure 2 rightly belongs to [A, η] (the line passing through D,C, 0
is a horizontal line). The second of the equalities implies that the angle ∠Dη0 ≡ θ1
equals arg(τ+ − η). Furthermore, we have

d

dx
Reφ (τ) = ρ{sinx+

|τ+||τ−|
|τ |2 sin(x− β)}.

For τ = A, we have x = arg(A−η) and β−x−π equals ∠Cη0 ≡ θ2. This implies

(SM44)
d

dx
Reφ (τ) = ρ{− sin(β − θ2) +

|τ+||τ−|
|A|2 sin θ2}.

For τ = τ+, the derivative is zero, and hence

(SM45) 0 = sin θ1 +
|τ−|
|τ+|

sin(θ1 − β).

Now, by the law of sines applied to the triangle ηC0, we have

(SM46)
sin θ2
|C| =

sin(β − θ2)

|η| .
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Fig 2. An illustration to the argument that d
dx

Reφ (τ ) is positive at τ = A.

Similarly, for the triangle ηD0, we have

(SM47)
sin θ1
|D| =

sin(β − θ1)

|η| .

Combining (SM46) with (SM44), we obtain

(SM48)
d

dx
Reφ (τ) = ρ sin θ2

{ |τ+||τ−|
|A|2 − |η|

|C|

}

.

Combining (SM47) with (SM45), we obtain

(SM49) |η| = |τ+||D|
|τ−|

Using (SM49) in (SM48), we get

d

dx
Reφ (τ) = ρ sin θ2

|τ+|
|τ−|

{ |τ−|2
|A|2 − |D|

|C|

}

> 0.�

Saddle point approximation for I[A,τ+,B], REG. We shall now derive a saddle
point approximation to the integral I[A,τ+,B] which is uniform with respect (κ, η) ∈
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Ωδ, where
(SM50)

Ωδ =
{

(κ, η) ∈ R× C : δ ≤ κ− 1 ≤ δ−1, dist
(

η,R−) ≥ δ, and |η| ≤ δ−1
}

,

δ is an arbitrary fixed number that satisfies inequalities 0 < δ < 1, R− = (−∞, 0)
and, for any A ⊆ C and B ⊆ C,

dist (A,B) = inf
a∈A,b∈B

|a− b| .

Let us show that assumptions A0-A5 of Lemma JO9 hold. For this, we shall need
the following lemma.

Lemma 16. The quantities |τ+ − η| and |τ+| are bounded away from zero and
infinity, uniformly with respect to (κ, η) ∈ Ωδ.

Proof: Note that |τ+ − η| and |τ+| are continuous functions of (κ, η) ∈ Ωδ. On
the other hand, the definitions (SM33, SM50) of τ+ and Ωδ together with Lemma
15 imply that |τ+ − η| 6= 0 and |τ+| 6= 0 for any (κ, η) ∈ Ωδ. The lemma follows from
these observations and the compactness of Ωδ.�

Lemma 16 implies that the length of K[A,τ+,B] is bounded uniformly with respect
to (κ, η) ∈ Ωδ. Further,

sup
τ∈K

[A,τ+]

|τ − τ+| ≥ |A− τ+| and sup
τ∈K

[τ+,B]

|τ − τ+| ≥ |B − τ+|

with |A− τ+| and |B − τ+| being continuous functions of (κ, η) ∈ Ωδ, which are not
equal to zero for any (κ, η) ∈ Ωδ. Therefore, |A− τ+| and |B − τ+| are bounded
away from zero, uniformly with respect to (κ, η) ∈ Ωδ and assumption A0 holds.

Assumptions A1, A2, A3 and A5 follow from Lemma 16. Finally, let τ1 and τ2
be the points of intersection of K with a circle with center at τ+ and a sufficiently
small fixed radius ε1. The validity of Assumption A4 follows from the fact that
Re (φ (τs)− φ (τ+)) , s = 1, 2, are positive continuous functions of (κ, η) ∈ Ωδ (the
positivity being a consequence of Lemma 15 (ii)) and Im (φ (τs)− φ (τ+)) , s = 1, 2,
are continuous functions of (κ, η) ∈ Ωδ.

Since assumptions A0-A5 hold, we have by Lemma JO9

I[A,τ+,B] = 2e−mφ0

[√
π
a0
m1/2

+
O (1)

m3/2

]

,

where O (1) is uniform with respect to (κ, η) ∈ Ωδ,

(SM51) φ0 = −τ+ − κ ln τ+ + (κ− 1) ln (τ+ − η)

and

(SM52) a0 =
(τ+ − η)−1

√

2κ/τ2+ − 2 (κ− 1) / (τ+ − η)2
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with the branch of the square root chosen as described in Lemma JO9.
Precisely, let

α = π/2 + arg (τ+ − η) ,

where the principal branch of arg (·) is taken, and let

(SM53) w = arg
(

2κ/τ2+ − 2 (κ− 1) / (τ+ − η)2
)

,

where the branch of arg (·) is chosen so that |w + 2α| ≤ π/2. Then

(SM54) a0 =
e−iw/2 (τ+ − η)−1

√

∣

∣

∣
2κ/τ2+ − 2 (κ− 1) / (τ+ − η)2

∣

∣

∣

.

Analysis of I[0,A] and I[B,A,0], REG. Let us show that I[A,τ+,B] asymptotically
dominates I[0,A] and I[B,A,0] uniformly with respect to (κ, η) ∈ Ω1δ, where

Ω1δ = Ωδ ∩ {(κ, η) ∈ R× C : Re η ≥ −2κ+ 1} .

It is sufficient to prove that there exists a positive constant S, such that, for τ on
K[0,A] and K[B,A,0], we have Reφ (τ) ≥ Reφ0+S, uniformly with respect to (κ, η) ∈
Ω1δ. For concreteness, we again assume that Im η ≥ 0. The complex conjugate case
is very similar, and we omit its analysis.

Note that, by Lemma 15 (ii), for any τ ∈ K[B,A], Reφ (τ) ≥ Reφ (A) . Hence,
it is sufficient to prove that Reφ (τ) ≥ Reφ0 + S for τ from K[0,A]. Moreover, for
situations 1, 2 and 4, shown on Figure 1, it is sufficient to establish the fact that
Reφ (A) ≥ Reφ0 +S. Indeed, let τ ∈ K[0,A], and let x = |τ | . For situations 1 and 4,
using the definition of φ(τ) we have, respectively,

d

dx
Reφ (τ) = − cos β − κ/x− (κ− 1) / (|η| − x) < 0,

and
d

dx
Reφ (τ) = − cos (π − β)− κ/x+ (κ− 1) / (|η|+ x) < 0,

where β = arg η. Therefore,

(SM55) Reφ (A) = inf
τ∈K[0,A]

Reφ (τ) .

For situation 2, we have

Reφ (τ) = −x cos (arg τ−)− κ ln x+
κ− 1

2
ln
(

x2 + |η|2 − 2x |η| cos γ
)

,
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where γ = 2π + arg τ− − β, and thus,

d2

dx2
Reφ (τ) = κ/x2 + (κ− 1)

−x2 − |η|2 cos (2γ) + 2x |η| cos γ
(

x2 + |η|2 − 2x |η| cos γ
)2

≥ κ/ |τ |2 − (κ− 1) / |τ − η|2 .

On the other hand, using the fact that τ+τ− = −κη and Lemma 15 (i), it is straight-
forward to verify that γ > π/2 and therefore, |τ |2 < |τ − η|2 for any τ ∈ K[0,A].

Hence, d2

dx2 Reφ (τ) > 0. But the first derivative of Reφ (τ) with respect to x must
become positive for x → ∞, negative for x → 0, and zero for x = |τ−| , where x is
any point on the ray connecting 0 with τ−. Hence, d

dx Reφ (τ) must be negative for
τ ∈ K[0,A], and (SM55) again holds.

For situation 3, let τ ∈ K[0,A]. There are two possibilities. First, there exists τ1
on the circle, such that Re τ = Re τ1 and |Im τ1| ≤ |Im η|. In such a case, Reφ (τ) ≥
Reφ (τ1). Furthermore, by Lemma 15 (ii), Reφ (τ1) > Reφ (C) , where C = η +
|τ+ − η|. Hence,

(SM56) Reφ (τ) > Reφ (C) .

Second, Re τ > Re η + |τ+ − η|. Assuming that (κ, η) ∈ Ω1δ, the latter inequality
implies that Re τ ≥ −κ. Indeed, for (κ, η) ∈ Ω1δ, the definition (SM33) of τ+ implies
that Re τ+ ≥ −κ. Therefore,

Re τ > Re η + |τ+ − η| ≥ Re τ+ ≥ −κ.

Let x = |τ | , then

d

dx
Reφ (τ) = − cos β − κ/x− (κ− 1) / (|η| − x) ,

and
1

cosβ

d

dx
Reφ (τ) = −1− κ

Re τ
− κ− 1

Re η − Re τ
.

But

−1− κ

Re τ
≥ 0 and − κ− 1

Re η − Re τ
> 0.

Therefore d
dx Reφ (τ) < 0, and (SM56) holds. Note that in the analysis of situation

3 we used the assumption (κ, η) ∈ Ω1δ, and in particular that Re η ≥ −2κ + 1. If
the latter inequality is not satisfied, the minimum of Reφ (τ) on K can be achieved
at some point on K[0,A]. This fact will be used later, in our proof of Theorem JO10.

It remains to show that, for some positive S,

(SM57) Reφ (A) ≥ Reφ0 + S
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uniformly with respect to (κ, η) ∈ Ω1δ, and

(SM58) Reφ (C) ≥ Reφ0 + S

uniformly with respect to (κ, η) ∈ Ω̃1δ, where

Ω̃1δ = Ω1δ ∩ {κ ≥ 1,Re η ≤ 0} .

Inequality (SM58) follows from the fact that function Reφ (C)−Reφ0 is continuous
and positive for (κ, η) ∈ Ω̃1δ and from the compactness of Ω̃1δ.

We cannot use a similar argument to establish inequality (SM57) because Reφ (A)−
Reφ0 is not a continuous function of (κ, η) ∈ Ω1δ, as we may have A = B = 0 and
Reφ (A) = +∞ for some (κ, η) ∈ Ω1δ. However, we can bound Reφ (A) − Reφ0
from below by the minimum of two positive continuous functions Reφ (τ1)− Reφ0
and Reφ (τ2)−Reφ0, where τ1 and τ2 are the points of the intersection of the circle
with center η and radius |τ+ − η| and a circle with center τ+ and a fixed radius,
which is smaller than |A− τ+|, uniformly with respect to (κ, η) ∈ Ω1δ. Therefore,
there exists S > 0 such that (SM57) holds uniformly with respect to (κ, η) ∈ Ω1δ.

Asymptotics in terms of ϕ and ψ, REG. The above analysis implies the following
asymptotic representation

F1 =
Cmη

−m

2πi
2e−mφ0









√
π

e−iw/2 (τ+ − η)−1

m1/2

√

∣

∣

∣
2κ/τ2+ − 2 (κ− 1) / (τ+ − η)2

∣

∣

∣

+
O (1)

m3/2









,

where O (1) is uniform with respect to (κ, η) ∈ Ω1δ. We would like to express this
formula in terms of t1, ϕ1 (·) , and ψ1 (·). As follows from the definition of ϕ1 (see
equation (JO27)) and the fact that τ+ = t1η,

∣

∣

∣
2κ/τ2+ − 2 (κ− 1) / (τ+ − η)2

∣

∣

∣
=
∣

∣2ϕ′′
1 (t1) /η

2
∣

∣ ,

Furthermore,
ϕ1 (t1) = φ0 − ln η,

and by (JO28)
(τ+ − η)−1 = ψ1 (t1) η

−1.

Therefore, we have

F1 = Cme
−mϕ1(t1)

[

e−iw/2e−i argη

i

ψ1 (t1)
√

|2πmϕ′′
1 (t1)|

+
O (1)

m3/2

]

.

On the other hand, by definition (SM53),

w = arg
(

ϕ′′
1 (t1)

)

− 2 arg η = ω1 − π − 2 arg η,
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where ω1 is as defined in equation (JO30). Hence,

F1 = Cme
−mϕ1(t1)e−iω1/2

[

ψ1 (t1)
√

|2πmϕ′′
1 (t1)|

+
O (1)

m3/2

]

= Cmψ1 (t1) e
−iω1/2

∣

∣2πmϕ′′
1 (t1)

∣

∣

−1/2
exp {−mϕ1 (t1)} (1 + o(1)) .

Proof of Lemma JO3 for CCA.
Saddle points, CCA. From equation (SM32) with j = 2, we see that the saddle

points satisfy

d

dτ
φ (τ) = −κ

τ
− κ

1− τ
+
κ− 1

τ − η
=
τ2 (κ− 1) + τ − κη

τ (τ − 1) (τ − η)
= 0.

There are two solutions to this equation

(SM59) τ± =
−1±

√

1 + 4κ (κ− 1) η

2 (κ− 1)
,

where we choose the principal branch of the square root cut along (−∞, 0].
The following lemma collects facts about the behavior of τ+ for various (κ, η). As

usual, we assume that κ > 1. In addition, we assume that η /∈ (−∞, η∗) ∪ [1,∞),
where

η∗ = − 1

4κ (κ− 1)
.

Note that set (−∞, η∗) ∪ [1,∞) does not intersect with Ω2δ for any δ > 0.

Lemma 17. (i) |τ+ − η| < |1− η| , and τ+ = 0 if and only if η = 0.

(ii) If Im η > 0 and Re τ+ > 1/2, then 0 < Im τ+ < Im η. If Im η > 0 and Re τ+ <
1/2, then Im τ+ > Im η. Similarly, if Im η < 0 and Re τ+ > 1/2, then 0 > Im τ+ >
Im η. If Im η < 0 and Re τ+ < 1/2, then Im τ+ < Im η.

(iii) For η /∈ (−∞, η∗) ∪ [1,∞) , function Reφ (τ) is strictly increasing as τ moves
away from τ+ (in any direction) along the circle with center η and radius |τ+ − η|
until it reaches a point B on the circle.

Proof: (i) Let

(SM60) −η−1
∗ (η − η∗) = ρ2 exp {i2θ}

with θ ∈ (−π/2, π/2). Then

(SM61) τ+ =
−1 + ρ exp {iθ}

2 (κ− 1)
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and a direct calculation (we perform it using Maple’s symbolic algebra software)
shows that

η−2
∗
(

|τ+ − η|2 − |1− η|2
)

= −4κ (κ+ ρ cos θ − 1)
(

(2κ− 1)2 + ρ2 − 2ρ (2κ− 1) cos θ
)

.

Since θ ∈ (−π/2, π/2) and κ > 1, the latter expression is less than zero. Further,
equation (SM61) implies that τ+ = 0 if and only if θ = 0 and ρ = 1. The latter two
equalities are equivalent to η = 0.

(ii) From (SM61), we see that Re τ+ > 1/2 if and only if

(SM62) ρ cos θ > κ.

On the other hand,

(SM63) −η−1
∗ Im (τ+ − η) = 2ρ sin θ (κ− ρ cos θ) .

Combining (SM62) and (SM63), we obtain (ii).
(iii) Recall that

φ (τ) = −κ ln τ

1− τ
+ (κ− 1) ln (τ − η) .

Therefore, on the circle with center η and radius |τ+ − η|, Reφ (τ) equals−κ ln |τ/ (1− τ)|
plus a constant. Further, for c > 0 such that c 6= 1, the set of τ that satisfy equality
|τ/ (1− τ)| = c is a circle with center c2/

(

c2 − 1
)

and radius c/
∣

∣c2 − 1
∣

∣ . For c = 1,
|τ/ (1− τ)| = c along the line Re τ = 1/2. Figure 3 shows the iso-lines of |τ/ (1− τ)|.
For c < 1, the isolines are encircling 0, for c > 1, they are encircling 1.

Since τ+ is a critical point of Reφ (τ), the circle with center η and radius |τ+ − η|
must have a common tangent with one of the isolines at τ = τ+. Therefore, Reφ (τ)
must be strictly monotone as τ moves away from τ+ along the circle with center η
and radius |τ+ − η| until it reaches a point B on the circle. Part (ii) of the lemma
implies that Reφ (τ) is strictly increasing. �

Contours of steep descent, CCA. We shall choose the contour of integration in
(SM31), which we shall call K, so that it passes through τ+, and Reφ (τ) increases
as τ moves away from τ+ along the contour, at least in a neighborhood of τ+.
The contour consists of a circle with center η and radius r = |τ+ − η|, which, in
what follows, we refer to as C1, and two overlapping circular segments of opposite
orientations, which we will refer to as C2.

We consider four situations. The first and the second ones correspond to r < |η|
and to Re η < 0 and Re η ≥ 0, respectively. The third and the fourth ones correspond
to r ≥ |η| and to Re η < 0 and Re η ≥ 0, respectively. Using (SM61), we obtain

η−2
∗ |τ+ − η|2 − η−2

∗ |η|2 = 4κ
(

ρ2 − 2ρ cos θ + 1
)

(κ− ρ cos θ − 1) .
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Fig 3. Isolines of the function |τ/ (1− τ )| .

Therefore, situations 3 or 4 are realized whenever

(SM64) ρ cos θ ≤ κ− 1.

In particular, the corresponding τ+ must be such that Re τ+ < 1/2 (compare to
(SM62)).

For situation 1 and 2, C2 consists of a segment of the circle that passes through 0,
1, and η. The segment starts at the closest to 0 intersection of the latter circle with
C1 and ends at 0. It does not pass through 1 or η. For situation 3 and 4, C2 consists
of the segment of the circle with center at 1 and radius 1 that connects 0 with the
point A of the intersection of this circle with C1, and lies inside C1. Out of the two
intersection points we choose the one with the imaginary part of the opposite sign
to that of Im η. Figures 4, 5, 6, and 7 illustrate the choice of K for situations 1, 2,
3, and 4, respectively.

We split the contour in three parts

(SM65) K = K[0,A] +K[A,τ+,B] +K[B,A,0],

or

(SM66) K = K[0,A,B] +K[B,τ+,A] +K[A,0]

depending on whether moving counter-clockwise along C1 from A to B reaches τ+ or
not. In the rest of this note, we shall refer to (SM65) for concreteness. Our arguments
do not depend on the specific form of the splitting.
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Fig 4. Choice of contour K in situation 1. The contour is represented by the dark black circle and
the circle segment ending at 0. The dashed lines are iso-lines of function |τ/ (τ − 1)| .

