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Abstract- In a solar-powered microgrid (MG), the optimal 

maintenance strategy is influenced by the downtime cost of 

the photovoltaic (PV) system, which in turn depends on the 

operation PV within the MG network. Also, the dispatch 

policy used in the MG will influence the economic feasibility 

of maintenance plans. In this paper, we present an approach 

for optimizing the operation and maintenance policy jointly 

for a solar-powered MG considering the dependence 

between the two policies. The two-layered approach 

presented in this paper seeks to unify the practicality of 

simulation and the efficiency of analytical models. In the 

upper layer, we optimize the operation of MG by solving the 

optimal power dispatch within the MG network using linear 

programming approach. Then, we calculate the penalty 

costs under the aging conditions of PV systems. In the 

bottom layer, by incorporating the penalty costs as input 

parameters, we use a continuous-time Markov chain model 

to calculate the optimal maintenance policy for the PV 

system. The proposed approach could be used in the 

stipulation process between MG owner and PV system 

maintenance provider to minimize the money waste on both 

sides. 

Index Terms—Two-level optimization, operation dependence, 

condition-based maintenance, linear programming and 

continuous-time Markov chain  

NOMENCLATURE 

d Index of day 

t Index of time interval 

k Index of renewable node 

s Index of energy storage unit 

l Index of demand node 

g Main power grid 

𝐶𝐴𝑃𝑠 Storage s energy capacity (kWh)  

𝑃𝑠 Energy storage rated capacity (kW) 

𝐿𝑑(𝑙, 𝑡) Total demand during time interval 𝑡 at node l 

in day d  

𝑅𝑑(𝑘, 𝑡) Total generation during time interval 𝑡  at 

renewable node k in scenario 𝑠𝑐  

𝑒𝑔,𝑠(𝑑, 𝑡) Total energy charged from the grid during 𝑡 in 

storage unit s in day 𝑑  

𝑒𝑘,𝑠(𝑑, 𝑡) Total energy charged from renewable node k 

during 𝑡 in storage unit s in day 𝑑 

𝑒𝑠,𝑙(𝑑, 𝑡) Total energy discharged during 𝑡 from storage 

s to demand node l in day 𝑑 
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𝑒𝑔,𝑙(𝑑, 𝑡) Total energy from the grid during time interval 

𝑡 to demand node l in day 𝑑  

𝑒𝑘,𝑙(𝑑, 𝑡) Total energy from renewable k during 𝑡  to 

demand node l in day 𝑑  

𝜂𝑠 Energy storage s one-way efficiency 

𝐸𝑃𝑑(𝑡) Electricity price in time interval t for day 𝑑  

𝑆𝑂𝐶𝑠(𝑑, 𝑡) Storage s energy level (kWh) at the end of time 

interval 𝑡 in day 𝑑 

SF Safety reserve capacity for energy storage unit  

𝑒𝑠𝑙𝑠,𝑙   (𝑡, 𝑑) Storage “s”-Demand “l” eligibility number 

(day "𝑑" - time interval “t”), binary 

𝑒𝑟𝑠𝑘,𝑠 (𝑡, 𝑑) Renewable “k”-Storage “s” eligibility number 

(day 𝑑 - time interval “t”), binary 

𝑒𝑟𝑙𝑘,𝑙  (𝑡, 𝑑) Renewable “k”-Demand “l” eligibility number 

(day 𝑑 - time interval “t”), binary 

𝐷𝑂𝐶𝑑 Optimal daily operation cost in day 𝑑 

𝑏(𝛼)  The threshold of major maintenance activity 

for the 𝛼𝑡ℎ photovoltaic system 

𝑚(𝛼) The number of degradation states of the 

𝛼𝑡ℎ photovoltaic system 

𝑛(𝛼) The number of failure sudden modes of the 

𝛼𝑡ℎ photovoltaic system 

𝜆𝑚
(𝛼)

 The deterioration rate for the 𝛼𝑡ℎ photovoltaic 

system 𝛼 at state 𝑚 

𝐶𝑠,𝑙
′(𝛼)

