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The multi-stress environment of high altitude has been
associated with growth deficits in humans, particularly in
zeugopod elements (forearm and lower leg). This is consistent
with the thrifty phenotype hypothesis, which has been
observed in Andeans, but has yet to be tested in other high-
altitude populations. In Himalayan populations, other factors,
such as cold stress, may shape limb proportions. The current
study investigated whether relative upper limb proportions
of Himalayan adults (n=254) differ between highland and
lowland populations, and whether cold adaptation or a thrifty
phenotype mechanism may be acting here. Height, weight,
humerus length, ulna length, hand length and hand width
were measured using standard methods. Relative to height,
total upper limb and ulna lengths were significantly shorter
in highlanders compared with lowlanders in both sexes, while
hand and humerus length were not. Hand width did not
significantly differ between populations. These results support
the thrifty phenotype hypothesis, as hand and humerus
proportions are conserved at the expense of the ulna. The
reduction in relative ulna length could be attributed to cold
adaptation, but the lack of difference between populations in
both hand length and width indicates that cold adaptation is
not shaping hand proportions in this case.
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1. Introduction

Life at high altitude is associated with extreme environmental stresses [1-8]. Hypoxia, low temperatures,
a physically demanding lifestyle and nutritional constraints create a multi-stress environment which
is inhospitable to longer term occupation by many human populations [8]. Populations who reside
permanently in high-altitude regions have adapted to deal with the extreme stresses. Quantitatively
different phenotypes have developed across the globe in high-altitude regions, demonstrating that
multiple adaptive pathways have evolved to deal with high-altitude stresses [4-9] (table 1). Hypoxia is
one of the few environmental stresses that cannot be effectively buffered by cultural adaptation [26], and
so adaptive responses to hypoxia must occur through biological pathways to enable long-term survival
of populations at high altitude [4,6,8]. High-altitude populations have evolved efficient mechanisms for
dealing with hypoxia (table 1), but energetic deficits associated with life at high altitude often result in
trade-offs during growth, creating a different phenotype from lowland populations [10,16,27-34].

1.1. Plastic growth

Linear growth during infancy and childhood appears to be moderately reduced with increasing altitude
in Andean and Himalayan populations relative to their lowland counterparts [30,35-37], likely due to
developmental plasticity. This height deficit has been commonly attributed to hypoxic stress, whereby
limited oxygen compromises growth [30-33,38-42]. However, recent evidence suggests that oxygen
saturation does not correlate with height in high-altitude Andean populations, indicating that nutrition
and socioeconomic factors may play a more important role in stunted growth patterns [28,32]. Indeed,
it is likely to be multiple high-altitude-related stresses contributing to reduced growth in high-altitude
populations.

Clarifying where in the body the reduction in growth occurs is a strong indicator of the reason behind
reduced height. The most significant decrement in height relative to lowland populations occurs in tibial
growth, while sitting height remains the same [15,29]. The reduction in tibia length is mirrored by a
reduction in radius length in some Andean populations [16], although this currently remains untested
in Himalayan populations. This relative reduction in zeugopod length with altitude has been attributed
to a thrifty phenotype mechanism [43], whereby exposure to environmental stress during early life can
lead to growth trade-offs between different body elements. In an Andean population, autopod lengths
(hands and feet) were seen to be conserved at the expense of other limb segments (forearm and lower
leg) [16]. The authors argued that this pattern preserved function in the hands and feet, and that this
pattern was inconsistent with the alternative distal blood flow hypothesis [44], which would predict a
gradient of decreasing relative distal segment length with increased distance from the body as a result
of progressively reduced nutrient availability. It remains untested whether the same pattern of relative
size in different segments of the extremities is observed in high-altitude Himalayans. Greater cold stress
in the Himalayas may result in different limb proportions from those of Andeans.