As follows from Lemma 17, Reφ (τ) is strictly increasing as τ is going along
K[A,τ+,B] away from τ+. In other words, K[A,τ+,B] is a contour of steep descent.
Below, we shall use Lemma JO9 to analyze

I
[A,τ+,B]

=

∫

K[A,τ+,B]

e−mφ(τ)χ (τ) dτ.

We shall then show that I[0,A] and I[B,A,0], which are defined similarly to I[A,τ+,B],
are asymptotically dominated by I[A,τ+,B].

Saddle point approximation for I[A,τ+,B], CCA. We now derive a saddle point
approximation to the integral I[A,τ+,B] which is uniform with respect (κ, η) ∈ Ω2δ,
where

(SM67) Ω2δ =
{

(κ, η) : δ ≤ κ− 1 ≤ δ−1, dist (η,R\ [0, 1]) ≥ δ, and |η| ≤ δ−1
}

,

and δ is an arbitrary fixed number that satisfies inequalities 0 < δ < 1. Let us verify
assumptions A0-A5 of Lemma JO9. For this verification, we need the following
lemma.

Lemma 18. The quantities |τ+ − η| and |τ+| are bounded away from zero and
infinity, uniformly with respect to (κ, η) ∈ Ω2δ.

Proof: The lemma follows from Lemma 17 (i,ii), the fact that τ+ 6= η for (κ, η) ∈
Ω2δ, and the compactness of Ω2δ. �
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Fig 5. Choice of contour K in situation 2. The contour is represented by the dark black circle and
the circle segment ending at 0. The dashed lines are iso-lines of function |τ/ (τ − 1)| .

Lemma 18 implies that the length of I[A,τ+,B] is bounded uniformly with respect
to (κ, η) ∈ Ω2δ. Further,

sup
τ∈K

[A,τ+]

|τ − τ+| ≥ |A− τ+| and sup
τ∈K

[τ+,B]

|τ − τ+| ≥ |B − τ+| ,

where |A− τ+| and |B − τ+| are continuous functions of (κ, η) ∈ Ω2δ, which are not
equal to zero for any (κ, η) ∈ Ω2δ. Therefore, |A− τ+| and |B − τ+| are bounded
away from zero, uniformly with respect to (κ, η) ∈ Ω2δ and assumption A0 holds.

Assumptions A1, A2, A3 and A5 follow from Lemma 18. Finally, let τ1 and τ2
be the points of intersection of K with a circle with center at τ+ and a sufficiently
small fixed radius ε1. The validity of Assumption A4 follows from the fact that
Re (φ (τs)− φ (τ+)) , s = 1, 2, are positive continuous functions of (κ, η) ∈ Ω2δ (the
positivity being a consequence of Lemma 17 (iii)) and Im (φ (τs)− φ (τ+)) , s = 1, 2,
are continuous functions of (κ, η) ∈ Ω2δ.

Since assumptions A0-A5 hold, by Lemma JO9, we have

I[A,τ+,B] = 2e−mφ0

[√
π
a0

m1/2
+
O (1)

m3/2

]

,

where O (1) is uniform with respect to (κ, η) ∈ Ω2δ,

(SM68) φ0 = −κ ln τ+
1− τ+

+ (κ− 1) ln (τ+ − η)

and

(SM69) a0 =
(τ+ − η)−1 (1− τ+)

−1

√

2κ (1− 2τ+) /
(

(1− τ+)
2 τ2+

)

− 2 (κ− 1) / (τ+ − η)2



SUPPLEMENTARY MATERIAL 63

-0.5 0 0.5 1 1.5
-0.5

0

0.5

10

B

η

τ+

A

C1

C2

Fig 6. Choice of contour K in situation 3. The contour is represented by the dark black circle and
the circle segment ending at 0. The dashed lines are iso-lines of function |τ/ (τ − 1)| .

with the branch of the square root chosen as described in Lemma JO9.
Precisely, let

α = π/2 + arg (τ+ − η) ,

where the principal branch of arg (·) is taken, and let

w = arg
(

2κ (1− 2τ+) /
(

(1− τ+)
2 τ2+

)

− 2 (κ− 1) / (τ+ − η)2
)

,

where the branch of arg (·) is chosen so that

|w + 2α| ≤ π/2.

Then

(SM70) a0 =
e−iw/2 (τ+ − η)−1 (1− τ+)

−1

√

∣

∣

∣
2κ (1− 2τ+) /

(

(1− τ+)
2 τ2+

)

− 2 (κ− 1) / (τ+ − η)2
∣

∣

∣

.

Analysis of I[0,A] and I[B,A,0], CCA. Let us show that I[A,τ+,B] asymptotically
dominates I[0,A] and I[B,A,0] uniformly with respect to (κ, η) ∈ Ω2δ. It is sufficient to
prove that there exists a positive constant S, such that, for τ on I[0,A] or on I[B,A,0],
we have Reφ (τ) ≥ Reφ0 + S, uniformly with respect to (κ, η) ∈ Ω2δ.

Note that, by Lemma 17 (iii), for any τ ∈ K[A,B], Reφ (τ) ≥ Reφ (A) . Hence,
it is sufficient to prove that Reφ (τ) ≥ Reφ0 + S for τ from K[0,A]. Moreover, it is
sufficient to establish the fact that

(SM71) Reφ (A) ≥ Reφ0 + S
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Fig 7. Choice of contour K in situation 4. The contour is represented by the dark black circle and
the circle segment ending at 0. The dashed lines are iso-lines of function |τ/ (τ − 1)| .

uniformly with respect to (κ, η) ∈ Ω2δ. It is because for any τ ∈ K[0,A], Reφ (τ) ≥
Reφ (A) .

Indeed, for situations 1 and 2 this property of Reφ (τ) follows from the fact that
|τ/ (1− τ)| is strictly decreasing and |τ − η| is strictly increasing as τ moves along
K[0,A] away from A. For situation 3, we have

Reφ (τ)− Reφ (A) = −κ log |τ |
|A| + (κ− 1) log

|τ − η|
|A− η|

> −κ log |τ |
|τ − η| + κ log

|A|
|A− η| ,

where the latter inequality holds because |τ − η| < |A− η| . The iso-lines of function
|τ | / |τ − η| are similar to those shown on Figure 3 with the concentration points 0
and η instead of 0 and 1. As τ moves along K[0,A] away from A, the isolines are
crossed so that |τ | / |τ − η| is decreasing. Therefore,

(SM72) Reφ (τ)− Reφ (A) ≥ 0.

For situation 4, the analysis is more involved. We have the following lemma.

Lemma 19. Inequality (SM72) holds for situation 4.

Proof: The analysis is similar to that of situation 3. However, in contrast to
situation 3, we cannot immediately claim that as τ moves along K[0,A] away from A,
the isolines of the function |τ | / |τ − η| are crossed so that the function is decreasing.
For this claim to be valid, we must verify that

(SM73) |A| / |A− η| < 1,
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so that A and 0 lie on the same side of the iso-line |τ | / |τ − η| = 1.
Let x be the point on C1 where |x| / |x− η| = 1, such that Im (η − x) has the

same sign as Im η. To establish (SM73), it is sufficient to show that x lies inside the
circle with center at 1 and radius 1 (circumference of which contains K[0,A]). That

is, it is sufficient to show that |1− x|2 < 1.
For concreteness, let us focus on the case Im η > 0. Then, we have

x = η/2− iηa, where a =

√

(

r2 − |η/2|2
)

/ |η|2

and r is the radius of C1. A straightforward algebra shows that

|1− x|2 = r2 + 1− Re η − 2a Im η.

Furthermore, since r2 ≥ |η|2 , we have a >
√
3/2 > 1. Therefore, the inequality

|1− x|2 < 1 would follow from the inequality r2 ≤ |η| < Re η + Im η . Let us now
show that in situation 4, r2 ≤ |η|.

Let z = ρ exp {iθ} , where ρ and θ are as in (SM60). Situation 4 imposes the
following constraints on z: 1) Re z ≥ 0, 2) Re z ≤ κ − 1, 3) (Re z)2 − (Im z)2 ≥ 1.
The first one is equivalent to θ ∈ [−π/2, π/2], which must be true by definition of
θ. The second one is equivalent to (SM64), and the last one ensures that Re η ≥ 0.
We have

τ+ =
−1 + z

2 (κ− 1)
and η =

−1 + z2

4κ (κ− 1)
.

Therefore,

r2 ≡ |τ+ − η|2 = |z − 1|2 |z − (2κ− 1)|2

16κ2 (κ− 1)2

and

|η| = |z − 1| |z + 1|
4κ (κ− 1)

.

For z that satisfies the above three constraints, we must have |z + 1| > |z − 1|.
Therefore, to establish inequality r2 ≤ |η| , it is sufficient to show that

|z − (2κ− 1)|2
4κ (κ− 1)

≤ 1.

The latter inequality is equivalent to

(Im z)2 + 1 ≤ 2Re z (2κ− 1)− (Re z)2.

In view of the third constraint, it is sufficient to show that

2Re z (2κ− 1)− (Re z)2 ≥ (Re z)2.
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But the second constraint implies this inequality. The situation where Im η ≤ 0 is
analyzed similarly. �

To summarize, in all the four situations we only need to show that (SM71) holds.
Note that Reφ (A) − Reφ0 is not a continuous function of (κ, η) ∈ Ω2δ because we
may have A = B = 0 and Reφ (A) = +∞ for some (κ, η) ∈ Ω2δ. However, we
can bound Reφ (A)−Reφ0 from below by the minimum of two positive continuous
functions Reφ (τ1)−Reφ0 and Reφ (τ2)−Reφ0, where τ1 and τ2 are points of the
intersection of the circle with center η and radius |τ+ − η| and a circle with center
τ+ and a fixed radius, which is smaller than |A− τ+|, uniformly with respect to
(κ, η) ∈ Ω2δ. Therefore, there exists S > 0 such that (SM71) holds uniformly with
respect to (κ, η) ∈ Ω2δ.

Asymptotics in terms of ϕ and ψ, CCA.

The above analysis implies the following asymptotic representation

F2 =
Cmη

−m

2πi
2e−mφ0









√
πe−iw/2 (τ+ − η)−1 (1− τ+)

−1

m1/2

√

∣

∣

∣
2κ (1− 2τ+) /

(

(1− τ+)
2 τ2+

)

− 2 (κ− 1) / (τ+ − η)2
∣

∣

∣

+
O (1)

m3/2









,

where O (1) is uniform with respect to (κ, η) ∈ Ω2δ. We would like to express this
formula in terms of t2, ϕ2 (·) , and ψ2 (·) . Since

∣

∣

∣
2κ (1− 2τ+) /

(

(1− τ+)
2 τ2+

)

− 2 (κ− 1) / (τ+ − η)2
∣

∣

∣
=
∣

∣2ϕ′′
2 (t2) /η

2
∣

∣ ,

ϕ2 (t2) = φ0 − ln η,

and
(τ+ − η)−1 (1− τ+)

−1 = ψ2 (t2) η
−1,

we have

F2 = Cme
−mϕ2(t2)

[

e−iw/2e−i argη

i

ψ2 (t2)
√

|2πmϕ′′
2 (t2)|

+
O (1)

m3/2

]

.

On the other hand, by definition,

w = arg
(

ϕ′′
2 (t2)

)

− 2 arg η = ω2 − π − 2 arg η,

where ω2 is as defined in equation (JO30). Therefore,

F2 = Cme
−mϕ2(t2)e−iω2/2

[

ψ2 (t2)
√

|2πmϕ′′
2 (t2)|

+
O (1)

m3/2

]

= Cmψ2 (t2) e
−iω2/2

∣

∣2πmϕ′′
2 (t2)

∣

∣

−1/2
exp {−mϕ2 (t2)} (1 + o(1)) .
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4.4. Proof of Confluences. The confluences (JO35) are established by showing
convergence of each of the components in (JO11). For the fc and fe components,
this follows from inspection of Tables JO4 and JO3 respectively, while for fSigDh (z),
this follows from (JO17). For fREG

h (z) and fCCA
h (z), one uses the definitions of ϕj

and tj and calculation, though one can also appeal to the confluences

1F1 (a/ǫ; b; ǫx) → 0F1 (b; ax)

2F1 (a1/ǫ, a2/ǫ; b; ǫ
2x) → 0F1 (b; a1a2x)

as ǫ → 0, and observe in (JO21) that with κ ∼ c1/((1 − c1)c2) and as c2 → 0, we
have

(mκ+ 1)mη1 → m2η0

(mκ+ 1)2η2 → m2η0.

For the confluences (JO36), there is some crosstalk between the components. We
write fc[θ] to show the dependence on θ explicitly. Writing θ =

√
c1ξ, it is direct to

verify that

fPCA
c [

√
c1ξ] = fSMD

c [ξ] + ξ/
√
c1 − ξ2 − log

√
c1 +O(

√
c1)

fREG0
c [

√
c1ξ] = fSMD

c [ξ] + ξ/
√
c1 − ξ2/2− log

√
c1 +O(

√
c1).

From (JO14) and the MP entry in Table JO3, and writing z = 1 +
√
c1w, we have

fPCA
e (1 +

√
c1w) = fREG0

e (1 +
√
c1w) = fSMD

e (w) + log
√
c1 + o(1).

For the h term, we write fh(z; θ) to show the dependence on θ explicitly. From
(JO17), one quickly has

fPCA
h (1 +

√
c1w;

√
c1ξ) = fSMD

h (w; ξ) − ξ/
√
c1 + ξ2 +O(

√
c1).

For fREG0
h , we have ϕ0(t0) = log t0 − 2(t0 − 1) and that t0 = 1 + η0 − η20 + O(η30)

for small η0. This leads to fh(z; θ) = (1− c1)c
−1
1 [−η0 + 1

2η
2
0 +O(η30)] and thence by

elementary evaluation to

fREG0
h (1 +

√
c1w;

√
c1ξ) = fSMD

h (w; ξ)− ξ/
√
c1 + ξ2/2 +O(

√
c1).

Combining terms from the preceding displays yields the confluences (JO36).

4.5. Proof of Lemma JO4 (saddle points z0). q = 0 cases: (SMD, PCA, SigD).
First, note that

(SM74) f ′(z) = f ′e(z) + f ′h(z) = −mc(z) + f ′h(z),

where mc(z) is the appropriate Stieltjes transform. We proceed, then, by solving for
z in the equation f ′h(z) = mc(z).
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SMD. We have f ′h(z) = −θ, so substituting mc(z0) = −θ into the quadratic
equation

(SM75) m2 + zm+ 1 = 0

satisfied by m = mSC
c

(z), we get

z0(θ) = −m
2 + 1

m
=
θ2 + 1

θ
= θ + 1/θ.

Obviously, for any θ ∈
(

0, θ̄SMD
)

≡ (0, 1) , z0(θ) is larger than b
SMD
+ = βSMD

+ ≡ 2.

PCA. Now f ′h(z) = −θ/[c1(1+ θ)], so we substitute mc(z0) = −θ/[c1(1+ θ)] into
the quadratic equation

(SM76) c1zm
2 + (z + c1 − 1)m+ 1 = 0

satisfied by m = mMP
c

(z). This is a linear equation for z whose solution is

z0(θ) = (θ + 1)(θ + c1)/θ.

Note that the minimum of z0(θ) over θ > 0 equals bPCA
+ ≡

(

1 +
√
c1
)2

and is achieved
at

θ = θ̄c ≡
√
c1.

Therefore, since mMP
c

(z) is well defined for z > bPCA
+ , mMP

c
(z0) must be well defined

for any θ ∈
(

0, θ̄c
)

.

SigD. The Stieltjes transform m = mW
c
(z) of the Wachter distribution, as nor-

malized here, satisfies the quadratic equation

(SM77) c1z(c1 − c2z)m
2 + [c1(1− c2)z − (1− c1)(c1 − c2z)]m+ r2 = 0,

while

(SM78) f ′h(z) =
ab

1− az
, a =

c2θ

c1(1 + θ)
, b = − r2

c1c2
.

To solve m(z) = f ′h(z), insert m = ab/(1− az) into (SM77) to obtain an apparently
quadratic equation. However the coefficient of z2 vanishes, so that as with SMD and
PCA, z0 is the solution of a linear equation βz + γ = 0, where in this case

β = abc1l(θ)/(1 + θ)

γ = −abc1(c1 + θ)/θ,

so that

(SM79) z0(θ) =
(c1 + θ)(1 + θ)

θl(θ)
.
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It also follows that

az0 =
c2(c1 + θ)

c1l(θ)
, 1− az0 =

r2

c1l(θ)

f ′h,SigD(z0) = m(z0) = − θl(θ)

c1(1 + θ)
.(SM80)

Recall that l(θ) = 1+(1+θ)c2/c1. Therefore, (SM79) implies that that the minimum
of z0(θ) over θ > 0 equals

bSigD+ ≡ c1

(

r + 1

r + c2

)2

and is achieved at

θ = θ̄c ≡
c2 + r

1− c2
.

Therefore, mW
c
(z) is well defined for z > bSigD+ , as n, p→γ ∞, and mW

c
(z0) must be

well defined for any θ ∈
(

0, θ̄c
)

.

q = 1 cases: (REG0, REG, CCA).
We find the critical points z0(θ) for the q = 1 cases by showing that they are the

same as for the corresponding q = 0 cases. This is cast as a verification rather than
a derivation as we still lack a good explanation for this curious fact.

We have seen, based on (SM74), that

f ′h,PCA(z0) = mMP
c

(z0), f ′h,SigD(z0) = mW
c
(z0),

for z0 = zPCA
0 and zSigD0 respectively. We now show that

f ′h,REG0
(z0) = f ′h,PCA(z0), f ′h,REG(z0) = f ′h,CCA(z0) = f ′h,SigD(z0)

for z0 = zPCA
0 and zSigD0 respectively. In combination with (SM74), this verifies that

zPCA
0 and zSigD0 are critical points for the q = 1 cases as well.
The functions defined in (JOSM51) and (JO27) will sometimes be written in the

form ϕj(t, ηj) to show the dependence on ηj explicitly. We have

fh(z) =
1− c1
c1

[ϕj(tj, ηj) + γj],

where γj = γj(n, p) and tj = tj(ηj) satisfies

(SM81)
∂

∂t
ϕj(t, ηj) = 0,

a quadratic equation for tj with coefficients depending on ηj and κ. We therefore
have, dropping the subscript j temporarily,

(SM82) f ′h(z) =
1− c1
c1

d

dη
ϕ(t(η), η)

dη

dz
=

1− c1
c1

∂

∂η
ϕ(t(η), η)

dη

dz
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From definitions (JOSM51) and (JO27), again with tj = tj(ηj), and κ = r2/[c2(1−
c1)],

(SM83)
∂

∂ηj
ϕ(tj , ηj) =











−1/t0

−t1
−κt2/(1 − η2t2).