 Cost for each corrective maintenance after 

mode 𝑙  sudden failures on the 

𝛼𝑡ℎ photovoltaic system 

1/𝜇𝑠,𝑙
(𝛼)

 Duration of corrective maintenance after mode 

𝑙  sudden failures on the 𝛼𝑡ℎ photovoltaic 

system 

1 λF⁄  Mean time between two successive mode 𝑙 
sudden failures on the 𝛼𝑡ℎ photovoltaic system 

Cin
'   Cost for each inspection of the 

𝛼𝑡ℎ photovoltaic system 

1/𝜆𝑖𝑛
(𝛼)

 Mean time between two successive inspections 

on the 𝛼𝑡ℎ photovoltaic system 

1 μin⁄  Mean duration of inspection on photovoltaics 

α 

𝐶𝑀
′(𝛼)

 Cost for each major maintenance activity of 

the 𝛼𝑡ℎ photovoltaic system 

1 μM⁄   Mean duration of major preventive 

maintenance on the 𝛼𝑡ℎ photovoltaic system 

𝐶𝑅
′(𝛼)

 Cost for each replacement activity of the 

𝛼𝑡ℎ photovoltaic system 

1 μR⁄   Mean duration of replacement on the 

𝛼𝑡ℎ photovoltaic system 
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𝐶𝑝
(𝛼)

 Planned per unit downtime cost for the 

𝛼𝑡ℎ photovoltaic system 

𝐶𝑢
(𝛼)

 Unplanned per unit downtime cost for the 

𝛼𝑡ℎ photovoltaic system 

𝐶𝑣,𝑖
(𝛼)

  Penalty caused by the performance 

degradation of the 𝛼𝑡ℎ photovoltaic system. 

𝜋𝑖,𝑗
(𝛼)

 Probability of the 𝛼𝑡ℎ photovoltaic system 

being in state (i, j) 

𝐶𝑆
(𝛼)

 Time-averaged operating cost of the 

𝛼𝑡ℎ photovoltaic system 

𝐶𝐺  The overall expected operational and 

maintenance cost for the microgrid 

I.  INTRODUCTION 

icrogrids (MGs) are small-scale power networks 

composed of multiple energy resources and, in some 

cases,  distributed energy storage devices (ESDs). They are seen 

to be increasingly important to achieve a reliable, flexible, and 

sustainable electricity network. In this paper, we focus on two 

aspects that influence the cost-effectiveness of microgrids – the 

operation control and maintenance policies – and the 

relationship between them. In particular, we examine the 

significance of ESDs on the policies and hence the overall 

operational cost of the MG. In such type of MGs, ESDs play a 

role of storing energy when surplus energy is produced and 

discharging to support demands when needed. Due to the 

uncertain nature of the power generation by renewable sources 

[1] and demand profiles within the MG, it poses a challenge on 

managing the operation of MGs. To overcome this challenge, 

the related advancement has been achieved on supporting MG 

owners to decide whether or not to use ESDs, optimizing the 

size of ESDs [3,4,5], and scheduling the charge and discharge 

times for these ESDs [6,17].  

In general, ESDs could improve the reliability and power 

quality of a MG. Moreover, it is capable of providing an 

economic benefit in a deregulated energy market [7]. It 

encourages utility company to shift and shave peak load [6]. In 

the light of this, the operation and control of a MG need to be 

taken into account the power flow between entities within the 

MG, as well as the power flow between MG and main grid. 

Khalilpour and Vassallo [2] developed a decision support tool 

for scheduling of PV-battery systems based on a detailed power 

flow model. Cost saving through simultaneously managing 

energy production and demand is another aspect that has been 

focused on [8]. The latest development in this area enables a 

near-real-time optimal charge and discharge control policies for 

a MG with multiple ESDs [9]. 

Maintenance is also an important issue in MGs, which may 

have a  major impact on the overall ownership costs of the grid. 