1.2. Potential cold adaptation

While both the Himalayas and the Andes have considerable local variation in temperature and humidity,
high-altitude populations in the Himalayas are exposed to lower temperatures on average compared
with Andeans due to differences in latitude, topography, rainfall and ecology [45]. The highland
populations of Peru, Ecuador and Bolivia, residing up to as high as 4500 m above sea level, are likely
to experience limited seasonality, but a significant range in diurnal temperature [46]. During winter,
highlanders in cold, arid regions, such as Oruro and Bolivia, will tend to experience daily temperatures
such as 5-10°C, with minimum temperatures dropping to approximately —10°C. Minimum temperatures
are significantly lower in Himalayan settlements, reaching below —40°C in winter [47,48]. These lower
temperatures may be greater selection pressures for good thermoregulation and minimizing risk of
cold injury, and thus thermal selection pressures may have shaped the limb morphology of Himalayan
populations unlike other high-altitude populations. Himalayan limb morphology may resemble the cold-
adapted patterns found in other populations exposed to low temperatures [49], such as shorter and
broader first metacarpals in individuals residing in cold climates than individuals from hot climates.
This supports Allen’s rule [50], where appendage length is reduced and appendage breadth increased to
reduce heat loss in a cold climate.

Thus, applying Allen’s rule to predict limb proportions in Himalayan populations, we would expect
them to have shorter and broader limbs to minimize heat loss. Minimizing heat loss would reduce
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Table 1. List of traits found in high-altitude populations (greater than 3000 m) compared with local lowland native groups. 1 denotes n
increase; |, decrease; <>, no difference.
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energetic demands on the body from maintaining body temperature, which may well be selected for
as energetic stress is already strong in these populations as a result of multiple altitude-related stresses.
Furthermore, low temperatures would also put individuals at greater risk of cold injury in the extremities
[51,52]. Although there are individually reported cases of Sherpas with frostbite [51,53], they tend to have
a lower incidence than recreational mountaineers [54,55]. These findings suggest that Sherpa hands may
be better adapted to life in cold conditions, but whether hand dimensions play a role remains untested.
By measuring hand dimensions of a sample of Sherpas, it may be possible to infer whether both their
absolute and relative hand dimensions are suited to heat preservation or not.

As the extremity proportions of permanent Himalayan populations remain poorly documented
[12,37,56], it is currently not possible to infer the key environmental stresses in Himalayan high-altitude
upper limb morphology and how the trade-off is balanced between dexterity and thermoregulation.
Thus, the current study investigates the limb proportions of highland and lowland groups from the
Himalayas to determine how the multi-stress environment of high altitude influences limb morphology.

2. Material and methods
2.1. Study sample

The lowland population (n=71) was sampled from a migrant Tibetan community in Jawalakhel,
Kathmandu, Nepal (1400m above sea level, 27.6744°N, 85.3123°E; average minimum winter
temperature =3.1°C [47]). This community was selected as they share common genetic ancestry with
the highland population [57], and have similar diets and activity levels. The highland population
(n=183) was sampled from several Sherpa communities in Namche Bazaar and surrounding villages,
Nepal (3500 m+ above sea level, 27.8069° N, 86.7140° E; average minimum winter temperature = —7.9°C
[47]). Each participant self-identified as Tibetan and Sherpa in the lowland and highland populations,
respectively, and evidence of birthplace was confirmed when possible through birth certificates or school
records. A convenience sample of 254 participants between the age of 18 and 59 was measured.

2.2. Methods

Height was measured to the nearest millimetre using a Seca Leicester Height Measure following standard
protocols with participants dressed in light clothing and unshod [3,4]. Body mass was measured to
the nearest 0.05kg using SECA-807 weighing scales (Seca, Birmingham, UK). Upper limb segment
measurements were taken using a Trystom anthropometer a-226 (Trystom, spol s.r. o, Czech Republic).
Both humerus and ulna lengths were measured following standard definitions [58]. Humerus length was
measured from the lateral border of the acromion to the inferior extent of the olecranon (elbow flexed at
90°), while ulna length was taken from the olecranon to the head of the styloid process. Hand dimensions
were measured following definitions by Davies et al. [59], with palm facing upwards, fingers and palm
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Table 2. Descriptive statistics of highland and lowland populations. Sig., significance. Italics indicate statistically significant differences n
(p < 0.05).

female

highland
lowland highland lowland (n="135)
(n = 42) mean (n = 48) mean (n=29) mean mean (s.d.)
(s.d.) (cm) (s.d.) (cm) ig. (s.d.) (cm) (cm)

154.1(%57) 155.5 (£6.3) . 168.2 (£7.0) 165.1(£7.0)