We now turn to the specifics of the three cases.

REG0. We show that z = zPCA
0 = (θ + 1)(θ + c1)/θ solves

f ′h,REG0
(z) = m(z0) = − θ

c1(θ + 1)
.

From (SM82) and (SM83),

f ′h,REG0
(z) = − θ

c1(1− c1)

1

t0(η)
,

so that we should solve t0(η0(z)) = (θ+1)/(1−c1) for z. Since t0 satisfies a quadratic
equation, the equation for z becomes

η0(z) = t20 − t0 =
(θ + 1)(θ + c1)

(1− c1)2
,

which implies that zREG0
0 = θ−1(1− c1)

2η0 = (θ + 1)(θ + c1)/θ = zPCA
0 (θ).

REG. This time we solve for z in

f ′h,REG(z) = f ′h,SigD(z0) = − θl(θ)

c1(1 + θ)
,

where the second equality uses (SM80). From (SM82) and (SM83) we have f ′h,REG(z) =

−c2θt1(η)/c21, and so

(SM84) t1(η) =
c1l(θ)

c2(1 + θ)
, t1(η) − 1 =

c1
c2(1 + θ)

.

The quadratic equation for t1 is η1t
2
1 + (1− η1)t1 − κ = 0, so that

(SM85) η1 =
κ− t1

t1(t1 − 1)
=
c2(θ + 1)(θ + c1)

(1− c1)c1l(θ)

which implies that zREG
0 = c1(1− c1)η1/(θc2) = zSigD0 (θ).

CCA. Treat this as a modification of REG. Thus

ϕ2(t) = κ log(1− η2t) + η1t+ ϕ1(t), and

ϕ′
2(t) = − κη2

1− η2t
+ η1 + ϕ′

1(t).(SM86)
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We verify that at z = zSigD0 ,

(SM87) t2 =
c1l(θ)

c2(1 + θ)
= t1(η1(z0))

satisfies ϕ′
2(t2) = 0 for η2 = η2(z0). Indeed, writing L(θ) = c1l(θ), we have

(SM88) η2 =
c22(c1 + θ)(1 + θ)

L2(θ)
, t2η2 =

c2(c1 + θ)

L(θ)
, 1− t2η2 =

r2

L(θ)
,

and
κ

1− t2η2
=

L(θ)

(1− c1)c2
=
η1
η2
,

so that from (SM86), ϕ′
2(t2) = ϕ′

1(t1) = 0. But now we can see that, at z = z0,

f ′h,CCA(z0) = −1− c1
c1

κ

1− η2t2
· t2 ·

dη2
dz

= −1− c1
c1

η1
η2

· t1 ·
dη2
dz

= −1− c1
c1

· t1 ·
dη1
dz

= f ′h,REG(z0),

so that z0 also satisfies f ′CCA(z0) = 0.

4.6. Verification of Remark JO5: that f(z0) = 0. Recall that f(z0) = fc +
fe(z0) + fh(z0). The term fc is given in Table 3. The next term,

fe (z0) =

∫ b+

b−

ln (z0 − λ) dFc (λ) ,

takes on three different values: one for SMD, another for PCA and REG0, and the
third one for SigD, REG, and CCA.

Lemma 20. For SigD, REG, and CCA, for any θ ∈
(

0, θ̄
)

and for sufficiently
large n, p, we have
(SM89)

fe (z0) = 2 ln c1 − ln θ − 1− c1
c1

ln (1 + θ)− c1 + c2
c1c2

ln (c1 + c2) +
r2

c1c2
ln [c1l (θ)] .

Proof: We follow the usual strategy of reduction to a contour integral. First make
the change of variables λ = α − β cosϕ. In order to arrange that λ = b− and b+ at
ϕ = 0 and π respectively, we set

(SM90) α =
b+ + b−

2
=
c1
(

r2 + c21
)

(c1 + c2)
2 , β =

b+ − b−
2

=
2rc21

(c1 + c2)
2 .

We obtain

fe (z0) =
c1 + c2
4πc1

∫ 2π

0

β2 sin2 ϕ ln (z0 − α+ β cosϕ)

(α− β cosϕ) (c1 − c2α+ c2β cosϕ)
dϕ
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after extending the integral from [0, π] to [0, 2π] using the symmetry of the integrand
about ϕ = π. Now introduce z = eiϕ. Since cosϕ =

(

z + z−1
)

/2, we have from
(SM90) the factorizations

c1 (α− β cosϕ) =
β

2r
(r − c1z)

(

r − c1z
−1
)

,

c1 − c2α+ c2β cosϕ =
β

2r
(r + c2z)

(

r + c2z
−1
)

,

z0 − α+ β cosϕ = q(z)q
(

z−1
)

with

q (z) =
c1

c1 + c2

(

√

c1l (θ) /θ + rz
√

θ/ [c1l (θ)]
)

.

Our integral becomes

fe (z0) =
− (c1 + c2) r

2

4πi

∫

C

(

z − z−1
)2

ln
(

q(z)q
(

z−1
))

(r − c1z) (r − c1z−1) (r + c2z) (r + c2z−1)

dz

z
.

The integral has form I =

∮

ln
(

q(z)q
(

z−1
))

H (z) z−1dz with H(z) = H
(

z−1
)

.

Hence, expanding the logarithm yields two identical terms, so that

fe (z0) =
− (c1 + c2)

2πi

∫

C

(

z2 − 1
)2

ln q(z)

(r − c1z) (z − c1/r) (r + c2z) (z + c2/r)

dz

z
.

For θ ∈
(

0, θ̄
)

and sufficiently large n, p, we have θ ∈
(

0, θ̄p
)

with θ̄p = (c2 + r) / (1− c2) .
On the other hand, for θ ∈

(

0, θ̄p
)

, the function ln q (z) is analytic inside the circle
|z| = 1, and so the whole integrand is analytic inside the circle except for simple
poles at z = 0, c1/r and −c2/r. The residues at these poles are respectively

c1 + c2
c1c2

ln
c1
√

c1l/θ

c1 + c2
,−1− c1

c1
ln
c1 (1 + θ)√

θc1l
, and − 1− c2

c2
ln

c1√
θc1l

and their sum, after collecting terms, yields formula (SM89). �

Corollary 21. For PCA and REG0, for any θ ∈
(

0, θ̄
)

and for sufficiently
large n, p, we have

(SM91) fe (z0) = ln c1 − ln θ − 1− c1
c1

ln (1 + θ) + θ/c1.

Proof: The corollary is obtained from Lemma 20 by taking the limit as c2 → 0.
�
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Corollary 22. For SMD, for any θ ∈
(

0, θ̄
)

and for sufficiently large n, p, we
have

(SM92) fe (z0) = − ln θ + θ2/2.

Proof: We remarked earlier that SMD is a limit of PCA and REG0 as c1 → 0
after the transformations θ 7→ √

c1θ and z 7→ √
c1z + 1. In particular,

zSMD
0 = lim

c1→0,θ 7→√
c1θ

(zPCA
0 − 1)/

√
c1 and F SC (λ) = lim

c1→0
FMP
c

(
√
c1λ+ 1) .

These equations imply that

fSMD
e

(

zSMD
0

)

= lim
c1→0,θ 7→√

c1θ

[

fPCA
e

(

zPCA
0

)

− ln
√
c1
]

.

Using this relationship together with Corollary 21 yields fe (z0) = − ln θ + θ2/2 for
SMD. �

Observe from Lemma 20 and Corollary 21 that

fSigDe = fPCA
e + log c1 −

c1 + c2
c1c2

log(c1 + c2) +
r2

c1c2
log[c1l(θ)]− θ/c1

= fPCA
e + f20, and

fREG
e = fREG0

e + f20,

where f20 is defined at (SM26). Combining Table 3 for fc with this display and
Corollaries 21 and 22 for fe(z0), we can summarize the results for fc+fe(z0) by case
in Table 4 below. For the SigD and REG lines we use (SM28), namely f21 = f10+f20,
while for CCA we recall that fREG

e = fCCA
e .

Case F = fc + fe(z0)

SMD 1 + θ2

PCA 1 + θ/c1

SigD FPCA + f21

REG0 2(1 + θ/c1) +
1− c1
c1

log
1− c1
1 + θ

REG FREG0 + f21

CCA FREG + f21
Table 4

Explicit form of fc + fe(z0) for the different cases.

We turn to the evaluation of fh(z0): in each case it will turn out to equal −F =
−fc − fe(z0) as shown in Table 4. Again we start with the q = 0 cases, in which
fh(z) is an elementary function.
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SMD. We immediately have fh(z0) = −z0θ = −θ2 − 1.

PCA. Now fh(z0) = −z0θ/[c1(1 + θ)] = −1− θ/c1.

SigD. This time, referring to the definition of f21 in Table 3,

fSigDh (z0) =
r2

c1c2
log

[

1− c2
c1

c1 + θ

l(θ)

]

=
r2

c1c2
log

[

r2

c1l(θ)

]

= −f21 − FPCA.

REG0. Since t0 =
1
2(1 +

√
1 + 4η0) satisfies t

2
0 − t0 − η0 = 0, we have

ϕ0(t0) = log t0 − t0 − η0/t0 + 1 = log t0 − 2η0/t0.

Since η0(z0) = (1 + θ)(c1 + θ)/(1− c1)
2, we find after algebra that

(SM93)
√

1 + 4η0 =
1 + c1 + 2θ

1− c1
,

so that

t0 =
1 + θ

1− c1
,

η0
t0

=
c1 + θ

1− c1
,

and

fh(z0) =
1− c1
c1

ϕ0(t0) =
1− c1
c1

log
1 + θ

1− c1
− 2(c1 + θ)

c1
= −FREG0 .

REG. Combining the definitions of fh and ϕ1(t1) we have

fREG
h (z) =

1− c1
c1

{

−η1t1 + κ log
κ

t1
+ (κ− 1) log

(

t1 − 1

κ− 1

)}

.

Combining (SM84) and (SM85) gives

(SM94) η1t1 =
c1 + θ

1− c1
,

κ

t1
=

r2

1− c1

1 + θ

L(θ)
,

t1 − 1

κ− 1
=

1− c1
1 + θ

,

so that

fREG
h (z0) = −c1 + θ

c1
+

r2

c1c2
log

r2

L(θ)
+

1− c1
c1

log
1 + θ

1− c1

We can now compare REG with REG0 just as SigD was compared with PCA: thus

fREG
h (z0)− fREG0

h (z0) =
r2

c1c2
log

r2

c1l(θ)
+
c1 + θ

c1
= −f21,
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and so

(SM95) fREG
h (z0) = −FREG0 − f21 = −FREG.

CCA. Combining the definitions of fh and ϕ2(t2) we have

fCCA
h (z) =

1− c1
c1

{

κ log(1− η2t2) + κ log
κ

t2
+ (κ− 1) log

(

t2 − 1

κ− 1

)}

.

In particular, recalling that t2 = t1,

fCCA
h (z0)− fREG

h (z0) =
1− c1
c1

[κ log(1− η2t2) + η1t1]

=
r2

c1c2
log

r2

L(θ)
+
c1 + θ

c1
= −f21,

after substitution from (SM88) and (SM94). In combination with (SM95), we get

fCCA
h (z0) = −FREG − f21 = −FCCA.

4.7. Proof of Lemma JO8 (contours of steep descent). For SMD, PCA, and SigD,
|z − λ| is obviously strictly increasing for any λ ∈ R and as z moves away from z0
along K1. Therefore,

Re fe(z) ≡
∫

ln |z − λ| dFc (λ)

is strictly increasing. On the other hand, the definition (JO17) of fh(z) implies that
Re fh (z) is non-decreasing. Hence Re f (z) is strictly increasing.

For REG0 and CCA, |z − λ| is strictly increasing for any λ ≥ 0 as z moves
away from z0 along K1 because the center of the circumference that includes K1

is a negative real number. Therefore, Re fe(z) is strictly increasing. To show that
Re fh (z) is strictly increasing too, it is sufficient to prove that Reϕj (tj) is strictly
increasing for j = 0, 2.

Proof of the monotonicity of Reϕj (tj) for j = 0, 2. Let us show that Reϕj (tj)
is strictly increasing for j = 0, 2 as z moves away from z0 along K1. Recall that for
z ∈ K1, we have

z = z1 + |z0 − z1| exp {iγ} , γ ∈ [0, π/2] .

Let

(SM96) Rj =

{

|z0 − z1| θ/ (1− c1)
2 for j = 0

|z0 − z1| θc22/
[

c21l (θ)
]

for j = 2
.

For REG0, using

(SM97) ηj =

{

zθ/ (1− c1)
2 for j = 0

zθc22/
[

c21l (θ)
]

for j = 2
.
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and the definition of ϕ0 and t0, we obtain

Reϕ0 (t0) =
1
2 ln

(

1 + 4R
1/2
0 cos (γ/2) + 4R0

)

− 2R
1/2
0 cos (γ/2) + 1− ln 2.

Since the derivative of the above expression with respect to γ ∈ [0, π/2) is positive,
Reϕ0 (t0) does strictly increase as z moves away from z0 along K1.

For CCA, using the identity

1− η2t2 =
κ

κ− 1

t2 − 1

t2

we obtain

(SM98) Reϕ2 (t2) = −2κ ln |t2|+ (2κ− 1) ln |t2 − 1|+ κ ln
κ

κ− 1

Further, we have

η2 = − 1

4κ (κ− 1)
+R2 exp {iγ}

and

(SM99) t2 =
2κ

(k2 exp {iγ/2} + 1)
,

where k2 =
√

4R2κ (κ− 1). Taking the derivative of Reϕ2 (t2) with respect to γ,
we obtain

d

dγ
Reϕ2 (t2) =

−k2 sin γ/2
2 |k2 exp {iγ/2} + 1|2

+
k2 sin γ/2

2
∣

∣

∣
1− k2

2κ−1 exp {iγ/2}
∣

∣

∣

2 .

For γ ∈ [0, π/2] , the above derivative is positive if

|k2 exp {iγ/2} + 1| >
∣

∣

∣

∣

1− k2
2κ− 1

exp {iγ/2}
∣

∣

∣

∣

.

The latter inequality does hold because k2/ (2κ− 1) < k2. Hence,
d
dγ Reϕ2 (t2) > 0

for γ ∈ [0, π/2] . �

It remains to prove Lemma JO8 for REG. In the REG case, z moves away from
z0 along K1 when τ moves away from τ0 along C1. Using the definition of ϕj (JO27),
the formula (JO33) for fh(z), and the expression (JO42) for η1, we obtain

Re fh (τ) =
1− c1
2c1

(−Re τ + ln |τ + 1|+ κ ln |τ + κ|+ κ ln κ) .

On the other hand, |τ + κ| remains constant on C1 whereas both −Re τ and |τ + 1|
increase as τ moves away from τ0 along C1. To see that |τ + 1| indeed increases recall
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that the center −κ of the circumference that represents C1 is to the left of the point
−1. Hence, Re fh (τ) is strictly increasing.

To show that Re fe (τ) is strictly increasing too it is sufficient to verify that

|z − λ| ≡
∣

∣

∣

∣

c1 (1− c1)

θc2

τ (τ + 1)

τ + κ
− λ

∣

∣

∣

∣

is strictly increasing for any λ from the support of Fc. Since |τ + κ| remains constant,
it is sufficient to show that

γ (τ, x) ≡ |τ (τ + 1)− x (τ + κ)|2

increases as τ moves away from τ0 along C1 for any x = λθc2/ [c1 (1− c1)] .
Parameterize τ ∈ C1 as −κ + ρeiα, α ∈ [0, π/2] . Then elementary calculations

yield

γ (τ, x) = ρ4 + (2κ− 1 + x)2 ρ2 − 2ρ3 (2κ− 1 + x) cosα

+ κ2 (κ− 1)2 + 2
(

ρ2 cos 2α− (2κ− 1 + x) ρ cosα
)

κ (κ− 1)

so that

(SM100)
dγ (τ, x)

d cosα
= 2ρ

{

− (2κ− 1 + x)
[

ρ2 + κ (κ− 1)
]

+ 4ρκ (κ− 1) cosα
}

.

We would like to prove that the derivative dγ (τ, x) /d cosα is negative. As is seen
from (SM100), the derivative is decreasing in x and increasing in cosα. Since x ≥ 0
and cosα ≤ 1, it is sufficient to show that dγ (τ, 0) /d cosα is negative for cosα = 1.
We have

dγ (τ, 0)

d cosα

∣

∣

∣

∣

cosα=1

= −2ρ (2κ− 1)

{

(

ρ− 2κ (κ− 1)

2κ− 1

)2

+ κ (κ− 1)−
(

2κ (κ− 1)

2κ− 1

)2
}

.

This is negative because the expression in the figure brackets is positive. The posi-
tivity follows from the observation that

κ (κ− 1) (2κ− 1)2 − 4κ2 (κ− 1)2 = κ (κ− 1) > 0.

To summarize, both Re fe (τ) and Re fh (τ) are strictly increasing as τ moves away
from τ0 along C1. Hence, the image of C1, K1, is a contour of steep descent of
−Re f(z) in z-plane. �

5. Laplace approximation.
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5.1. Proof of Lemma JO9 (extends Olver’s asy. expansion). We closely follow
Olver’s (1997, pp. 121-125) derivation of an approximation to a similar integral,
augmenting Olver’s proof by explicit uniform bounds on the approximation errors.
First, focus on the integral

I+ =

∫

[z0,b]K

e−pφ(z)χ(z)dz.

Let us introduce new variables v and w by the equations

(SM101) w2 = v = φ (z)− φ0,

where the branch of w is determined by lim {arg v} = arg φ2 + 2β as z → z0 along
(z0, b)K, and by continuity elsewhere. Here β = lim arg(z − z0) as z → z0 along
(z0, b)K.

Consider w as a function of z. A proof of the following auxiliary lemma is given
in the next subsection of this note.