As studied by [10], good maintenance and inspection policies 

are essential for improving the financial viability of the MG. A 

particular focus in the area is to examine the safety hazards [11], 

failure and performance deterioration [12] of photovoltaic (PV) 

systems in MGs. Hence, an online monitoring system may 

appear beneficial as it may improve the maintenance 

performance of PV systems within a MG and in turn increase 

the profit of the MG. In [13], authors developed a continuous-

time Markov chain model for PV systems that are subject to 

deterioration and failure. The study had shown implementing 

condition monitoring is more favorable for both MG owner and 

maintenance provider by comparing with manual inspections.  

In a MG, maintenance policies that control the availability of 

PV systems can subsequently influence the energy generation 

and operation policy of the MG. Moreover, an effective energy 

storage policy can reduce the downtime penalty cost, if the 

stored energy can be used to satisfy demand during the 

downtime of PV systems caused by preventive maintenance or 

failure. However, the interplay/dependence between operation 

policy and maintenance policy is still underexplored in the 

context of the microgrid. In this paper, we refer such type of 

dependence between operation and maintenance as “operation 

dependence”. The novelty and contribution of our paper are it 

consists of following five aspects collectively. 

1. It is a two-layered approach that includes an upper layer for 

simulating the operation of MG and a lower layer for 

modeling the deterioration and maintenance of PV 

systems. Through such layer separation, the mathematical 

tractability of the lower layer is preserved. 

2. In the upper layer, we formulate the operation of a MG as 

an optimal dispatch problem. The discharging and charging 

of ESDs are optimized in a way to maximize the value of 

MG. The model formualtes the power flow of the MG with 

details. Moreover, the model is capable of integrating 

historical data on demand profiles, solar radiation, and 

electricity price, which indicates a good applicability in 

practice.  

3. In the lower layer, the deterioration and maintenance of the 

PV systems are formulated by continuous-time Markov 

chain. Both the performance degradation caused by the 

malfunction of PV arrays and invertor failure are 

considered. Also, the model considers the maintenance 

duration. 

4. We have applied our approach on a practical MG to test the 

practicality. The value of ESDs is demonstrated from 

operation and maintenance perspectives through a 

comparative study.  

5. Finally, our study could provide insights for both 

maintenance service providers and MG owners. A 

warranty contract that based on the performance of PV 

systems could be mutually beneficial for both sides 

compared with a fixed amount warranty contact. Our 

operation and maintenance model can support both sides to 

this end.  

The rest of paper is structured as follows: In section II, we 

introduce the general set-up of the MG and the mechanism for 

failure and performance degradation for the PV systems within 

the MG. Section III describes the modeling approach to 

optimize the operation and maintenance of the MG. Section IV 

validates the approach by applying it to a practical solar-

powered MG in the US. The optimal operation and maintenance 

strategies are demonstrated. Moreover, an analysis is provided 

on the value of ESDs in this context. Finally, section V presents 

the concluding remarks of the paper. 

II.  SYSTEM DESCRIPTION 

We consider a grid-connected community level MG, with PV 

resources as the source of power as illustrated in Fig 1. The PV 

output may differ from the system load from time to time. When 

the PV output is greater than the load, the ESDs absorb this 
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excessive power. Hence, the energy charged from PV resources 

during off-peak hours can be utilized during peak hours to 

shave the peak demand.  

 

 
Fig 1: An illustrative example of a MG configuration 

The demands of the community are primarily satisfied by the 

power generated on-site by the PV systems and ESDs within 

the grid. Alternatively, the main grid can also supply power to 

the community. In this case, the operation cost of the MG is the 

expenditure on purchasing electricity from the main grid to 

supplement and satisfy the electricity demands in the 

community. We assume that the owner of the MG participates 

in the wholesale day-ahead market. Due to the cost of buying 

electricity from the main grid is varying throughout the day, the 

total operation cost can be reduced by optimizing the charging 

and discharging time of ESDs. In our approach, the operation 

policy depends on the demand level, on-site generated power, 

electricity price as well as the performance and availability of 

PV systems.  

The PV system is configured in multiple arrays. As illustrated 

in Fig. 2 multiple PV modules are serially connected within 

each array.  

 
Fig. 2: Configuration of PV systems 

The failure of a PV module will stop its array from operating. 

Thus, despite the low failure rate of PV modules, the failure rate 

of serially connected PV arrays is still non-negligible [19, 20]. 