=
.
=)
.
M
S
=
=N
-
=)
=X
)
C .
2
=]
=
=
-
L=
-
=
.o
=
Ta
L
LS
-0
=)
LS
Y
.S
c
R
-
f
Nl
SN
.<‘l
N

fully extended and hand flat, with dorsum of the hand resting on a horizontal surface. Hand length was
measured from the level of the ulna styloid to the greatest extension of the middle finger perpendicular to
the long axis of the hand. Hand width was measured as the linear distance between the radial side of the
second metacarpophalangeal joint and the ulnar side of the fifth metacarpophalangeal joint. Humerus,
ulna and hand lengths were summed to give total upper limb length.

2.3. Statistical analysis

To take account of differences in body size, upper limb segments relative to height were compared
between populations. Relative segment lengths were calculated as follows:

Absolute segment length (cm)
Height (cm)

Relative segment length =

Both absolute and relative segment lengths were analysed using independent t-tests between the
highland and lowland populations. To remove any sex differences, male and female data were analysed
separately. Normality was tested using the Shapiro-Wilk test on all data. All statistical analysis was
carried out using SPSS 25.0 for Windows.

3. Results

Absolute ulna length was significantly longer in lowlanders than in highlanders in both sexes (table 2).
In males, highlanders were significantly shorter in height, total upper limb length, humerus length, ulna
length and hand length. Absolute hand width did not significantly differ between populations in either
sex.

Relative to height, total upper limb and ulna lengths were significantly shorter in highlanders
compared with lowlanders in both sexes, while relative hand length and width and relative humerus
length were not significantly different between the two populations (figure 1: p > 0.05 for both sexes).

4. Discussion

These results are consistent with previous findings from Andean populations [16], as relative hand and
humerus proportions are conserved at the expense of the ulna. This provides further support for a thrifty
phenotype mechanism in shaping limb segment proportions in the presence of high-altitude stresses, and
demonstrates that limb growth responds to environmental stress in Himalayan populations in a similar
way to that seen in Andean populations. While the current study only investigated adults (aged 18-59),
it indicates that the adult phenotype reflects the pattern which develops during childhood [16].

The current study aligns with prior evidence of selective growth under environmental stress [16,60].
No difference was found in relative hand length or width between the populations, indicating that no
compromise in growth was made in hand dimensions. Relative ulna length was significantly shorter
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Figure 1. Bar chart of mean difference in upper limb segment length relative to height between lowland and highland populations
(mean relative difference calculated as lowland relative mean minus highland relative mean); ***p < 0.01.

in highlanders relative to lowlanders, indicating reduced growth of this limb segment. Differences in
altitude may result in this limb segment difference as limited oxygen availability may reduce growth
in the highland population, as previously seen in other high-altitude populations [29,61]. However,
this explanation is based on hypothetical assumptions relating to prioritization of functional elements
and thus requires further investigation to fully understand the underlying mechanisms behind the limb
segment pattern found here and elsewhere [10,15,35,62]

The reduction in relative ulna length could be attributed to cold adaptation [63,64], but the lack of
difference between populations in both hand length and width indicates that cold adaptation is not
shaping hand proportions in this case. It is possible that the forearms, but not hand proportions, are
shaped by climate; Steegman [65] suggested that extreme vasoconstriction in the hands as a response to
cold may negate any effect of hand proportions, as hand temperature may reach close to the surrounding
temperature, and thus little heat is transferred to the surroundings from the hand. This is supported
by cold immersion tests, whereby heat flux from the hand is consistently lower than heat flux from
the forearm, even when a temporary cold-induced vasodilation response occurs in the fingers [66].
The forearm does not have such vasoregulatory responses, and thus maybe more susceptible to heat
loss, and thus shortening of the zeugopod segment may have a significant effect on reducing energy
expenditure via reduction in heat loss [65]. The mechanism for this adaptive limb segment shortening is
unknown, but plasticity may play a role. It is well documented that temperature influences long bone
elongation during postnatal development in several species, including mice [67-71], rats [72-74], rabbits
[75] and pigs [76]. This plastic growth response to temperature may influence high-altitude long bone
proportions; however, this plasticity in response to temperature has yet to be investigated in humans.