Lemma 23. Let B (α,R) and B (α,R) denote, respectively, the open and closed
balls in C with center at α and radius R. Suppose that assumptions A0-A4 hold.
Then, there exist ρ1, ρ2 > 0 with ρ2 < ρ1, which do not depend on p and ω, such
that, for sufficiently large p,

(i) w(z) is holomorphic in B (z0, ρ1) . Furthermore, for any ζ1, ζ2 from B (z0, ρ1),
we have
|w (ζ2)− w (ζ1)| ≥ 1

2

∣

∣

∣
φ
1/2
2

∣

∣

∣
|ζ2 − ζ1|.

(ii) w(z) maps B (z0, ρ1) on an open set W that contains 0. The inverse function
z(w) is holomorphic in W .

(iii) For any z1 ∈ [z0, b]K such that |z1 − z0| = ρ2, B (0, 2 |w (z1)|) is contained in
W.

Let z1 be a point of [z0, b]K satisfying Lemma 23 (iii). Then the portion [z0, z1]K
of K can be deformed, without changing the value of the integral

I+ =

∫

[z0,z1]K

e−pφ(z)χ(z)dz,

to make its w(z) map a straight line. Since χ(z) may be random, the latter statement
is only true under qualification: “with probability arbitrarily close to one (w.p.a.c.1)
for sufficiently large p.” Transformation to the variable v gives

(SM102) I+ = e−pφ0

∫

[0,τ ]

e−pvϕ(v)dv,
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where

(SM103) τ = φ (z1)− φ0, ϕ(v) = χ(z)/φ′(z),

and the path for the integral on the right-hand side of (SM102) is also a straight
line.

For |v| ≤ τ with |v| 6= 0, ϕ(v) has a convergent expansion of the form

(SM104) ϕ(v) =

∞
∑

s=0

asv
(s−1)/2,

w.p.a.c.1 for sufficiently large p. Indeed, it is sufficient to show that expansion

(SM105) wϕ(v) ≡ wχ(z)/φ′(z) =
∞
∑

s=0

asw
s

converges for w ∈ W , w.p.a.c.1 for sufficiently large p. But by Lemma 23, wχ(z)
and φ′(z) viewed as functions of w, are holomorphic in W , w.p.a.c.1 for sufficiently
large p. Furthermore, since

φ′(z)
d

dw
z(w) = 2w,

φ′(z) is not equal to zero for w ∈ B
(

0, 2τ1/2
)

\ {0}, and, since φ2 6= 0, φ′(z) has
a simple zero at w = 0. Therefore, the desired convergence holds, w.p.a.c.1 for
sufficiently large p.

The coefficients as in (SM104) can be computed from the coefficients φj and χj

defined by equation (JO44). The formulae for a0, a1, and a2 are given, for example,
on p. 86 of Olver (1997). We use the formula for a0 in the statement of Lemma JO9.

Define ϕk(v), k = 0, 1, 2, ... by the relations ϕk(0) = ak and

(SM106) ϕ(v) =
k−1
∑

s=0

asv
(s−1)/2 + v(k−1)/2ϕk (v) for v 6= 0.

Then the integral on the right-hand side of (SM102) can be rearranged in the form

(SM107)

∫

[0,τ ]

e−pvϕ(v)dv =

k−1
∑

s=0

Γ

(

s+ 1

2

)

as
p(s+1)/2

− εk,1 (p, ω) + εk,2 (p, ω) ,

where

εk,1 (p, ω) =

k−1
∑

s=0

Γ

(

s+ 1

2
, τp

)

as

p(s+1)/2
,(SM108)

εk,2 (p, ω) =

∫

[0,τ ]
e−pvv(k−1)/2ϕk (v) dv,(SM109)
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and Γ (α, x) =
∫∞
x e−ttα−1dt is the incomplete Gamma function. Keep in mind that

τ, as, and ϕk depend on p and ω.
Note that arg v is a continuous function of z, and as mentioned above, lim |arg v| =

|arg φ2 + 2β| as z → z0 along (z0, b)K . On the other hand, Lemma JO9 requires
that |arg φ2 + 2β| ≤ π/2. Therefore, lim |arg v| ≤ π/2 as z → z0 along (z0, b)K .
But since K is a path of steep descent (of −Reφ(z)), Re (v) must be positive for
z ∈ (z0, b]K. Hence, by continuity, |arg v| < π/2 for z ∈ (z0, b]K. In particular,
|arg τ | = |arg (φ (z1)− φ0)| < π/2. Therefore, each incomplete Gamma function in
(SM108) takes its principal value.

Consider ϕ(v)w as a function of w. Since φ′ (z) = 2w(z)w′(z), we have

(SM110) ϕ(v)w = χ (z) /(2w′(z)).

By Lemma 23 (i),

(SM111)
∣

∣w′(z)
∣

∣ > 1
2

∣

∣

∣
φ
1/2
2

∣

∣

∣

for z ∈ B (z0, ρ1) . Equation (SM110), inequality (SM111), and Assumptions A2, A5
imply that

(SM112) sup
w∈W

|ϕ(v)w| = sup
z∈B(z0,ρ1)

∣

∣χ(z)/(2w′(z))
∣

∣ = OP(1)

as p→ ∞, where OP(1) is uniform in ω ∈ Ω.
Further, by Assumption A4, there exist positive constants τ1 and τ2 (that may de-

pend on ρ2 ≡ |z1 − z0|) such that for all ω ∈ Ω and sufficiently large p, Re τ > τ1 and

|Im τ | < τ2. Since |τ | ≥ |Re τ | > τ1, B
(

0, |τ1|1/2
)

is contained in W , where ϕ(v)w

is analytic. Using Cauchy’s estimates for the derivatives of an analytic function (see
Theorem 10.26 in Rudin (1987)), (SM105) and (SM112), we get

(SM113) |as| ≤ |τ1|−s/2 sup
w∈B(0,|τ1|1/2)

|ϕw| = OP(1).

Next, Olver (1997, ch. 4, pp.109-110) shows that Γ (α, ζ) = O
(

e−ζζα−1
)

as |ζ| →
∞, uniformly in the sector |arg (ζ)| ≤ π/2−δ for an arbitrary positive δ. Let us take
α = (s+ 1)/2 and ζ = τp. Since Re τ > τ1 and |Im τ | < τ2, we have

|τp| > τ1p→ ∞

and
|arg (τp)| = |arctan(Im τ/Re τ)| < arctan(τ2/τ1) < π/2,

uniformly in ω ∈ Ω for sufficiently large p. Therefore,

(SM114) Γ

(

s+ 1

2
, τp

)

= O
(

e−τp (τp)
s−1
2

)

= O

(

e−
1
2 τ1p

)
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for any integer s, uniformly in ω ∈ Ω. Equality (SM114), the definition (SM108) of
εk,1 (p, ω), and inequality (SM113) imply that

(SM115) εk,1 (p, ω) = OP

(

e−
1
2
τ1p
)

,

where OP is uniform in ω ∈ Ω.
Now consider wkϕk (v) as a function of w. Since, by definition,

wkϕk (v) = ϕ (v)w −
k−1
∑

s=0

asw
s,

it can be interpreted as a remainder in the Taylor expansion of ϕ (v)w. As explained

above, such an expansion is valid in W , which includes the ball B
(

0, 2 |τ |1/2
)

by

Lemma 23 (iii). By a general formula for remainders in Taylor expansions, for any

w ∈ B
(

0, |τ |1/2
)

,

(SM116)
∣

∣

∣
wkϕk (v)

∣

∣

∣
≤ |w|k

k!
max

w∈B(0,|τ |1/2)

∣

∣

∣

∣

dk

dwk
(wϕ (v))

∣

∣

∣

∣

.

Further, for any w ∈ B
(

0, |τ |1/2
)

, a ball with radius |τ1|1/2 centered in w is con-

tained in the ball B
(

0, 2 |τ |1/2
)

⊂W . Therefore, using (SM112) and Cauchy’s esti-

mates for the derivatives of an analytic function (see Theorem 10.26 in Rudin (1987)),
we get

(SM117) max
w∈B(0,|τ |1/2)

∣

∣

∣

∣

dk

dwk
(wϕ (v))

∣

∣

∣

∣

≤ k! |τ1|−k/2 sup
w∈W

|wϕ (v)| = OP(1).

Combining (SM116) and (SM117), we have

sup
v∈(0,τ ]

|ϕk (v)| = OP(1).

This equality together with (SM113) and the fact that, by definition, ϕk (0) = ak
imply that

(SM118) max
v∈[0,τ ]

|ϕk (v)| = OP(1),

where OP(1) is uniform in ω ∈ Ω.
For εk,2 (p, ω), the substitution of variable v = τx/p in the integral (SM109) yields

εk,2 (p, ω) = p−(k+1)/2

∫ p

0
e−τxx

k−1
2 τ

k+1
2 ϕk (v) dx.
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Therefore,

∣

∣

∣
εk,2 (p, ω) p

(k+1)/2
∣

∣

∣
< max

v∈[0,τ ]
|ϕk (v)|

∫ p

0
e−Re τxx

k−1
2 |τ |k+1

2 dx(SM119)

< max
v∈[0,τ ]

|ϕk (v)|
∫ ∞

0
e
−Re τ

|τ |
y
y

k−1
2 dy.

Since Re τ > τ1 and |Im τ | < τ2, we have

Re τ

|τ | ≥ Re τ

|Re τ |+ |Im τ | >
τ1

τ1 + τ2

for all ω ∈ Ω and sufficiently large p. Therefore, the integral in (SM119) is bounded
uniformly in ω ∈ Ω. Using (SM118), we conclude that

(SM120) εk,2 (p, ω) = OP

(

p−(k+1)/2
)

.

Combining (SM102), (SM107), (SM115), and (SM120), we obtain

(SM121) I+ = e−pφ0

(

k−1
∑

s=0

Γ

(

s+ 1

2

)

as

p(s+1)/2
+

OP (1)

p(k+1)/2

)

,

where OP (1) is uniform in ω ∈ Ω.
Let us now consider the contribution of [z1, b]K to the contour integral

I+ =

∫

[z0,b]K

e−pφ(z)χ(z)dz.

Since K is a contour of steep descent,

inf
z∈[z1,b]K

Re (φ (z)− φ0) ≥ Re τ > τ1.

Therefore, by assumptions A5 and A0, we have

∣

∣

∣
I+ − I+

∣

∣

∣
≤ e−pφ0e−pτ1

∫

[z1,b]K

|χ(z)dz|(SM122)

≤ e−pφ0e−pτ1 |K|OP (1) = e−pφ0e−pτ1OP (1) ,

where OP (1) is uniform in ω ∈ Ω.
Combining (SM121) and (SM122), we obtain

(SM123) I+ = e−pφ0

(

k−1
∑

s=0

Γ

(

s+ 1

2

)

as
p(s+1)/2

+
OP (1)

p(k+1)/2

)

.
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Finally, note that
Ip,ω = I+ − I−,

where

I− =

∫

[z0,a]K

e−pφ(z)χ(z)dz

where [z0, a]K is a contour that coincides with [a, z0]K but has the opposite orienta-
tion. The integral I− can be analyzed similarly to I+. As explained in Olver (1997,
pp.121–122), as with odd s in the asymptotic expansion for I− coincides with the
corresponding as in the asymptotic expansion for I−. However, as with even s in
the two expansions differ by the sign. Therefore, coefficients as with odd s cancel
out, but those with even s double in the difference of the two expansions. Setting
k = 2m, we have

Ip,ω = 2e−pφ0

(

m−1
∑

s=0

Γ

(

s+
1

2

)

a2s
ps+1/2

+
OP (1)

pm+1/2

)

,

which establishes the lemma. �

Proof of Lemma 23.

First, we show that there exists ρ1 such that w(z) is holomorphic in B (z0, ρ1) and

that d
dzw (z0) = φ

1/2
2 . Let φ(j)(z) denote the j-th order derivative of φ(z). Consider

a Taylor expansion of φ(j)(z) at z0

φ(j)(z) =

k
∑

s=0

1

s!
φ(j+s) (z0) (z − z0)

s +Rj,k+1.

In general, for any z ∈ B (z0, x), the remainder Rj,k+1 satisfies

(SM124) |Rj,k+1| ≤
|z − z0|k+1

(k + 1)!
max

|t−z0|≤x

∣

∣

∣
φ(j+k+1) (t)

∣

∣

∣
.

By assumptions A1–A3, there exist constants C1, C2, and C4, such that

(SM125)
∣

∣

∣
φ(3) (t)

∣

∣

∣
≤ C4

C2

∣

∣

∣
φ(2) (z0)

∣

∣

∣

for any t ∈ B (z0, C1) . Let ρ1 = min
{

C1,
C2
2C4

}

. Then, combining (SM125) with

(SM124) and recalling that 1
j!φ

(j)(z0) = φj , we obtain for z ∈ B (z0, ρ1),

(SM126) |R0,3| ≤
|z − z0|2

6
|φ2| , and |R1,2| ≤

|z − z0|
2

|φ2| .

Further, since
R0,2 = φ2 (z − z0)

2 +R0,3,
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the first of the inequalities in (SM126) implies that, for z ∈ B (z0, ρ1),

(SM127)
5

6
|φ2| |z − z0|2 ≤ |R0,2| ≤

7

6
|φ2| |z − z0|2 .

Next, since φ1 = 0, inequalities (SM127) imply that

(SM128) |φ(z)− φ0| = |R0,2| ≥
5

6
|φ2| |z − z0|2

for any z ∈ B (z0, ρ1) . Since φ2 6= 0, inequality (SM128) implies that φ(z)−φ0 does
not have zeros in B (z0, ρ1) except a zero of the second order at z = z0. Therefore,

√

φ(z) − φ0

(z − z0)
2 =

w (z)

z − z0

is holomorphic inside B (z0, ρ1), and converges to φ
1/2
2 as z → z0. This implies that

w (z) is holomorphic in B (z0, ρ1) and
d
dzw (z0) = φ

1/2
2 .

Now let us show that, for any z ∈ B (z0, ρ1),

(SM129)

∣

∣

∣

∣

d

dz
w (z)− d

dz
w (z0)

∣

∣

∣

∣

≤ 1
2

∣

∣

∣

∣

d

dz
w (z0)

∣

∣

∣

∣

.

Indeed, since
d

dz
w (z) =

φ(1) (z)

2w (z)
= 1

2 (φ (z)− φ0)
−1/2 φ(1) (z)

and d
dzw (z0) = φ

1/2
2 6= 0,

(SM130)
d
dzw (z)
d
dzw (z0)

=

(

1 +
R0,3

φ2 (z − z0)
2

)−1
2
(

1 +
R1,2

2φ2 (z − z0)

)

.

Note that for any y1 and y2 such that |y2| < 1,

(SM131)

∣

∣

∣

∣

1 + y1√
1 + y2

− 1

∣

∣

∣

∣

≤ |y1|+ |y2|
1− |y2|

,

where the principal branch of the square root is used. This follows from the facts
that, for |y2| < 1,

∣

∣

√
1 + y2

∣

∣ ≥ 1 − |y2| and
∣

∣1 + y1 −
√
1 + y2

∣

∣ ≤ |y1| + |y2| . Both
of these inequalities follow from

∣

∣1−√
1 + y2

∣

∣ ≤ |y2|, which can be established by
denoting

√
1 + y2 as x so that the inequality becomes |1− x| ≤

∣

∣x2 − 1
∣

∣ and using
the fact that 1 ≤ |x+ 1| (because Rex ≥ 0 when |y2| < 1). Setting

y1 =
R1,2

2φ2 (z − z0)
and y2 =

R0,3

φ2 (z − z0)
2
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and using (SM126) and (SM130), we obtain

∣

∣

∣

∣

∣

d
dzw (z)
d
dzw (z0)

− 1

∣

∣

∣

∣

∣

≤ 1
2 .

Hence, (SM129) holds.
Finally, let ζ1 and ζ2 be any two points in B (z0, ρ1), and let γ(t) = (1− t) ζ1+tζ2,

where t ∈ [0, 1] . We have

∫ 1

0

(

d

dz
w (γ(t))− d

dz
w (z0)

)

dt =
w (ζ2)− w (ζ1)

ζ2 − ζ1
− d

dz
w (z0) .

Therefore, using (SM129), we obtain

∣

∣

∣

∣

w (ζ2)− w (ζ1)

ζ2 − ζ1
− d

dz
w (z0)

∣

∣

∣

∣

≤ 1
2

∣

∣

∣

∣

d

dz
w (z0)

∣

∣

∣

∣

.

This inequality and the fact that d
dzw (z0) = φ

1/2
2 imply part (i) of the lemma.

Part (ii) of the lemma is a simple consequence of part (i). Indeed, by the open
mapping theorem, W is an open set. Next, by (i), w(z) is one-to-one mapping of
B (z0, ρ1) on W and has a non-zero derivative in B (z0, ρ1) . Further, let ψ (w) be
defined on W by ψ (w (z)) = z. Fix w̃ ∈ W. Then ψ (w̃) = z̃ for a unique z̃ in
B (z0, ρ1) . If w ∈W and ψ (w) = z, we have

ψ (w)− ψ (w̃)

w − w̃
=

z − z̃

w (z)− w (z̃)
.

By (i), w → w̃ as z → z̃, and the latter equality implies d
dwψ (w̃) = 1

d
dz

w(z̃)
. Therefore,

z(w) ≡ ψ (w) is an analytic inverse of w(z) on W .
Finally, part (iii) of the lemma can be established as follows. Note that by part (i),

∣

∣w
(

z0 + ρ1e
iϕ
)

− w (z0)
∣

∣ ≥ ρ1
2

∣

∣

∣

∣

d

dz
w (z0)

∣

∣

∣

∣

for any ϕ ∈ [0, 2π] . Therefore, for any w1 such that |w1 −w (z0)| ≤ ρ1
4

∣

∣

d
dzw (z0)

∣

∣,
we have

min
ϕ∈[0,2π]

∣

∣w1 − w
(

z0 + ρ1e
iϕ
)
∣

∣ ≥ ρ1
4

∣

∣

∣

∣

d

dz
w (z0)

∣

∣

∣

∣

.

By a corollary to the maximum modulus theorem (see Rudin (1987), p. 212), the
latter inequality implies that the function w (z)− w1 has a zero in B(z0, ρ1). Thus,
region W includes B(0, ρ14

∣

∣

d
dzw (z0)

∣

∣). On the other hand,

(SM132) |w (z1)| ≤ 2ρ2

∣

∣

∣

∣

d

dz
w (z0)

∣

∣

∣

∣

.
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Indeed, consider the identity

w2 (z1) = φ1 (z1 − z0) +R0,2.