The energy generation capability of the PV system is 

proportional to the number of functional arrays. Consequently, 

the failure of a PV module will result in performance 

degradation of the PV system. In new system, the PV module 

may also be bypassed by diodes due to an open failure or 

shading effect. The bypass of PV module generally could lower 

the output of a string, rather than causing an outage of the string. 

Even though the proposed maintenance model is capable to deal 

with such system, in this study, we do not consider the bypass 

of modules [20]. All PV arrays are connected to a DC/AC 

inverter. The inverter is used to convert the electricity generated 

by the PV system to the regulated AC voltage. The failure of 

the inverter will immediately disconnect the PV system from 

the MG. Such type of failure is formulated as a sudden failure 

in our designed maintenance model. The unavailability or 

performance degradation of PV systems will affect the 

operational decision of ESDs. We assume that the performance 

of PV systems can be observed and analyzed by grid operator 

continuously.  

The objective of operation policy is to determine the optimal 

power dispatch among different nodes within the MG, 

according to the performance level and availability of PV 

systems. Taking into account the operation dependence, the 

objective of maintenance policy is to identify the optimal 

maintenance threshold (a degradation threshold triggering 

replacement of the failed PV modules) for the PV systems so 

that the expected annual ownership cost (operation cost and 

maintenance cost) of the MG is minimized.  

III.  MODELING APPROACH 

Our modeling approach contains two layers. The upper layer 

aims to optimize the operation of the MG under different types 

of operation constraints by optimally charge/discharge ESDs. 

The output of this model is the operation cost of MG under 

different conditions of PV systems. This output then forms a 

part of the input to the lower layer, which aims to optimize the 

maintenance policies for the PV systems in the long term. A 

holistic view of the top-down approach is illustrated in Fig. 3.  

 
Fig. 3: Schematic diagram of the top-down approach  

In the upper layer model, we compute the optimal power 

dispatch problem using linear programming under different 
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condition states of the PV systems and for each individual day 

based on the historical data. Days are distinguished by three 

stochastic variables, namely electricity demand, solar radiation, 

and electricity price. Three years’ historical data (available on 

PJM website) have been used to characterize hourly profiles of 

demand, electricity price and solar radiation each day. The 

operation model optimizes the amount of charged and 

discharged energy (as decision variables) of ESDs during the 

different time intervals for each individual day. This optimal 

solution also depends on the state of network elements. such as 

the degradation state (condition) of PV systems and the network 

configuration (connectivity of different nodes). The output 

from operation model is the lower bound for the microgrid 

operation cost for each individual day existed in historical 

dataset under different conditions of PV systems. By comparing 

the operation cost of the MG in the good condition state of PV 

systems (100% performance) with any individual degraded 

state (or failure state) of the PV system, we can calculate the 

penalty cost due by performance degradation (or failure) of PV 

systems. This information is used to formulate of maintenance 

policy of PV systems. In this way, we link the operation policy 

and the maintenance policy of the MG. In the lower layer, we 

consider the situation where the maintenance policy of one PV 

system changes its availability and may in turn influence the 

downtime penalty cost of other PV systems and sequentially 

affect the optimization of maintenance policies. We use an 

iterative approach to synchronize the maintenance policies of 

PV systems so that they can reach the optimal solution 

simultaneously. The final output of the model is the optimal 

ownership cost of the MG. In the next subsections, we will 

describe the formulation of the upper and lower layer models.  

A.  Upper layer (system operation model) 

The objective of the upper layer is to minimize the operation 

cost of the MG by adjusting the charging and discharging of 

ESDs based on the scenario and performance of PV systems. 

We apply the linear programming to optimize the operation of 

the MG for each scenario. The detail of the objective function 

and different types of operational constraints of the MG will be 

explained with more details in equations (1) and (2)-(8) 

respectively.  