The hand proportions measured in the current study do not appear to align with cold adaptation
theory. This may be for several reasons. Firstly, cold stress may not be the dominant factor influencing
limb proportions; maintenance of hand dimensions for dexterity may be acting here [77]. Evidence in the
skeletal record suggests that cold adaptation theory may explain patterns in hand proportions of high
latitude-dwelling populations [49], but may not be applicable to high-altitude populations. The highland
population in the current study may not show cold adaptation patterns in the hands as they may not
be exposed to extreme low temperatures as regularly or for such prolonged periods as populations at
very high latitudes and the high insolation of the Himalayas during the day may alleviate cold stress
[47,48]. Alternatively, the results here may indicate that in Himalayan populations, temperature does not
act on hand proportions through plastic mechanisms. As the lowland population had a shared genetic
ancestry with the highland population [57], both populations may have the same genetic-based long-
term adaptations which shape the hands, which may or may not relate to cold adaptation. Finally, there
could be other modifying factors here, such as the use of gloves or insulative clothing in highlanders to
alleviate any cold stress effects, but this was not measured in our study.
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The results here do not support the distal blood flow hypothesis [44], as the hand was not significantly
reduced in length or width relative to the rest of the body in highlanders compared with lowlanders.
This again aligns with findings from Andean populations [16]. However, this limb proportion pattern
may indirectly be linked to differential blood supply to hand and forearm segments. When blood vessels
are fully perfused, blood supply is greater in autopod segments than zeugopod segments, due to dense
capillary networks in the hands and feet [78], where blood moves slowly and thus nutrient delivery is
highly efficient. Even if there is significant vasoconstriction in the highland populations during cold
exposure, there may still be sufficient nutrient delivery to the deep tissue and bones of the hands,
ensuring essential bone development and regeneration [79,80]. Whether vasoconstriction negates any
effect of differential blood supply requires further investigation.

Although overall the diet and activity of the two populations were similar, there may have been some
differences which were difficult to quantify. Lowland individuals self-reported a traditionally Tibetan
diet, but may also have had access to Westernized food as globalization has increased the diversity of
food products available in Kathmandu. Differences in activity may also have occurred; the women in
both populations were homemakers and living relatively sedentary lifestyles; the men in the lowland
population were factory workers, while the men in the highland population were porters. While the men
in both populations were manual labourers, energy expenditure of activity was not directly measured
in this case, so any differences in activity were unknown. Previous work indicates a very high daily
energy expenditure of highland porters [81]; further investigation would be required to determine the
daily energy expenditure of Jawalakhel factory workers.

The significant differences between males in all absolute variables other than hand width may be due
to greater sensitivity to environmental stresses in males [82]. As five different variables show the same
pattern between the male populations (height, total upper limb length, humerus length, ulna length
and hand length), this is unlikely to be a chance outcome. Alternatively, confounding factors, such as
unknown differences in diet or activity, as discussed above, may result in differences in body form
between highland and lowland males. Although there is a discrepancy in sample size between males,
there are no assumptions relating to sample size when applying the independent samples t-test, and thus
differences in sample size should not have an effect. However, it is possible that the lack of differences
identified in the female samples, other than the significant difference in relative ulna length, may result
from a lack of power due to the relatively small sample sizes.

Although the absolute differences were greater in males, the differences in relative ulna length and
total upper limb length were greater in females. This may indicate differential investment in segment
lengths between the sexes during energetic stress, or alternatively, that the greater deficit in height in
highland males reduces the relative differences in upper limb segment lengths. This outcome needs
further investigation to determine why absolute differences between highland and lowland upper limb
segment lengths are greater in males, but relative differences are greater in females.

5. Conclusion

The current study showed heterogeneous reductions in different upper limb segments in association
with altitude-related stresses in Himalayan populations. Relative to height, total upper limb length was
significantly shorter in highlanders than lowlanders, a difference driven largely by reduced ulna length.
These results provide further support for the thrifty phenotype hypothesis, as hand dimensions are
prioritized over other upper limb segments for their manipulative function. Cold adaptation patterns in
the hand were not found in this study, indicating that other selection pressures dictate limb proportions
in the Himalayan high-altitude environment.
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