Since φ1 = 0, (SM127) imply

(SM133) |w (z1)|2 ≤
7

6
|φ2| |z1 − z0|2 .

But, by definition,

(SM134) |z1 − z0| = ρ2.

Since d
dzw (z0) = φ

1/2
2 , (SM133) and (SM134) imply (SM132). Setting ρ2 = ρ1/16,

we obtain that W includes B(0, 2 |w (z1)|).

5.2. Evaluation of d2f(z0)/dz
2. Note that−d2fe (z0) /dz

2 = dmc (z0) /dz. There-
fore d2fe (z0) /dz

2 can be directly evaluated using explicit expressions for the Stielt-
jes transforms of the semicircle, Marchenko-Pastur and Wachter distributions. Fur-
ther, using the definition of fh(z), we directly evaluate d2fh (z0) /dz

2. Combining the
expressions for the second derivatives of fe and fh, we obtain values of the second
derivative of f reported in Table JO6.

Evaluation of dmc (z0) /dz. For each of the three cases, it is a little easier to
evaluate

(SM135) a(θ) =
m′(z0)
m2(z0)

= − d

dz

(

1

m

)
∣

∣

∣

∣

z=z0

.

In each case v = −1/m satisfies a quadratic equation in v = v(z). Differentiation
with respect to z yields an equation for v′ which we write in the form

(SM136) (C +∆)v′ = C.

SMD. From (SM75), v = −1/m satisfies 1− zv + v2 = 0, and so, differentiating
w.r.t. z,

(2v − z)v′ = v.

At z = z0 = θ+1/θ, with m(z0) = −θ, we get C = v0 = 1/θ and ∆ = v0− z0 = −θ,
and

a(θ) = v′(z0) =
C

C +∆
=

1

1− θ2
.

PCA. From (SM76), v = −1/m satisfies c1z − (z + c1 − 1)v + v2 = 0, and so,
differentiating,

(2v − z − c1 + 1)v′ = v − c1.
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At z0 = (1 + θ)(c1 + θ)/θ and v0 = c1(1 + θ)/θ, we have C = v0 − c1 = c1/θ and
∆ = v0 − z0 + 1 = −θ, so that

a(θ) = v′(z0) =
C

C +∆
=

c1
c1 − θ2

.

SigD. From (SM77), v = −1/m satisfies

c1z(c1 − c2z)− [c21 − c1 + (c1 + c2 − 2c1c2)z]v + r2v2 = 0,

and so v′ satisfies (SM136) with

C = c21 − 2c1c2(z − v)− (c1 + c2)v, ∆ = −c1 + (c1 + c2)(z − v).

At z0 = (1+θ)(c1+θ)/θl(θ) and v0 = c1(1+θ)/θl(θ), we find z0−v0 = (1+θ)/l(θ),
and eventually

C = − c1
θl(θ)

[h(θ) + θ2], ∆ =
c1
θl(θ)

θ2,

with h(θ) = c1 + c2(1 + θ)2 − θ2, and hence

a(θ) = v′(z0) =
h(θ) + θ2

h(θ)
.

The results are summarized for later reference in Table 5.

m(z0) a(θ) m′(z0)

SMD −θ 1

1− θ2
θ2

1− θ2

PCA, REG0 − θ

c1(1 + θ)

c1
c1 − θ2

θ2

c1(1 + θ)2(c1 − θ2)

SigD, REG, CCA − θl(θ)

c1(1 + θ)

h(θ) + θ2

h(θ)

θ2l2(θ)

c21(1 + θ)2
h(θ) + θ2

h(θ)
Table 5

Summary of Stieltjes transform quantities. a(θ) is defined at (SM135), h(θ) = c1 + c2(1+ θ)2 − θ2.

Computation of d2fh (z0) /dz
2. Since f ′′(z) = f ′′e (z)+ f

′′
h (z) and f

′′
e (z) = −m′(z),

we have
−f ′′(z0) = m′(z0)− f ′′h (z0).

We will see that in each case there is a factorization

m′(z0) = m2(z0)a(θ)

f ′′h (z0) = m2(z0)b(θ).
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Note that the functions a(θ), b(θ) are distinct from the constants a, b in (SM78).
Thus

−f ′′(z0) = m2(z0)[a(θ)− b(θ)],

and the entries of Table JO6 are

(SM137) D2 =
θ2

−f ′′(z0)
=

θ2

m2(z0)

1

a(θ)− b(θ)
.

b(θ)
θ2

m2(z0)

1

a(θ)− b(θ)

SMD 0 1 1− θ2

PCA 0 c21(1 + θ)2
h0

c1

SigD − c1c2
r2

c21(1 + θ)2

l2
hr2

c21l
2

REG0
c1
K0

c21(1 + θ)2
h0K0

c1(1 + θ)2

REG
c1
K1

c21(1 + θ)2

l2
hK1

c1(1 + θ)2l2

CCA
c1 − c2(1 + θ)

K2

c21(1 + θ)2

l2
hK2

(c1 + c2)(1 + θ)2l
Table 6

Remaining quantities needed for Table JO6: as shown at (SM137), the entries there are obtained
by multiplying the last two columns of this table. In the last three cases, some algebra is required to
verify that a(θ)− b(θ) factorizes as shown in the last column. Here h0 = c1 − θ2, K0 = 1+ c1 +2θ,
K1 = c1 + θ + (1 + θ)l and K2 = 2(c1 + θ) + (1− c1)l. As c2 → 0, we have h→ h0, l → 1, r2 → c1

and K1,K2 → K0.

Evaluation of b(θ). For SMD and PCA, fh(z) is linear in z so b(θ) = 0.
For SigD, from (SM78) and (SM80), we find that

f ′′h (z0) =
1

b

(

ab

1− az0

)2

= −c1c2
r2

m2(z0).

For the q = 1 cases, we have from (SM82) that

(SM138) f ′′h (z) =
1− c1
c1

d

dη
χ(η)

(

dη

dz

)2

.

where χ(η) = χj(ηj) = (∂/∂ηj)ϕj(tj , ηj) is given by (SM83).
REG0. Recall that t0 =

1
2 (1+

√
1 + 4η0) = (1+ θ)/(1− c1), so that from (SM93)

ṫ0 =
d

dη
t0 = (1 + 4η0)

−1/2 =
1− c1

1 + c1 + 2θ
.
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We have both

d

dη
χ0(η) =

d

dη

(

− 1

t0(η)

)

=
ṫ0
t20
, and

dη

dz
=

θ

(1− c1)2
,

and so

f ′′h (z0) =
θ2

c1(1 + c1 + 2θ)(1 + θ)2
= m2(z0)

c1
1 + c1 + 2θ

.

REG. We have χ1(η1) = −t1(η1) and recall that t1 satisfies a quadratic equation
η1t

2 + (1− η1)t− κ = 0, so that ṫ1 = dt1/dη solves

[2η1t1 + 1− η1]ṫ1 = t1(1− t1).

Using (SM84), we can evaluate

t1(1− t1) = − c21l(θ)

c22(1 + θ)2
,

and setting
K1(θ) = c1 + θ + (1 + θ)l(θ),

we also have from (SM94) and (SM85)

2η1t1 + 1− η1 =
c1K1(θ)

(1− c1)L(θ)
.

We then find from (SM138), the previous displays and dη1/dz = θc2/[c1(1 − c1)]
that

f ′′h (z0) =
θ2l2(θ)

(1 + θ)2
1

c1K1(θ)
= m2(z0)

c1
K1(θ)

.

CCA. Recall that t2(η2) satisfies η2(κ−1)t2+ t−κ = 0, and hence ṫ2 = dt2(η)/dη
is given by

ṫ2 =
−(κ− 1)t22

1 + 2η2(κ− 1)t2
.

Since χ2(t2) = −κt2/(1 − η2t2), we have

d

dη
χ2(η) =

−κ
(1− η2t2)2

(t22 + ṫ2).

We have κ = r2/c2(1− c1) and κ− 1 = c1/c2(1− c1), and so from (SM88),

(κ− 1)η2t2 =
c1 + θ

(1− c1)l(θ)

and if we define
K2(θ) = (1− c1)l(θ) + 2(c1 + θ),
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we arrive at

t22 + ṫ =
t22
c2

[

c2 −
L(θ)

K2(θ)

]

.

Some algebra shows that

c1[c2K2(θ)− L(θ)] = r2[c2(1 + θ)− c1].

From (SM138) and the preceding displays,

f ′′h (z0) = −1− c1
κc1

[

κt2
1− η2t2

dη2
dz

]2 r2

c1c2

c2(1 + θ)− c1
K2(θ)

.

Now from (SM87) and (SM88),

κt2
1− η2t2

dη

dz
=

θl(θ)

(1 + θ)(1− c1)
= − c1

1− c1
m(z0)

and so finally

f ′′h (z0) = m2(z0)
c1 − c2(1 + θ)

K2(θ)
.

5.3. Proof of Theorem JO10. First, let us show that

(SM139) L1 (θ; Λ) =
g(z0)

√

−d2f(z0)/dz2
+OP

(

p−1
)

,

where OP (1) is uniform with respect to θ ∈
(

0, θ̄ − ε
]

. Changing the variable of
integration in (JO45) from z to ζ = θz, we obtain

(SM140) L1 (θ; Λ) =
√
πp

1

2πi

∫

K̃
e−pφ(ζ)χ(ζ)dζ,

where
φ(ζ) = f (ζ/θ) /2, χ(ζ) = g(ζ/θ)/θ,

and K̃ is the image of K1 ∪ K̄1 under the transformation z 7→ ζ. The set of possible
values of θ is Ω ≡

(

0, θ̄ − ε
]

.
Using Table JO6 and the definitions of K1, z0, f(z), and g(z), it is straightforward

to verify that the assumptions A0-A4 of Lemma JO9 hold for the integral in (SM140)
for all the six cases that we consider. The validity of A5 follows from Lemma 24
given below and from the definitions of g (z). Let

(SM141) ∆(ζ) = p

∫

ln (ζ/θ − λ) d
(

F̂ (λ)− Fc (λ)
)

,

so that ∆(ζ) = −2 ln ge(ζ/θ).
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Lemma 24. Suppose that the null hypothesis holds, that is θ0 = 0. Then there
exists a positive constant C1, such that for a subset Θ of C that consists of all points
whose Euclidean distance from K̃ is no larger than C1, we have

sup
ζ∈Θ

|∆(ζ)| = OP(1)

as n, p→γ ∞, where OP(1) is uniform with respect to θ ∈ Ω ≡
(

0, θ̄ − ε
]

.

Proof: Let us rewrite (SM141) in the following equivalent form

∆(ζ) = p

∫

ln (1− λθ/ζ) d
(

F̂ (λ)− Fc (λ)
)

.

Statistic ∆(ζ) is a special form of a linear spectral statistic

∆(ϕ) = p

∫

ϕ (λ) d
(

F̂ (λ)− Fc (λ)
)

studied by Bai and Yao (2005), Bai and Silverstein (2004), and Zheng (2012) for
the cases of the Semi-circle, Marchenko-Pastur, and Wachter limiting distributions,
respectively. These papers note that

∆(ϕ) = − p

2πi

∫

P
ϕ (ξ) (m̂ (ξ)−mc (ξ)) dξ,

where

m̂ (ξ) =

∫

1

λ− ξ
dF̂ (ξ), mc (ξ) =

∫

1

λ− ξ
dFc (λ)

are the Stieltjes transforms of F̂ and Fc, and P is a positively oriented contour in
an open neighborhood of the supports of F̂ and Fc, where ϕ (ξ) is analytic, that
encloses these supports. Theorem 2.1 and equation (2.3) of Bai and Yao (2005) for
SMD case, and Lemma 1.1 of Bai and Silverstein (2004) for the rest of the cases,
imply that if the distance from P to the supports of F̂ and Fc stays away from zero
with probability approaching one as n, p →γ ∞, then

∫

P
|p (m̂ (ξ)−mc (ξ)) dξ| = OP (1) .

(Throughout these notes, notation
∫

P |f(ξ)dξ| should be interpreted as
∫ β
α |f(P(t))P ′(t)|dt,

where P is parameterized as a continuously differentiable complex function on
[α, β] ⊆ R

1. For piecewise continuously differential pathes, [α, β] should be split
into a finite number of sub-intervals where P is continuously differentiable.) There-
fore, for any δ > 0, there exists B > 0, such that

(SM142) Pr

(

|∆(ϕ)| ≤ B sup
ξ∈P

|ϕ (ξ)|
)

> 1− δ
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for all n and p, where constant B does not depend on ϕ. Now, consider a family of
functions ϕζ,θ (ξ)

{ϕζ,θ (ξ) = ln (1− ξθ/ζ) : ζ ∈ Θ and θ ∈ Ω} .

By the definitions of Θ and Ω, there exists an open neighborhood N of the supports
of F̂ and Fc and a constant B1, such that, with probability arbitrarily close to one,
for sufficiently large n and p, ϕζ,θ (ξ) are analytic in N for all ζ ∈ Θ and θ ∈ Ω and

sup
θ∈Ω

sup
ζ∈Θ

sup
ξ∈N

|ϕζ,θ (ξ)| ≤ B1.

Since ∆(ϕζ,θ) = ∆(ζ), we obtain from (SM142) that for any δ > 0, there exists
B2 > 0 such that for sufficiently large n and p,

Pr

(

sup
θ∈Ω

sup
ζ∈Θ

|∆(ζ)| ≤ B2

)

> 1− δ.

In other words, supζ∈Θ |∆(ζ)| = OP(1) uniformly over θ ∈ Ω. �
Applying Lemma JO9 to the integral in (SM140) and using the fact that f(z0) =

0, we obtain (SM139). It remains to show that L2 (θ; Λ) is asymptotically dominated
by L1 (θ; Λ) , where

L2 (θ; Λ) = L (θ; Λ)− L1 (θ; Λ) .

For SMD, PCA, and SigD we have

|L2 (θ; Λ)| =

∣

∣

∣

∣

∣

∣

√
πp

2πi

∫

K2∪K̄2

e−(p/2)(fc+fh(z))gcgh(z)

p
∏

j=1

(z − λj)
−1/2 dz

∣

∣

∣

∣

∣

∣

≤
√

p

π
e−(p/2)fcgc (2z0)

−p/2
∫

K2

∣

∣

∣
e−(p/2)fh(z)gh(z)dz

∣

∣

∣

≤
√

p

π
e−(p/2)fcgc (2z0)

−p/2
∫ z0

−∞
e−(p/2)fh(x)gh(x)dx.

Explicitly evaluating the latter integral and using the exact form of gc, available
from Table JO4, we obtain

|L2 (θ; Λ)| ≤
2C√
πp
e−(p/2)fc (2z0)

−p/2 e−(p/2)fh(z0) (1 + o(1)) ,

where o(1) does not depend on θ, C = 1 for SMD and PCA, and C =
√
c1 + c2/r

for SigD. Therefore,

|L2 (θ; Λ)| ≤
2C√
πp
e−(p/2)f(z0) exp {−(p/2) (ln(2z0)− fe (z0))} (1 + o(1))

=
2C√
πp

exp

{

−p
2

∫

ln

(

2z0
z0 − λ

)

dFc(λ)

}

(1 + o(1)) ,
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where we used the fact that f (z0) = 0. But ln (2z0/ (z0 − λ)) is positive and bounded
away from zero uniformly over θ ∈

(

0, θ̄ − ε
]

with probability arbitrarily close to
one, for sufficiently large n, p. Hence, there exists a positive constant K such that

|L2 (θ; Λ)| ≤
2C√
πp
e−pK (1 + o(1))

with probability arbitrarily close to one for sufficiently large n, p. Combining this
inequality with (SM139), we establish Theorem JO10 for SMD, PCA, and SigD.

For REG0, we shall need the following lemma.

Lemma 25. For sufficiently large n and p, we have

(SM143) |0F1 (b− s; Ψ11z) | < 4
√
πm |exp {−mϕ0(t0)}|

for any z and any θ > 0.

Proof: We use the identity (see formula 9.6.3 in Abramowitz and Stegun (1964))

Im (ζ) = e−mπi/2Jm (iζ) for − π < arg ζ ≤ π/2,

where Jm (·) is the Bessel function. The identity and (JO22) imply that

(SM144) 0F1 (b− s; Ψ11z) = Γ (m+ 1)
(

m2η0
)−m/2

e−mπi/2Jm

(

i2mη
1/2
0

)

.

On the other hand, for any ζ and any positive K,

(SM145) |JK (Kζ)| ≤
{

1 +

∣

∣

∣

∣

sinKπ

Kπ

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣







ζ exp
{

√

1− ζ2
}

1 +
√

1− ζ2







K
∣

∣

∣

∣

∣

∣

∣

,

(see Watson (1944), p. 270). The latter inequality, equation (SM144), and the Stirling
formula for Γ (m+ 1) imply that (SM143) holds for sufficiently large m, for any z
and θ > 0. The constant 4 on the right hand side of (SM143) is not the smallest
possible one, but it is sufficient for our purposes. �

Using inequality (SM143), we obtain for REG0

(SM146) |L2 (θ; Λ)| ≤ 4e−(p/2)fcgc
√
pm

∫

K2

∣

∣

∣

∣

∣

∣

exp {−mϕ0(t0)}
p
∏

j=1

(z − λj)
−1/2 dz

∣

∣

∣

∣

∣

∣

.

It is straightforward to verify that Reϕ0(t0) is strictly increasing as z is moving
along K2 towards −∞. Therefore, for any z ∈ K2,

Reϕ0 (t0(z)) > Reϕ0(t0(z̄)),
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where z̄ = z1+i (z0 − z1) is the point of K2 where K2 meets K1. The latter inequality
together with (SM146) yields

|L2 (θ; Λ)| ≤ 4e−(p/2) Re f(z̄)gc |ge (z̄)|
√
pm

∫

K2

p
∏

j=1

∣

∣

∣

∣

z̄ − λj
z − λj

∣

∣

∣

∣

1/2

|dz| .