Objective function: The daily operation is optimized for each 

scenario. A scenario contains the information of the electricity 

demand, generation profile of PV systems and electricity price 

profile in the given day “d”. The objective function then 

expresses as (1): 

𝑚𝑖𝑛 {∑[𝐸𝑃𝑑(𝑡) (∑𝑒𝑔,𝑙(𝑑, 𝑡)

𝑙

+∑𝑒𝑔,𝑠(𝑑, 𝑡)

𝑠

)]

𝑡

} (1) 

The decision variables are the amount of energy charge and 

discharge by an ESD in a unit time (hour). Note that we assume 

the voltages of different nodes are maintained in the feasible 

region. The objective function is to minimize the overall 

expenditure on purchasing electricity from the main grid. The 

purchased electricity is used to either charge storages (𝑒𝑔,𝑠)  or 

supply demands (𝑒𝑔,𝑙) .  The minimization process is subject to 

multiple types of constraints, which are listed as below: 

Storage operation constraints: In each scenario, the total 

amount of inflow and outflow electricity for each storage node 

in each time interval is limited to its rated power capacity. 

𝑒𝑔,𝑠(𝑑, 𝑡) + ∑ 𝑒𝑘,𝑠(𝑑, 𝑡) +𝑘 ∑ 𝑒𝑠,𝑙(𝑑, 𝑡)𝑙 ≤ 𝑃𝑠 , ∀ 𝑠, 𝑡, 𝑑  (2) 

As illustrated in (2), multiple charging and discharging actions 

are allowable during each hour. However, the summation of 

inflow and outflow is limited by the rated capacity of the 

storage unit. The storage level at a given time interval is 

calculated by the storage level at the previous time interval and 

the charging and discharging energy during the time interval. 

𝑆𝑂𝐶𝑠,𝑡,𝑑 = 𝑆𝑂𝐶𝑠,𝑡−1,𝑑 + 𝜂𝑠 × (𝑒𝑔,𝑠(𝑑, 𝑡) +

∑ 𝑒𝑘,𝑠(𝑑, 𝑡)𝑘 ) −
∑ 𝑒𝑠,𝑙(𝑑,𝑡)𝑙

𝜂𝑠
, ∀ 𝑠, 𝑡, 𝑑  

    (3) 

We assume that at the beginning of the day storage level is at 

the 50% of maximum capacity and it has to reach to the same 

level at the end of the day. It is intuitive that the storage level 

cannot exceed the maximum capacity of the ESD (𝐶𝐴𝑃𝑠) and 

cannot reduce below the safety reserve capacity (𝑆𝐹𝑠).  
𝑆𝐹𝑠 × 𝐶𝐴𝑃𝑠 ≤ 𝑆𝑂𝐶𝑠,𝑡,𝑑 ≤ 𝐶𝐴𝑃𝑠, ∀ 𝑠, 𝑡, 𝑑                  (4) 

 

On-site renewable resource constraint: Electricity generated 

by a renewable unit is used to serve demand nodes and charge 

the storage nodes which are connected to it. 

𝑅𝑑(𝑘, 𝑡) ≥  ∑ 𝑒𝑘,𝑙(𝑑, 𝑡)𝑙 +∑ 𝑒𝑘,𝑠(𝑑, 𝑡)𝑠 , ∀ 𝑘, 𝑡, 𝑑  (5) 

Demand constraint: Electricity load at each demand node has 

to be satisfied. The portion of demands is satisfied by on-site 

generation and discharged electricity from storages, and the 

remain has to be satisfied by purchasing from the main grid. 

𝐿𝑑(𝑙, 𝑡) =  ∑ 𝑒𝑘,𝑙(𝑑, 𝑡)𝑘 + ∑ 𝑒𝑠,𝑙(𝑑, 𝑡)𝑠 +

𝑒𝑔,𝑙(𝑑, 𝑡), ∀ 𝑙, 𝑡, 𝑑  
(6) 

Configuration and availability constraints: The 

configuration of the MG is defined by three binary matrices 

(ESL, ERL, and ERS). The value 1 indicates the two nodes are 

connected, and 0 indicates no connection. Sometimes, assets 

within the MG may become unavailable. We use a binary 

number 𝑒𝑟𝑙𝑘,𝑙  (𝑡, 𝑑) to indicate the connection between 𝑘𝑡ℎ PV 

system and 𝑙𝑡ℎdemand node at time “t” in day “d”.  

0 ≤ 𝑒𝑘,𝑙(𝑑, 𝑡) ≤ 𝑀 × 𝑒𝑟𝑙𝑘,𝑙  (𝑡, 𝑑), ∀ 𝑙, 𝑘, 𝑡, 𝑑 (7) 

0 ≤ 𝑒𝑠,𝑙(𝑑, 𝑡) ≤ 𝑀 × 𝑒𝑠𝑙𝑠,𝑙  (𝑡, 𝑑),         ∀ 𝑙, 𝑠, 𝑡, 𝑑 (8) 

0 ≤ 𝑒𝑘,𝑠(𝑑, 𝑡) ≤ 𝑀 × 𝑒𝑟𝑠𝑘,𝑠 (𝑡, 𝑑),          ∀𝑠, 𝑘, 𝑡, 𝑑  (9) 

where “M” is a very big number (e.g. 10 million). More details 

about the optimal operation and control of this network could 

be found in [9]. 

For given input profiles and performance of PV systems, the 

operation of the MG can be optimized. We refer the optimized 

daily cost under given day “d” and performance of PV systems 

as 𝐷𝑂𝐶(d, 𝑋(1), … , 𝑋(𝑘)) .  𝑋(𝛼)  is a random variable that 

indicates the performance of 𝛼th PV system. For a PV system 

with 𝑚𝛼  number of arrays, 𝑋𝑚𝛼

(𝛼)
 indicates all arrays are 

functional. 𝑋𝑖𝛼
(𝛼)

 indicates 𝑖𝛼  (𝑖𝛼 < 𝑚𝛼 ) number of arrays are 

functional. Therefore, we have 𝑋(𝛼) =

{𝑋𝑚𝛼

(𝛼), … , 𝑋𝑖𝛼
(𝛼), … , 𝑋0𝛼

(𝛼)
}. Let 𝐷𝑂𝐶∗ indicates the expected daily 

cost over all existed days in the historical data set when the PV 

system amongst the MG is ideal. We signified the overall 

number of days as 𝑁𝑑. Then 𝐷𝑂𝐶∗ can be expressed as: 

 

𝐷𝑂𝐶∗ =
∑ 𝐷𝑂𝐶(𝑑,𝑋𝑚1

(1)
,…,𝑋𝑚𝑘

(𝑘)
)

𝑁𝑑
𝑑=1

𝑁𝑑
                      (10) 
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We assume the planned preventive maintenance can be 

scheduled when the impact on the operation of the MG is 

minimized. 𝐷𝑂𝐶𝑝
(𝛼)

 is the expected the operation cost when 𝛼th 

PV system is offline due to preventive maintenance. 

𝐷𝑂𝐶𝑝
(𝛼)
=

min
𝑑
[𝐷𝑂𝐶(d, 𝑋0𝛼

(𝛼)
, 𝔼[𝑋(1), … , 𝑋(𝛼−1), 𝑋(𝛼+1), … , 𝑋(𝑘)])]          (11) 

 

𝔼[𝑋(1), … , 𝑋(𝛼−1), 𝑋(𝛼+1), … , 𝑋(𝑘)]  is interrelated with the 

maintenance strategy of PV systems. It is computed with 

iteration. To initialize, we assign equal probability for all 

𝑋(1), … , 𝑋(𝑘). Therefore, the equation (12) is equal to as  

 

𝐷𝑂𝐶𝑝
(𝛼)

=
min
𝑑
[∑𝐷𝑂𝐶(d,𝑋0𝛼

(𝛼)
,𝑋(1),…,𝑋(𝛼−1),𝑋(𝛼+1),…,𝑋(𝑘))]

∏ 𝑋(𝑖)̿̿ ̿̿ ̿̿𝛼−1
𝑖=1 ∏ 𝑋(𝑖)̿̿ ̿̿ ̿̿𝑘

𝑖=𝛼+1

     (12) 

where 𝑋(𝑖)̿̿ ̿̿ ̿  indicates the cardinality of 𝑋(𝑖) . 𝐷𝑂𝐶𝑢
(𝛼)

 is the 

expected operation cost when 𝛼th PV system is unavailable due 

to the unplanned failure. We assume it may happen with an 

equal probability across all days: 