Since, for some constant τ1, Re f (z̄) > f (z0) + τ1 = τ1 and since, by Lemma 24,
4ge (z̄) = OP (1) uniformly over θ ∈

(

0, θ̄ − ε
]

, we obtain

(SM147) |L2 (θ; Λ)| ≤ e−(p/2)τ1gc
√
pm

∫

K2

p
∏

j=1

∣

∣

∣

∣

z̄ − λj
z − λj

∣

∣

∣

∣

1/2

|dz|OP (1) .

Note that for any z ∈ K2 and any j = 1, ..., p, |(z̄ − λj) / (z − λj)| ≤ 1 and |z − λj | >
|z| . Further, since z0 < |z̄| and with probability arbitrary close to one, for sufficiently
large n and p, λ1 < z0, we have |z̄ − λj | < |z̄ − z0| < 2 |z̄| . Thus, for p ≥ 4, we have

∫

K2

p
∏

j=1

∣

∣

∣

∣

z̄ − λj
z − λj

∣

∣

∣

∣

1/2

|dz| ≤
∫

K2

4 |z/z̄|−2 |dz| = |z̄|O(1)

Combining this with (SM147) and noting that gc |z̄| = O (1) uniformly over θ ∈
(

0, θ̄ − ε
]

, we obtain

(SM148) |L2 (θ; Λ)| ≤
√
pme−(p/2)τ1OP (1) ,

where OP (1) is uniform with respect to θ ∈
(

0, θ̄ − ε
]

. Theorem JO10 for REG0

follows from the latter equality and (SM139).
For REG and CCA, the Theorem follows from (SM139) and inequalities

(SM149) |L2 (θ; Λ)| ≤ pe−pτ2OP (1) ,

where τ2 is a positive constant. We obtain (SM149) by combining the method used
to derive (SM148) with upper bounds on 1F1 and 2F1, which we establish using the
integral representations (JO25). �

A proof of the domination of L2 (θ; Λ) by L1 (θ; Λ) (via establishing (SM149)).

By definition, we have
(SM150)

L2 (θ; Λ) =
√
πp exp

{

−p
2
(fc + fe(z0))

} gcge(z0)

2πi

∫

K2∪K̄2

Fj

p
∏

j=1

(

z0 − λj
z − λj

)1/2

dz

with j = 1 for REG and j = 2 for CCA. The idea of the proof is to use the integral
representations (SM31), that is

Fj =
Cmη

−m
j

2πi

∫ (ηj+)

0
exp {−mφj (τ)}χj (τ) dτ,
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to find simple upper bounds for |Fj | corresponding to z ∈ K2 ∪ K̄2. Note that since

Fj (z̄) = Fj (z), it is sufficient to establish the bounds for z ∈ K2. These upper
bounds will then be used to estimate the integral in (SM150) from above, and
eventually to establish the domination of L2 (θ; Λ) by L1 (θ; Λ).

REG.

Lemma 26. Let τ+ ∈ C2 and z be the corresponding point of K2. Then Re fh(z) >
fh(z0) + α, where α > 0 does not depend on τ+ ∈ C2 and does not depend on θ.

Proof: Parametrize points τ+ ∈ C2 as

(SM151) τ+ = −κ− x+ |τ0 + κ| exp {iπ/2} ,
x ≥ 0. As x goes from 0 to ∞, the corresponding z tracks contour K2 from the point
ζ, where K2 and K1 meet, to −∞. Recall that

(SM152) −p
2
fh(z) = −m (ϕ1(t1) + k) = −m (φ1 (τ+) + ln η1 + k) ,

where k = κ ln κ − (κ− 1) ln (κ− 1) . Using the definition (SM32) of φ1 and the
identity

(SM153) η1 =
τ+ (τ+ + 1)

τ+ + κ
,

we obtain
p

2m
Re fh(z) = −Re τ+ + ln |τ+ + 1| − κ ln |τ+ + κ|+ κ lnκ.

Taking the derivative of both sides of the latter equality with respect to x, we obtain

p

2m

d

dx
Re fh(z) = 1 +

x+ κ− 1

|τ+ + 1|2
− κx

|τ+ + κ|2
.

For x ≥ 0, we have

|τ+ + κ| ≡ |−x+ |τ0 + κ| exp {iπ/2}| > x and

|τ+ + κ| ≡ |−x+ |τ0 + κ| exp {iπ/2}| > κ.

Therefore, κx/ |τ+ + κ|2 < 1 and d
dx Re fh(z) > 0. This implies that

Re fh(z) > Re fh(ζ).

On the other hand, as shown in subsection 4.7 (pp 38-40 of these notes), Re fh(z)
strictly increases as z moves along K1 from z0 to ζ. Hence, there exists α > 0 that
does not depend on τ+ ∈ C2, such that

Re fh(z) > Re fh(z0) + α = fh(z0) + α.

From the definitions of C1 (the image of which under τ 7→ z transformation is K1)
and of fh(z), it is easy to see that α can be chosen so that it does not depend on θ
as well. �
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Lemma 27. There exist positive constants α and α1 that do not depend on θ
such that, for any τ+ ∈ C2

(SM154) |F1| ≤ α1
√
p |η1| exp

{

−p
2
(fh(z0) + α)

}

.

Proof: Let τ+ ∈ C2 and z be the corresponding point of K2. Choose the contour
in the integral representation (SM31) of F1 as in subsection 4.3 (that contains a
proof of Lemma JO3) of this note. We shall call such a contour K∗. As explained
in subsection 4.3, the minimum of Reφ1 (τ) over τ ∈ K∗ is achieved either at τ+
or, in some cases corresponding to situation 3, at τ∗ that belongs to [0, A] and is
such that Re τ∗ ≤ −κ (see a discussion around equation (SM56), which shows that
points τ∗ ∈ [0, A] with Re τ∗ > −κ cannot correspond to the minimum of Reφ1 (τ)
over τ ∈ K∗).

If the minimum of Reφ1 (τ) over τ ∈ K∗ is achieved at τ+ then using (SM31),
(SM152), and the Stirling’s approximation

(SM155) Cm =

√

πp (1− c1)

r
exp {m (κ− 1) ln (κ− 1)−mκ lnκ} (1 + o(1)) ,

we obtain, for some α̃ > 0 that does not depend on τ+ and on θ,

(SM156) |F1| ≤ α̃
√
p exp

{

−p
2
Re fh(z)

}

∫

K∗

|χ1 (τ) dτ | .

Recall that χ1 (τ) = (τ − η1)
−1 . By definition of K∗,

(SM157) sup
τ∈K∗

|χ1 (τ)| ≤ max
{

|τ+ − η1|−1 , |η1|−1
}

and |K∗| ≤ |η1|+2π |τ+ − η1| .

Identity (SM153) implies that |τ+ − η1| = (κ− 1) |τ+/ (τ+ + κ)| is bounded away
from zero uniformly with respect to τ+ ∈ C2. Therefore, (SM156) and (SM157)
imply that there exists α1 > 0 that does not depend on τ+ and on θ such that

|F1| ≤ α1
√
p |η1| exp

{

−p
2
Re fh(z)

}

.

Combining this with Lemma 26, we obtain (SM154).
If the minimum of Reφ1 (τ) over τ ∈ K∗ is achieved at τ∗ then we must be in

situation 3 so that |τ∗ − η1| > |τ+ − η1| and

Reφ1 (τ
∗) = −Re τ∗ − κ ln |τ∗|+ (κ− 1) ln |τ∗ − η1|

> −Re τ∗ − κ ln |τ∗|+ (κ− 1) ln |τ+ − η1| .

Let τ be any point on the ray starting at 0 and passing through η1, let arg η1 = β
(note that β > π/2 so that cos β < 0), and let x = |τ | . Then

−Re τ∗ − κ ln |τ∗| ≥ −max
x≥0

{x cos β + κ ln x} = κ− κ ln (−κ/ cos β) .
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Therefore,

Reφ1 (τ
∗) > κ− κ ln (−κ/ cos β) + (κ− 1) ln |τ+ − η1| .

This inequality implies

Reφ1 (τ
∗) + ln |η1| > κ− κ ln (−κ/ cos β) + (κ− 1) ln |τ+ − η1|+ ln |η1| .

Using (SM153) and the fact that τ+ ∈ C2, we obtain

Reφ1 (τ
∗) + ln |η1| > κ− κ ln (−κ/ cos β) + κ ln

∣

∣

∣

∣

τ+
τ+ + κ

∣

∣

∣

∣

+ ln |τ+ + 1|+ (κ− 1) ln (κ− 1)

> κ− κ ln (−κ/ cos β) + ln |τ̄+ + 1|+ (κ− 1) ln (κ− 1) ,(SM158)

where τ̄+ = −κ+ |τ0 + κ| exp {iπ/2} is the point where C2 and C1 meet. On the other
hand,

cos β ≤ cos arg τ̄+ = −κ/ |τ̄+|
and thus

κ− κ ln (−κ/ cos β) > κ− κ ln |τ̄+| = κ+ κ ln (|τ̄+ + κ| / |τ̄+|)− κ ln |τ̄+ + κ|
> κ+ κ ln

(

1/
√
2
)

− κ ln |τ̄+ + κ| > −κ ln |τ̄+ + κ| .

Using this inequality and (SM158), we obtain

Reφ1 (τ
∗) + ln |η1| > −κ ln |τ̄+ + κ|+ ln |τ̄+ + 1|+ (κ− 1) ln (κ− 1) .

Since |τ + κ| stays constant for τ ∈ C1 whereas |τ + 1| is strictly decreasing as τ
moves along C1 from τ0 to τ̄+, there exists α2 > 0 which is independent of τ+ and
θ, such that

Reφ1 (τ
∗) + ln |η1| > −κ ln (τ0 + κ) + ln (τ0 + 1) + (κ− 1) ln (κ− 1) + α2

> −τ0 − κ ln (τ0 + κ) + ln (τ0 + 1) + (κ− 1) ln (κ− 1) + α2

= Reφ1 (τ0) + ln |η10|+ α2,

where η10 is the value of η1 that corresponds to z0. Therefore, by (SM152), we have

−m (Reφ1 (τ
∗) + ln |η1|) < −m

( p

2m
fh(z0) + α2 − k

)

.

Using this inequality together with (SM31) and (SM155), we obtain that, for some
α̃ > 0 that does not depend on τ+ and θ,

|F1| ≤ α̃
√
p exp

{

−p
2

(

fh(z0) +
2m

p
α2

)}
∫

K∗

|χ1 (τ) dτ | .
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Analysing the integral
∫

K∗ |χ1 (τ) dτ | as above, we conclude that there exist α,α1 > 0
that do not depend on τ+ and θ, such that (SM154) holds. �

Using Lemma 27 and equation (SM150), we obtain the following bound on |L2 (θ; Λ)|

(SM159) |L2 (θ; Λ)| ≤ α1p exp
{

−p
2
α
}

|gcge(z0)|
∫

K2

∣

∣

∣

∣

∣

∣

η1

p
∏

j=1

(

z0 − λj
z − λj

)1/2

dz

∣

∣

∣

∣

∣

∣

.

On the other hand, for any λj from the support of Fc, we have

(SM160)

∣

∣

∣

∣

z0 − λj
z − λj

∣

∣

∣

∣

<
∣

∣

∣

z0
z

∣

∣

∣
=

∣

∣

∣

∣

η10
η1

∣

∣

∣

∣

=

∣

∣

∣

∣

τ0 (τ0 + 1) (τ+ + κ)

(τ0 + κ) τ+ (τ+ + 1)

∣

∣

∣

∣

and

(SM161) dz =
c1 (1− c1)

θc2
dη1 =

c1 (1− c1)

θc2

(

1− κ (κ− 1)

(τ+ + κ)2

)

dτ+.

Note that, for any τ+ ∈ C2
∣

∣

∣

∣

κ (κ− 1)

(τ+ + κ)2

∣

∣

∣

∣

<
κ (κ− 1)

(τ0 + κ)2
.

A direct calculation based on the definitions

τ0 = 1
2

{

η10 − 1 +

√

(η10 − 1)2 + 4κη10

}

,

η10 =
z0θc2

c1 (1− c1)
, κ =

c1 + c2 − c1c2
c2 (1− c1)

, and

z0 =
(1 + θ) (θ + c1)

θ (1 + (1 + θ) c2/c1)

yields

τ0 =
θ + c1
1− c1

, η10 =
c2 (θ + 1) (θ + c1)

(c1 + c2 + θc2) (1− c1)
, and

κ (κ− 1)

(τ0 + κ)2
= c1

c1 + c2 − c1c2

(c1 + c2 + θc2)
2 .

The latter two equalities together with (SM161) imply that there exists a constant
α2 > 0 that does not depend on θ ∈

(

0, θ̄ − ε
]

such that (for sufficiently large n, p
as n, p→γ ∞)

|η10dz| <
α2

θ
|dτ+| .

Using this and (SM160) in (SM159), we obtain

|L2 (θ; Λ)| ≤ α1α2p exp
{

−p
2
α
}
∣

∣

∣

gc
θ
ge(z0)

∣

∣

∣

∫

C2

∣

∣

∣

∣

τ0 (τ0 + 1) (τ+ + κ)

(τ0 + κ) τ+ (τ+ + 1)

∣

∣

∣

∣

p/2−1

|dτ+| .
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Note that for any τ+ ∈ C2 we have |τ+ + 1| > |τ+ + κ| . On the other hand, τ0 +1 <
τ0 + κ. Therefore,

∣

∣

∣

∣

(τ0 + 1) (τ+ + κ)

(τ0 + κ) (τ+ + 1)

∣

∣

∣

∣

< 1

and

|L2 (θ; Λ)| ≤ α1α2p exp
{

−p
2
α
}
∣

∣

∣

gc
θ
ge(z0)

∣

∣

∣

∫

C2

∣

∣

∣

∣

τ0
τ+

∣

∣

∣

∣

p/2−1

|dτ+| .

Using parameterization (SM151), we obtain

|L2 (θ; Λ)| ≤ α1α2p exp
{

−p
2
α
}
∣

∣

∣

gc
θ
ge(z0)

∣

∣

∣

∫ ∞

0

∣

∣

∣

∣

τ0
x+ κ− i |τ0 + κ|

∣

∣

∣

∣

p/2−1

dx

≤ α1α2α3p exp
{

−p
2
α
}
∣

∣

∣

gc
θ
ge(z0)

∣

∣

∣

for some α3 > 0 that does not depend on θ. Finally, note that gc/θ = O(1) and
ge(z0) = OP(1), so that the above display implies equation (SM149). Since

L1 (θ; Λ) =
g(z0)

√

−d2f(z0)/dz2
+OP

(

p−1
)

,

we see that L2 (θ; Λ) is asymptotically dominated by L1 (θ; Λ).

CCA. Let A be an arbitrarily large positive constant. Split the contour K2 into
K21 and K22, where

K21 = {z : z ∈ K2,Re z > −A} .
Note that the approximation

F2 = Cmψ2 (t2) e
−iω2/2

∣

∣2πmϕ′′
2 (t2)

∣

∣

−1/2
exp {−mϕ2 (t2)} (1 + o(1))

derived in Lemma JO3 remains valid for z ∈ K21. Therefore, the representation

L (θ; Λ) =
√
πp

1

2πi

∫

K
exp

{

−p
2
f(z)

}

g(z)dz

is valid for z ∈ K21 ∪ K1. Hence, if we show that K21 ∪ K1 is a contour of steep
descent for −Re f(z), then

L21 (θ; Λ) + L1 (θ; Λ)

must be asymptotically equivalent to L1 (θ; Λ), where

L21 (θ; Λ) =
√
πp

1

2πi

∫

K21∪K̄21

exp
{

−p
2
f(z)

}

g(z)dz,

and thus, L21 (θ; Λ) must be asymptotically dominated by L1 (θ; Λ) .
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Obviously, −Re fe(z) is decreasing as z moves along K21 so that Re z becomes
more and more negative. Let us consider the behavior of

(SM162) −Re fh(z) =
1− c1
c1

(−ϕ2 (t2)− κ ln κ+ (κ− 1) ln (κ− 1)) .

Recall (SM98), that states

Reϕ2 (t2) = −2κ ln |t2|+ (2κ− 1) ln |t2 − 1|+ κ ln
κ

κ− 1
.

Parametrize z ∈ K21 as

z = z1 − x |z0 − z1|+ |z0 − z1| i, x ∈ [0, (A+ z1) / |z0 − z1|]

where

z1 = −c1 (1− c1)
2 l (θ)

4θr2
.

For the corresponding η2 = zθc22/
[

c21l (θ)
]

we have

η2 = R0 − xR1 +R1i, x ∈ [0, (A+ z1) / |z0 − z1|] ,

where

R0 = − 1

4κ (κ− 1)
and R1 = |z0 − z1|

θc22
c21l (θ)

.

From the definition of t2 we obtain

t2 =
2κ

1 +
√

1 + 4κ (κ− 1) (R0 − xR1 +R1i)
,

which implies that

(SM163) t2 =
2κ

1 + ρ
√
−x+ i

,

where
ρ =

√

4κ (κ− 1)R1.

Lemma 28. Let (SM163) hold. Then d
dx (−Reϕ2 (t2)) < 0 for x ≥ 0.

Proof: Since

Re
√
−x+ i =

√√
x2 + 1− x

2
and Im

√
−x+ i =

√√
x2 + 1 + x

2
,
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we obtain

d

dx
(−Reϕ2 (t2)) = − 1

2
√
x2 + 1

ρ2x− ρRe
√
−x+ i

∣

∣1 + ρ
√
−x+ i

∣

∣

2

− 2κ− 1

2
√
x2 + 1

ρ2x+ (2κ− 1) ρRe
√
−x+ i

∣

∣2κ− 1− ρ
√
−x+ i

∣

∣

2 .

For x ≥ 0 this is no larger than

−ρRe
√
−x+ i

2
√
x2 + 1

(

−1
∣

∣1 + ρ
√
−x+ i

∣

∣

2 +
(2κ− 1)2

∣

∣2κ− 1− ρ
√
−x+ i

∣

∣

2

)

,

which is negative because

∣

∣

∣
1 + ρ

√
−x+ i

∣

∣

∣
>

∣

∣

∣

∣

1− ρ

2κ− 1

√
−x+ i

∣

∣

∣

∣

.�

Lemma 28 and identity (SM162) imply that −Re fe(z) is decreasing as z moves
along K21. Hence K21 ∪ K1 is indeed a contour of steep descent for −Re f(z), and
therefore L21 (θ; Λ) is asymptotically dominated by L1 (θ; Λ) . It remains to be shown
that L22 (θ; Λ) = L2 (θ; Λ)− L1 (θ; Λ) is asymptotically dominated by L1 (θ; Λ) .