 

𝐷𝑂𝐶𝑢
(𝛼)

=
∑ 𝐷𝑂𝐶(d,𝑋0𝛼

(𝛼)
,𝔼[𝑋(1),…,𝑋(𝛼−1),𝑋(𝛼+1),…,𝑋(𝑘)])𝑑

𝑁𝑑
     (13) 

Similarly, we can calculate the expected cost when 𝑋(𝛼) =

𝑋𝑖𝛼
(𝛼)

. 

𝐷𝑂𝐶𝑖
(𝛼)

=
∑ 𝐷𝑂𝐶(d,𝑋𝑖𝛼

(𝛼)
,𝔼[𝑋(1),…,𝑋(𝛼−1),𝑋(𝛼+1),…,𝑋(𝑘)])𝑑

𝑁𝑑
     (14) 

In the operation model, we use 𝐷𝑂𝐶∗  as a benchmark. The 

penalty caused by preventive maintenance 𝐶𝑝
(𝛼)

, unplanned 

failure 𝐶𝑢
(𝛼)
 of  𝛼th PV system can be calculated equation (15) 

and (16) respectively. 

𝐶𝑝
(𝛼)

= 𝐷𝑂𝐶𝑝
(𝛼)
− 𝐷𝑂𝐶∗                        (15) 

𝐶𝑢
(𝛼)

= 𝐷𝑂𝐶𝑢
(𝛼)
− 𝐷𝑂𝐶∗                        (16) 

The expected penalty caused by performance degradation due 

to only 𝑖𝛼 arrays are functional can be calculated by 𝐶𝑖
(𝛼)

. 

𝐶𝑣,𝑖
(𝛼)

= 𝐷𝑂𝐶𝑖
(𝛼)
− 𝐷𝑂𝐶∗                       (17) 

One complication of calculating the equations (11)-(14) is the 

𝔼[𝑋(1), … , 𝑋(𝛼−1), 𝑋(𝛼+1), … , 𝑋(𝑘)] is unknown and affected by 

maintenance policies of all PV systems due to operation 

dependence. In the developed approach, we calculate the 

expected performance of all PV systems through iteration. To 

initialize the computation, we first assign the equal probability 

to all performance states of PV systems. Then, we calculate the 

steady state probabilities for each PV system at the optimal 

maintenance strategy. The steady state probabilities are then 

used to update the expected performance of all PV systems. The 

process iterates until the expected performance of all PV 

systems coverage. In the next section, we focus on describing 

the lower layer maintenance model and expressing with the 

expected performance of PV systems in term of steady state 

probabilities of PV system maintenance model. 

B.  Lower layer (asset maintenance model) 

The lower layer model is to tackle the maintenance problem 

considering the operational information received from the 

upper layer. The PV system in the MG is indexed as hyper-

index 𝛼. The model is generalizable to apply to different types 

of multi-array PV system. Inspired by [14] and [15], we 

formulate the condition-based maintenance model with a 

continuous-time Markov chain. We model the failure of 

inverter as sudden failure and the malfunction of PV arrays as 

a performance degradation process of PV system. The state 

transition diagram for the condition-based maintenance is 

illustrated as Fig 4.

 
Fig. 4: The state transition diagram of PV system maintenance model
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In Fig. 4, the condition state of PV system is indicated as 𝑌𝑖,𝑗
(𝛼)

. 

When 𝑗 = 0, it indicates the performance degradation of the PV 

system. 𝑖 is an index for the number of functioning PV arrays. 