For any z ∈ K22 and the corresponding η2 = zθc22/
[

c21l (θ)
]

, consider the integral
representation

(SM164) F2 =
Cm

2πi

∫ (1+)

0
exp {−mϕ2 (t)}ψ2 (t) dt,

where
ϕ2 (t) = −κ ln (t) + (κ− 1) ln (t− 1) + κ ln (1− η2t)

ψ2 (t) = (t− 1)−1 (1− η2t)
−1 .

For a fixed contour K∗ in (SM164), it is clearly possible to make Reϕ2 (t) arbitrarily
large and |ψ2 (t)| arbitrarily close to zero, uniformly with respect to t ∈ K∗ by
choosing A sufficiently large (so that |η2| is sufficiently large). Therefore, by choosing
A sufficiently large, we shall have inequality

|F2| ≤ α̃
√
p exp

{

−p
2
(Re fh(z0) + α)

}

for some α̃, α > 0 (that do not depend on θ) and any z ∈ K22. Using this upper
bound in (SM150), we obtain

L22 (θ; Λ) ≤ α1p exp
{

−p
2
α
}

|gcge(z0)|
∫

K22

∣

∣

∣

∣

∣

∣

p
∏

j=1

(

z0 − λj
z − λj

)1/2

dz

∣

∣

∣

∣

∣

∣
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for some α1 > 0 that does not depend on θ.
Clearly for any z ∈ K22 and any λj from the support of Fc we have

∣

∣

∣

∣

z0 − λj
z − λj

∣

∣

∣

∣

≤
∣

∣

∣

z0
z

∣

∣

∣
=

∣

∣

∣

∣

η20
η2

∣

∣

∣

∣

,

where η20 is the value of η2 that correspond to z = z0. Therefore, we have for some
α2 > 0 that does not depend on θ

L22 (θ; Λ) ≤ α2p exp
{

−p
2
α
}
∣

∣

∣

gc
θ
ge(z0)

∣

∣

∣

∫

K22

∣

∣

∣

∣

∣

∣

∣

∣

∣

η20
η2

∣

∣

∣

∣

p/2

dη2

∣

∣

∣

∣

∣

,

and thus, for some α3 > 0 that does not depend on θ,

L22 (θ; Λ) ≤ α3p exp
{

−p
2
α
} ∣

∣

∣

gc
θ
ge(z0)

∣

∣

∣
.

Finally, note that gc/θ = O(1) and ge(z0) = OP(1), so that the above display implies
(SM149) with L22 replacing L2. Since

L1 (θ; Λ) =
g(z0)

√

−d2f(z0)/dz2
+OP

(

p−1
)

,

we see that L22 (θ; Λ) is asymptotically dominated by L1 (θ; Λ).

6. Asymptotics of LR.

6.1. Derivations for Theorem JO11 (limiting LR). We record details to verify
that

g(z0)
√

−f ′′(z0)
= exp

{

−1
2∆p(θ) +

1
2 log[1− δ2p(θ)]

}

(1 + o(1)),

where, perhaps surprisingly, our six cases reduce to the three values for δp(θ) given in
Theorem JO11. Recall the decomposition g = gcgegh and note from the definitions
(JO15) that ge(z0) = exp{−1

2∆p(θ)}. Consequently, from the definition of D2 in
Table JO6, the left side of the previous display may be written as

θ−1gcgh
√

D2 exp{−1
2∆p(θ)},

so our task is to verify that

(SM165) P = θ−1gcgh
√

D2 = (1− δ2p(θ))
1/2(1 + o(1)).

To this end, Table 7 collects values for θ−1ǧc, gh, and
√
D2 from Table JO4, Section

JO4.1 and Table JO6 respectively. Cases SMD and PCA require no further comment.
For the remaining cases, we add remarks on the evaluation of gh(z0) and then the
product (SM165).
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θ−1ǧc gh
√
D2

SMD 1 1
√
1− θ2

PCA
1

c1(1 + θ)
1 c1(1 + θ)

√

h0/c1

SigD
r
√
c1 + c2

c21(1 + θ)

c1l(θ)

r2
r(1 + θ)

√
h

l2(θ)

REG0
1

c1
√
1− c1

√
1− c1√
K0

c1
√

K0h0/c1

REG
r
√
c1 + c2

c21
√
1− c1

√

c1(1− c1)l(θ)

r
√
K1

√
c1K1h

l2(θ)

CCA
r2(c1 + c2)

c31
√
1− c1l(θ)

c1
√
1− c1l

3/2(θ)

r2
√
K2

c1
√
K2h√

c1 + c2l3/2(θ)
Table 7

Components of the product P = θ−1gcgh
√
D2. The CCA entry for gh is shown for completeness –

it is derived, post facto, from the calculations above.

SigD. First observe that since z0θ = (1 + θ)(c1 + θ)/l(θ),

gh(z0) =

(

1− c2z0θ

c1(1 + θ)

)−1

=
c1l(θ)

r2
,

and we get the claimed expression for P ,

(SM166) P 2 =
(c1 + c2)h

c21l
2

= 1− θ2r2

c21l
2
,

after using the identity

(SM167) (c1 + c2)h = c21l
2 − θ2r2

REG0. From (JO34) and (SM93), we have

gh(z0) ∼ (1 + 4η0)
−1/4 ∼

√
1− c1/

√

K0.

REG. We use (JO34) to evaluate gh(z0). Using (SM84) to evaluate t1(z0), we
have

ϕ′′
1(t1) =

κ

t21
− κ− 1

(t1 − 1)2
=
c22(1 + θ)2

c2(1− c1)

[

r2

L2(θ)
− 1

c1

]

= −c
2
2(1 + θ)2

c21(1− c1)

K1(θ)

l2(θ)
,(SM168)
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using the identity
L2(θ)− c1r

2 = c1c2K1(θ).

Since t1 − 1 > 0 and ϕ′′
1(t1) < 0, we can take ω1 = 0. Together with ψ1(t1) =

(t1 − 1)−1 = c2(1 + θ)/c1, we obtain from (JO34) and (SM84)

gh(z0) ∼
√

c1
r2

|ϕ′′
1(t1)|−1/2ψ1(t1) =

√

c1(1− c1)l(θ)

r
√

K1(θ)

The product P then reduces to the first expression in (SM166).

CCA. We show that PCCA = PREG(1+ o(1)). From Table 7 and (JO28), we have

θ−1gc,C
θ−1gc,R

=
r
√
c1 + c2
c1l(θ)

,

√

D2,C

D2,R
=

√

c1l(θ)

c1 + c2

K2

K1
,

ψ2(t2)

ψ1(t1)
=

1

1− η2t2
=
c1l(θ)

r2
.

Multiplying these ratios and referring to (JO34), we obtain

(SM169)
PCCA

PREG
∼
∣

∣

∣

∣

ϕ′′
1(t1)

ϕ′′
2(t2)

∣

∣

∣

∣

1/2 [c1l

r2
K2(θ)

K1(θ)

]1/2

eiω2/2.

We now compare ϕ′′
2(t2) to ϕ

′′
1(t1), recalling that t2 = t1. First, from (SM86),

ϕ′′
2(t) = − κη22

(1− η2t2)2
+ ϕ′′

1(t).

In particular, ϕ′′
2(t2) < 0 and, as with ω1, also ω2 = 0. From (SM88), we evaluate

− κη22
(1− η2t2)2

= −c
3
2(1 + θ)2

c21(1− c1)

(c1 + θ)2

l2r2
,

so that from (SM168),

ϕ′′
2(t2)

ϕ′′
1(t2)

= 1 +
c2(c1 + θ)2

r2K1(θ)
=
c1l(θ)K2(θ)

r2K1(θ)
,

where the second identity follows after some algebra. The latter display and (SM169)
show that PCCA = PREG(1 + o(1)).

6.2. Proof of Theorem JO12 (Gaussian process limit). Some general considera-
tions

Almost sure continuity of lnL (θ; Λ). Let ε > 0 be a fixed small number. First,
let us show that lnL (θ; Λ) are continuous functions of θ ∈ [0, θ̄ − ε] for each of the
six cases under study. Recall equation (JO6)

(SM170) L(Case) (θ; Λ) = α (θ) pFq (a, b; Ψ,Λ) ,
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where Ψ is a p-dimensional matrix diag {Ψ11, 0, ..., 0} , and the values of Ψ11, α (θ) ,
p, q, a, and b are as given in Table 8. Consider the series representation

pFq (a, b; Ψ,Λ) =

∞
∑

k=0

1

k!

∑

κ⊢k

(a1)κ ... (ap)κ
(b1)κ ... (bq)κ

Cκ (Ψ)Cκ (Λ)

Cκ (Ip)

=

∞
∑

k=0

1

k!

(a1)k ... (ap)k
(b1)k ... (bq)k

Ψk
11Ck (Λ)

Ck (Ip)
,

where the second equality follows from the fact that Cκ (Ψ) = 0 unless partition
κ ⊢ k is trivial, that is κ = k, in which case Cκ (Ψ) = Ψk

11 (see definition 7.2.1 iii
in Muirhead (1982)). James (1968) shows that the coefficients of zonal polynomials
are positive. Therefore, for non-negative Ψ11 and λj, j = 1, ..., p, we have

0 ≤ Ψk
11Ck (Λ)

Ck (Ip)
≤ (Ψ11λ1)

k .

This implies that pFq (a, b; Ψ,Λ) is an analytic function of θ ∈ [0, θ̄−ε] and pFq (a, b; Ψ,Λ) ≥
1 (the first term in the expansion of pFq (a, b; Ψ,Λ) is 1) when p ≤ q, that is for
SMD, PCA, REG0, and REG cases. For SigD and CCA, pFq (a, b; Ψ,Λ) is an analytic
function of θ in the domain

Ψ11λ1 < 1.

But for SigD and CCA λj are solutions to

det

(

H − λ

(

E +
n1
n2
H

))

= 0,

and hence, with probability 1, λ1 ≤ n2/n1 because H and E are positive definite.
Therefore, for SigD we have

Ψ11λ1 =
θn1

n2 (1 + θ)
λ1 ≤

θ

1 + θ
< 1

for any θ ∈ [0, θ̄ − ε], and for CCA we have

Ψ11λ1 =
θn21

n22 + n2n1 (1 + θ)
λ1 ≤

θn1
n2 + n1(1 + θ)

< 1

for any θ ∈ [0, θ̄−ε]. Thus, pFq (a, b; Ψ,Λ) is an analytic function of θ ∈ [0, θ̄−ε] and
pFq (a, b; Ψ,Λ) ≥ 1 for all six cases that we consider. Using (SM170) we conclude that
lnL (θ; Λ) are continuous functions of θ ∈ [0, θ̄−ε] with probability one. In particular
(see Bosq (2000) p. 22) lnL (θ; Λ) can be interpreted as random element of the space
C[0,1−ε] of continuous functions on [0, 1 − ε] equipped with the supremum norm.
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Case pFq α (θ) a b Ψ11

SMD 0F0 exp
(

−pθ2/4
)

θp/2

PCA 0F0 (1 + θ)−n1/2 θn1/(2 (1 + θ))

SigD 1F0 (1 + θ)−n1/2 n/2 θn1/ (n2 (1 + θ))

REG0 0F1 exp (−n1θ/2) n1/2 θn2
1/4

REG 1F1 exp (−n1θ/2) n/2 n1/2 θn2
1/ (2n2)

CCA 2F1 (1 + n1θ/n)
−n/2 (n/2, n/2) n1/2 θn2

1/
(

n2
2 + n2n1 (1 + θ)

)

Table 8

Parameters of the JO’s explicit expression (JO6) for the likelihood ratios. Here n ≡ n1 + n2.

Reduction to a linear spectral statistic. By Theorem JO11 we have

(SM171) lnL (θ; Λ) = −1
2∆p(θ) +

1

2
ln
(

1− [δp (θ)]
2
)

+ oP(1),

where

δp (θ) =







θ for SMD
θ/

√
c1 for PCA and REG0

θr/ (c1l (θ)) for SigD, REG, and CCA

and

(SM172) ∆p(θ) = p

∫

ln (z0 − λ) d
(

F̂ (λ)− Fc (λ)
)

with

(SM173) z0 =







θ + 1/θ for SMD
(1 + θ) (θ + c1) /θ for PCA and REG0

(1 + θ) (θ + c1) / [θl (θ)] for SigD, REG, and CCA

and Fc equals the semicircle distribution for SMD, the Marchenko-Pastur distribu-
tion for PCA and REG0, and the scaled Wachter distribution for SigD, REG, and
CCA. As explained in JO, the statistic ∆p(θ) should be interpreted as zero whenever
z0 ≤ λ1.

Since both lnL (θ; Λ) and ∆p(θ) are random element of C[0,1−ε], oP(1) is also a

random element of C[0,1−ε], and ‖oP(1)‖ P→ 0. Therefore by the standard argument,
see for example Theorem 3.1 of Billingsley (1999), p. 27, the weak limits of lnL (θ; Λ)
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and of −1
2∆p(θ) +

1
2 ln

(

1− [δp (θ)]
2
)

coincide. Note that 1
2 ln

(

1− [δp (θ)]
2
)

is con-

verging in the space C[0,1−ε] to

δ (θ) =







θ for SMD
θ/

√
γ1 for PCA and REG0

θρ/ (γ1 + γ2 + θγ2) for SigD, REG, and CCA
.

Therefore, we only need to establish the weak convergence of ∆p(θ). There are two
facts to be established. First, the tightness of ∆p(θ), and second, the convergence
of its finite dimensional distributions.

Tightness of ∆p(θ). There are three cases to consider: Fc is the semicircle, the
Marchenko-Pastur, and the Wachter distribution. Whether the Marchenko-Pastur
Fc corresponds to PCA or REG0 cases is of no importance because we consider
the tightness under the null hypothesis so that F̂ is the same for PCA and REG0.
Similarly, the differences between SigD, REG and CCA cases are of no importance
here.

Tightness, Semi-circle Fc. The tightness of ∆p(θ) in this case is a direct conse-
quence of Theorem 1.1 of Bai and Yao (2005).

Tightness, Marchenko-Pastur Fc. Following Bai and Silverstein (2004), let us rep-
resent the linear spectral statistic ∆p(θ) in the following form

∆p(θ) = − 1

2πi

∮

R
ln (z0 − z) p [ŝ(z)− sc(z)] dz,

where R is contour that does not intersect the supports of F̂ and Fc and does not
encircle z0. Here

ŝ(z) =

∫

(λ− z)−1 dF̂ (λ) and sc (z) =

∫

(λ− z)−1 dFc (λ) .

With asymptotically negligible probability the above requirements for R are impos-
sible to satisfy. We will therefore condition our arguments on the high probability
event that ensures the existence of required R.

Precisely, recall that the supports of Fγ and Fc are given by

[β−, β+] =
[

(1−√
γ1)

2 , (1 +
√
γ1)

2
]

and

[b−, b+] =
[

(1−√
c1)

2 , (1 +
√
c1)

2
]

,

respectively, and the threshold θ̄ equals
√
γ1. Furthermore, c → γ. Using these facts

and the definition of z0, it is straightforward to verify that there exists η > 0 that
depends on ε such that

min
θ∈[0,θ̄−ε]

(z0 − β+ − η) > 0
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for all sufficiently large n1, n2, p along the sequence n, p →γ ∞. Further, note that

λ1
a.s.→ β+ and λp

a.s.→ β− when n, p →γ ∞.
Consider the event

(SM174) Qp = {max {λ1, b+} ≤ β+ + η/2 < z0 − η/2, min {λp, b−} ≥ β− − η/2} .

The discussion above implies that

(SM175) lim
p→∞

Pr {Qp} = 1.

Let R be the rectangular contour with the vertices at (β+ + η)± iv and (β− − η)± iv
for an arbitrary fixed positive v. Conditional on the event Qp, R does not intersect
the supports of F̂ and Fc and does not encircle z0 as required. Since Pr {Qp} → ∞,
it is sufficient to establish the tightness of ∆p(θ) conditional on Qp. Therefore, in
what follows we shall assume that Qp holds.

Let C be the part of R that lies in the upper half complex plane. Then

∆p(θ) = − 1

π
Im

∫

C
ln (z0 − z) p [ŝ(z)− sc(z)] dz.

Since the mapping

f(z) 7→ g(θ) = − 1

π
Im

∫

C
ln (z0 − z) f(z)dz

is a continuous mapping from the space CC of the complex-valued continuous func-
tions on C (with the supremum norm) to the space C[0,1−ε], the tightness of ∆p(θ)
would follow from that of

Mp(z) ≡ p [ŝ(z)− sc(z)] .

As in Bai and Silverstein (2004) p. 561, choose sequence {εp} such that εp → 0
as n, p→γ ∞ and

εp ≥ p−α

for some α ∈ (0, 1). Further, let

Cu = {x+ iv : x ∈ [β− − η, β+ + η]} ,
Cl =

{

(β− − η) + iy : y ∈
[

p−1εp, v
]}

,

Cr =
{

(β+ + η) + iy : y ∈
[

p−1εp, v
]}

,

and let Cp = Cl ∪ Cu ∪ Cr. Define the process M̂p (z) on C as follows

M̂p (z) =







Mp(z) for z ∈ Cp
Mp(β+ + η + ip−1εp) for z = β+ + η + iy, y ∈

[

0, p−1εp
]

Mp(β− − η + ip−1εp) for z = β− − η + iy, y ∈
[

0, p−1εp
]

.
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Note that
M̂p (z) = p [ŝ(z)− sc(z)] + oP(1),

where oP(1) is uniform over z ∈ C. Indeed, for any z ∈ Cp we have

M̂p (z) = p [ŝ(z)− sc(z)] ,

whereas by the definition of ŝ(z) and (SM174)

sup
y∈[0,p−1εp]

p
∣

∣ŝ(β± ± η + iy)− ŝ(β± ± η + ip−1εp)
∣

∣ ≤ p
p−1εp

(η/2)2
→ 0,

and similarly

sup
y∈[0,p−1εp]

p
∣

∣sc(β± ± η + iy)− sc(β± ± η + ip−1εp)
∣

∣ 1 {Qp} ≤ p
p−1εp

(η/2)2
→ 0.

Therefore, it is sufficient to prove the tightness of M̂p (·) as a sequence of random
elements of CC . Lemma 1.1 of Bai and Silverstein (2004) establishes this result along
with the weak convergence of M̂p (·) to a Gaussian process.

Tightness, Wachter Fc. We shall base our arguments on the results established in
Zheng (2012). He establishes a CLT for linear spectral statistics of multivariate F
and Beta matrices via representing those statistics in the form of a contour integral
that involves a process related toMp (z) (see the previous section). The CLT follows
from his proving the convergence of the process to a Gaussian process.

In contrast to JO, whose attention is focused on the eigenvalues ofH
(

E + n1
n2
H
)−1

,

Zheng’s (2012) primary focus is on the eigenvalues of HE−1. Let F̂ and Ĝ be the

empirical distributions of the eigenvalues of H
(

E + n1
n2
H
)−1

and HE−1, respec-

tively. If x is an eigenvalue of HE−1, then x (1 + c2x/c1)
−1 is an eigenvalue of

H
(

E + n1
n2
H
)−1

, and thus

Ĝ (x) = F̂

(

x

1 + c2x/c1

)

.

A similar equality holds for the corresponding limiting distributions Gc and Fc.
Therefore,

∆p(θ) ≡ p

∫

ln (z0 − λ) d
(

F̂ (λ)− Fc (λ)
)

= p

∫

ln

(

z0 −
x

1 + c2x/c1

)

d
(

Ĝ(x)−Gc (x)
)

.
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Denote the Stieltjes transform of Ĝ as m̂(z) and that of Gc as mc(z). Then, similarly
to the Marchenko-Pastur case, we have

∆p(θ) = − 1

2πi

∮

R
ln

(

z0 −
z

1 + c2z/c1

)

p [m̂(z) −mc(z)] dz,

where R is contour that does not intersect the supports of Ĝ and Gc and does
not encircle z0/ (1− c2z0/c1) . As above, the existence of such a contour requires
conditioning on a large probability event, which we shall assume.

Zheng (2012) pp. 467–470 sketches a proof of the weak convergence of p [m̂(z)−mc(z)] .
Such a weak convergence implies the tightness, which in its turn implies the tightness
of ∆p(θ).

For the reader’s convenience, we provide here a brief description of the main steps
in Zheng’s proof. The proof is based on the decomposition

p [m̂(z)−mc(z)] = p
[

m̂(z)−m
(E)
c (z)

]

+ p
[

m
(E)
c (z)−mc(z)

]

,

where m
(E)
c (z) is the Stieltjes transform of G

(E)
c , the limiting spectral distribution

(as n, p →c ∞) of HA−1
p where the empirical spectral distribution of symmetric

positive definite matrix Ap converges to that of E as n, p →c ∞. First, Zheng es-

tablishes the weak convergence of p
[

m̂(z)−m
(E)
c (z)

]

conditional on {E, p = 1, 2...}
by appealing to Lemma 1.1 of Bai and Silverstein (2004). Since the limiting pro-
cess does not depend on {E, p = 1, 2...} , the unconditional convergence also follows.

Next, Zheng represents p
[

m
(E)
c (z) −mc(z)

]

as a product of a continuous function

of z that converges in CR and the term p [m̂E (−m
c
(z)) −mc2 (−mc

(z))] , where
m̂E is the Stieltjes transform of the empirical spectral distribution of E, mc2 is that
of the corresponding limiting distribution as n, p →c ∞, and m

c
is defined via the

Stieltjes transform mc of Gc by

m
c
(z) = −1− c1

z
+ c1mc (z) .

Then, she points out that −m
c
(z) converges to −mγ(z), which is defined analogously

with c replaced by γ. Function −mγ(z) transforms R to a contour encircling the
support of the limiting spectral distribution of E. Zheng appeals to Lemma 1.1 of Bai
and Silverstein (2004) to establish the weak convergence of p [m̂E (z)−mc2 (z)] as
a random continuous function on such a contour. Zheng’s proof omits some details,
probably for the sake of saving the space. For example, she does not mention that to

be able to view p
[

m̂(z)−m
(E)
c (z)

]

and p
[

m
(E)
c (z)−mc(z)

]

as continuous random

functions on R, a conditioning on some event of increasing probability in needed.
Having a detailed proof would be useful, but requires a separate research effort.

Finite dimensional convergence. The convergence of the finite dimensional distri-
butions to Gaussian distributions follow from Theorem 1.1 of Bai and Yao (2005) for



SUPPLEMENTARY MATERIAL 111

the semicircle Fc, from Theorem 1.1 of Bai and Silverstein (2004) for the Marchenko-
Pastur Fc, and from Theorem 4.1 of Zheng (2012) for the Wachter Fc. We now use
the results in the above mentioned papers to compute the means and covariance
matrices of the asymptotic finite-dimensional distributions of ∆p(θ).

Finite dimensional asymptotics, Semi-circle Fc. Recall that z0 = θ+1/θ, we obtain

∆p (θ) = p

∫

ln
(

θ2 − λθ + 1
)

d
(

F̂ (λ)− Fc (λ)
)

.

Theorem 1.1 Bai and Yao (2005) implies that the random vector (∆p (θ1) , ...,∆p (θk))
with θi ∈

[

0, θ̄ − ε
]

converges in distribution to a Gaussian vector (D (θ1) , ...,D (θk))
with

(SM176) ED (θi) =
1

4

[

ln
[

(1− θi)
2
]

+ ln
[

(1 + θi)
2
]]

− 1
2τ0 (θ)

and

(SM177) Cov (D (θi) ,D (θj)) = 2

∞
∑

l=1

lτl (θi) τl (θj) ,

where

τl (θ) =
1

2π

∫ π

−π
ln
(

1 + θ2 − 2θ cosϕ
)

cos (lϕ) dϕ.

Lemma 29. For any θ, such that |θ| < 1, and any integer l > 0, we have
τl (θ) = −θl/l and τ0 (θ) = 0.

Proof: Changing the variable of integration from ϕ to z = eiϕ, we obtain

τl (θ) =
1

2πi

∮

ln
[

(1− θz)
(

1− θz−1
)]

zl−1dz,

where the contour integral is taken over the counter-clockwise oriented unit circle.
Representing the logarithm of a product as the sum of logarithms, we obtain

τl (θ) =
1

2πi

∮

ln (1− θz) zl−1dz +
1

2πi

∮

ln
[

1− θz−1
]

zl−1dz.

Since, for |θ| < 1, ln (1− θz) is analytic in the unit circle and equal to zero at z = 0,
we have

1

2πi

∮

ln (1− θz) zl−1dz = 0

for any integer l ≥ 0. Hence,

τl (θ) =
1

2πi

∮

ln
[

1− θz−1
]

zl−1dz.
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Changing the variable of integration from z to ζ = z−1, and noting that dz/z =
−dζ/ζ, we get

τl (θ) =
1

2πi

∮

ln [1− θζ] ζ−l−1dζ.

On the other hand, for |ζ| ≤ 1, we have the following power series expansion

ln [1− θζ] = −
∞
∑

j=1

θj

j
ζj.

Thus, by Cauchy’s residue theorem, τl (θ) = −θl/l for l > 0 and τ0 (θ) = 0. �
Lemma 29 together with (SM176) and (SM177) yield

ED (θi) =
1
2 ln

(

1− θ2i
)

and
Cov (D (θi) ,D (θj)) = −2 ln (1− θiθj) .

Finite dimensional asymptotics, Marchenko-Pastur Fc. For PCA and REG0 the
finite dimensional distributions of ∆p (θ) are derived in Lemma 12 of Onatski et al
(2013). They show that the random vector (∆p (θ1) , ...,∆p (θk)) with θi ∈

[

0, θ̄ − ε
]

converges in distribution to a Gaussian vector (D (θ1) , ...,D (θk)) with

ED (θi) =
1
2 ln

(

1− θ2i /γ1
)

and
Cov (D (θi) ,D (θj)) = −2 ln (1− θiθj/γ1) .

Finite dimensional asymptotics, Wachter Fc. Let

Ĝ (x) = F̂

(

x

1 + c2x/c1

)

and Gc (x) = Fc

(

x

1 + c2x/c1

)

.

Then

(SM178) ∆p (θ) = p

∫

ln

(

z0 −
x

1 + c2x/c1

)

d
(

Ĝ (x)−Gc (x)
)

.

Recall that

z0 =
(1 + θ) (θ + c1)

θ (1 + (1 + θ) c2/c1)
.

Let

(SM179) zγ0 =
(1 + θ) (θ + γ1)

θ (1 + (1 + θ) γ2/γ1)
.
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Since z0 → zγ0 and c → γ as n, p→γ ∞, the asymptotic distribution of the random
vector (∆p (θ1) , ...,∆p (θk)) must be the same as that of (∆γp (θ1) , ...,∆γp (θk)) ,
where

(SM180) ∆γp (θ) = p

∫

ln

(

zγ0 −
x

1 + γ2x/γ1

)

d
(

Ĝ (x)−Gc (x)
)

.

This can be formally shown by considering the representation

∆p (θ)−∆γp (θ) = − 1

2πi

∮

R
ln

[

z0 − z
1+c2z/c1

zγ0 − z
1+γ2z/γ1

]

p [m̂(z) −mc(z)] dz

(see subsection “Tightness, Wachter Fc”) and using the convergence of p [m̂(z)−mc(z)]
established by Zheng (2012) to demonstrate that

(SM181) ∆p (θ)−∆γp (θ) = oP(1).

Theorem 3.1 of Zheng (2012) implies that the random vector (∆γp (θ1) , ...,∆γp (θk))
with θi ∈

[

0, θ̄ − ε
]

converges in distribution to a Gaussian vector (D (θ1) , ...,D (θk)).
Let us find the asymptotic mean and covariances.

Equations (SM179), (SM180) and some elementary algebra yield

(SM182) ∆γp (θ) = ∆(1)
γp (θ)−∆(2)

γp (θ) ,

where

∆(1)
γp (θ) = p

∫

ln

(

θ + γ1 +

(

γ2 −
θ

1 + θ

)

x

)

d
(

Ĝ (x)−Gc (x)
)

,

and

∆(2)
γp (θ) = p

∫

ln (γ1/γ2 + x) d
(

Ĝ (x)−Gc (x)
)

.

Note that both ∆
(1)
γp (θ) and ∆

(2)
γp (θ) have form

Yab = p

∫

ln (a+ bx) d
(

Ĝ (x)−Gc (x)
)

.

For a, b, a′, b′ > 0, Zheng (2012), Example 4.1 proves that (Yab, Ya′b′) converge to a
Gaussian vector (Xab,Xa′b′) with

(SM183) EXab =
1
2 log

(

c2 − d2
)

ρ2

(cρ− γ2d)
2

and

(SM184) Cov (Xab,Xa′b′) = 2 log
cc′

cc′ − dd′
,
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where c > d > 0 satisfy

(SM185) c2 + d2 = a+ b
1 + ρ2

(1− γ2)
2 and cd =

bρ

(1− γ2)
2

and c′ > d′ > 0 satisfy

(SM186) c′2 + d′2 = a′ + b′
1 + ρ2

(1− γ2)
2 and c′d′ =

b′ρ

(1− γ2)
2 .

A direct inspection reveals that Zheng’s proof of (SM183) and (SM184) remains
valid for any real a, b, a′, and b′ such that log (a+ bz) and log (a′ + b′x) are analytic
in an open domain containing the support of Gγ as long as there exist real c and
d satisfying (SM185) and real c′ and d′ satisfying (SM186) such that |c| > |d| and
|c′| > |d′| . Such c, d, c′ and d′ do exist for Yab = ∆

(1)
γp (θ) and Ya′b′ = ∆

(2)
γp (θ). Indeed,

the values of a and b for Yab = ∆
(1)
γp (θ) are

a = θ + γ1 and b = γ2 −
θ

1 + θ
.

The corresponding c and d that satisfy (SM185) are

(SM187) c =
ρ√

θ + 1 (1− γ2)
and d =

γ2 − θ (1− γ2)√
θ + 1 (1− γ2)

.

Since γ2 < ρ, |c| is clearly larger than |d| for positive d. For non-positive d, |c| > |d|
if and only if

θ (1− γ2)− γ2 < ρ,

But this inequality folds for any θ ∈
[

0, θ̄ − ε
]

because θ̄ = (γ2 + ρ) / (1− γ2) (see
Table JO3).

Further, the values of a′ and b′ for Ya′b′ = ∆
(2)
γp (θ) are

a′ = γ1/γ2 and b′ = 1.

The corresponding c′ and d′ that satisfy (SM186) are

(SM188) c′ =
ρ

(1− γ2)
√
γ2

and d′ =
√
γ2

1− γ2
.

Since γ2 < ρ, we have c′ > d′ > 0.
Using (SM182), (SM183), (SM187), and (SM188), we find that

ED (θ) = 1
2 log

(

c2 − d2
)

(c′ρ− γ2d
′)2

(cρ− γ2d)
2 (c′2 − d′2)

= 1
2 log

(

1− ρ2θ2

(γ1 + γ2 (1 + θ))2

)
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and

Cov (D (θi) ,D (θj)) = 2 log
ρ2

ρ2 − (γ2 − θi (1− γ2)) (γ2 − θj (1− γ2))

−2 log
ρ2

ρ2 − (γ2 − θj (1− γ2)) γ2

−2 log
ρ2

ρ2 − (γ2 − θi (1− γ2)) γ2

+2 log
ρ2

ρ2 − γ22

= −2 log

(

1− ρ2θiθj
(γ1 + γ2 (1 + θi)) (γ1 + γ2 (1 + θj))

)

.

7. Concluding remarks.

7.1. Power of the LR test under multi-spike alternatives. Consider the likeli-
hood ratio test that rejects the null hypothesis of no spikes when the supremum of
lnL (θ; Λ) over θ ∈

[

0, θ̄ − ε
]

is above an asymptotic critical value. In this section,
we study the power of such a test in the situation where the rank-one assumption
on the alternative is wrong and there are multiple spikes, the highest of which is at
least as high as the spike under our rank-one setting.

Intuitively, the power should increase under such a multi-spike alternative because
it is “further away” from the null than the one-spike alternative. Below, we confirm
this intuition for SMD and PCA cases.

First let us show that, in any of James’ cases, the corresponding likelihood ratio
test has a monotone acceptance region. That is, the null is accepted if and only
if g (λ1, ..., λp) < const for a function g which is non-decreasing in each argument.
Recall that the likelihood ratio has the following form

(SM189) L (θ; Λ) = α(θ) pFq (a, b; Ψ,Λ) ,

where Ψ = diag {Ψ11, 0, ..., 0} , Λ = diag {λ1, ..., λp} , and the values of Ψ11, α(θ), a, b, p,
and q for the different cases are given in Table JO8. As explained in Section 6.2, we
have the following expansion

L (θ; Λ) = α(θ)
∞
∑

k=0

1

k!

(a1)k ... (ap)k
(b1)k ... (bq)k

Ψk
11Ck (Λ)

Ck (Ip)
,

where Ck are zonal polynomials. James (1968) shows that zonal polynomials have
positive coefficients. Therefore, Ck (Λ) and L (θ; Λ) are nondecreasing in each λj
for any fixed θ ∈

[

0, θ̄ − ε
]

. As a consequence, the supremum of lnL (θ; Λ) over
θ ∈

[

0, θ̄ − ε
]

is a non-decreasing function in each λj.
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Next, recall that SMD refers to the problem of testing H0 : Φ = 0 against H1 :
Φ = θ1ψ1ψ

′
1 using the eigenvalues λj, j = 1, ..., p of matrix X = Φ + Z/

√
p, where

Z is a noise matrix from the Gaussian Orthogonal Ensemble. Now suppose that the
actual situation corresponds to the alternative

Hmult : Φ =
r
∑

j=1

θjψjψ
′
j ,

where θ1 ≥ ... ≥ θr > 0 and ψ1, ..., ψr is a set of orthonormal nuisance vectors. Since
Φ under Hmult is no smaller than under H1, the j-th largest eigenvalue of X under
Hmult is no smaller than under H1. But as shown above, the likelihood ratio test has
a monotone acceptance region. Hence, its power to reject H0 in favour of Hmult is
at least as high as its power to reject H0 in favour of H1.

Similarly, recall that PCA refers to the problem of testing H0 : Ω = Ip against
H1 : Ω = Ip + θ1ψ1ψ

′
1 using the eigenvalues of Y Y ′/n1, where Y = Ω1/2ε and ε is a

p× n1 matrix with i.i.d. standard normal entries. Suppose that the actual situation
corresponds to the alternative

Hmult : Ω = Ip +

r
∑

j=1

θjψjψ
′
j .

Note that the non-zero eigenvalues of Y Y ′/n1 coincide with those of ε′Ωε/n1. Since
Ω under Hmult is no smaller than under H1, the j-th largest eigenvalue of ε′Ωε/n1
under Hmult is no smaller than under H1. Therefore, using the monotonicity of the
acceptance region of the test, we conclude that the power corresponding to Hmult is
no smaller than that corresponding to H1.

Unfortunately, for the remaining cases, the above logic does not go through. For
example, for SigD, we test H0 : Ω = Ip against H1 : Ω = Ip + θ1ψ1ψ

′
1 using

eigenvalues of (XX ′/n2)
−1 (Y Y ′/n1) , where Y = Ω1/2ε is as above, andX is a p×n2

matrix with i.i.d. standard normal entries independent from Y . It is conceivable that

ε′Ω1/2
(

XX ′/n2
)−1

Ω1/2ε/n1,

as opposed to ε′Ωε/n1 (cf. the PCA case above), has some of its eigenvalues under
Hmult smaller than the corresponding eigenvalues under H1. Of course, on average
over the distribution of X, the situation will be exactly the same as in the PCA case.
Therefore, although we cannot prove the increase in power, it remains intuitively
plausible.

Perlman and Olkin (1980) study the unbiasedness and power monotonicity of tests
with monotone acceptance regions in cases that correspond to our REG0, REG, and
CCA. Although they prove the unbiasedness of such tests, the power monotonicity
remains a “strong conjecture” (see p. 1329 of their paper). Their Proposition 2.6 (ii)
formulates conditions on the likelihood ratio (corresponding to general alternatives)
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that guarantee the power monotonicity. However, as shown in Richards (2004), these
conditions do not hold for likelihoods of form (SM189), in general. Of course, this
does not mean that Perlman and Olkin’s conjecture is wrong, it just cannot be
established directly via Proposition 2.6.
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