For a PV system consisting 𝑚 arrays (𝑚 > 0,𝑚 ∈ ℕ), 𝑖 = 𝑚 

represents that the PV is at as good as new condition. 𝑖 = 0 

demonstrates that all arrays in the PV system are failed. The 

transition between state 𝑌𝑖,0
(𝛼)

 to 𝑌𝑖+1,0
(𝛼)

 indicates the failure event 

of one array out of 𝑖  functioning arrays. We denote the 

transition rate as 𝜆𝑖
(𝛼)

. We assume the probability of more than 

one arrays fail simultaneously is negligible. In practice, the PV 

modules are much more reliable than inverters [18]. However, 

due to the large number of serially connected PV modules in a 

PV array and additive failure rate of the fuse in dc combiner, 

the failure rate of PV arrays is non-negligible [19]. The 

performance degradation of the PV system is modelled as a 

competing processes of PV arrays. We assume the failure rate 

of each array is identical and denoted as 𝜆𝑑
(𝛼)

, then 𝜆𝑖
(𝛼)

= 𝑖𝜆𝑑
(𝛼)

. 

States with 1 ≤ 𝑗 ≤ 𝑛 indicate different inverter failure modes. 

The rate of 𝑙𝑡ℎ failure mode is represented as 𝜆𝑠,𝑙
(𝛼)

. We assume 

that all the inverter failures are self-announcing and disconnect 

the PV system from the grid; the duration for maintaining 𝑙𝑡ℎ 

failure mode is denoted as 𝜇𝑠,𝑙
(𝛼)

. The PV’s performance is 

assessed with a rate 𝜆𝑖𝑛
(𝛼)

. The duration for the performance 

assessment is signified as  𝜇𝑖𝑛
(𝛼)

. If less than 𝑏  PV arrays are 

functioning, the PV will be repaired to fully functional with a 

maintenance duration  𝜇𝑀
(𝛼)

. If all PV arrays are failed, it will be 

replaced with a duration  𝜇𝑅
(𝛼)

. The model is to determine the 

optimal threshold  𝑏  triggering the replacement of failed PV 

module in malfunctioned PV arrays. The analytical expression 

of steady state distribution for each state can be calculated 

through a list of equilibrium equations. All equilibrium 

equations could be formulated based on the concept that the 

sum of the input rates is identical to the sum of output rate at 

steady states. For the convenience of calculation, we first 

express all steady state probabilities in term of  𝜋𝑚,0
(𝛼)

 in 

equations 18-22. 

𝜋𝑖,0
(𝛼)

=

{
 
 

 
 𝜆𝑚

(𝛼)

𝜆
𝑖

(𝛼)
𝜋𝑚,0
(𝛼)
,                                            𝑖 > 𝑏

∏
𝜆𝑗+1
(𝛼)

𝜆𝑗
(𝛼)
+ 𝜆𝑖𝑛

(𝛼)

𝑏−1

𝑗=𝑖

𝜆𝑚
(𝛼)
𝜋𝑚,0
(𝛼)

𝜆𝑏
(𝛼)
+ 𝜆𝑖𝑛

(𝛼)
,                  𝑖 ≤ 𝑏

 
(18) 

𝜋0,0
(𝛼)

=
𝜆1
(𝛼)

𝜇𝑅
(𝛼)
  ∏

𝜆𝑗+1
(𝛼)

𝜆
𝑗

(𝛼)
+ 𝜆

𝑖𝑛

(𝛼)

𝑏−1

𝑗=1

𝜆𝑚
(𝛼)
𝜋𝑚,0
(𝛼)

𝜆𝑏
(𝛼)
+ 𝜆

𝑖𝑛

(𝛼)
 (19) 

𝜋𝑖,𝑙
(𝛼)

=
𝜆𝑠,𝑙
(𝛼)

𝜇𝑠,𝑙
(𝛼)
𝜋𝑖,0
(𝛼)

 (20) 

𝜋𝑖,𝑛+1
(𝛼)

=
𝜆𝑖𝑛
(𝛼)

𝜇𝑖𝑛
(𝛼)
𝜋𝑖,0
(𝛼)

 (21) 

𝜋𝑖,𝑛+2
(𝛼)

=
𝜆𝑖𝑛
(𝛼)

𝜇𝑀
(𝛼)
𝜋𝑖,0
(𝛼)

 (22) 

 

Because the sum of all steady states probabilities is equal to 

probability 1, we can calculate the 𝜋𝑚,0
(𝛼)

 as equation (23): 

𝜋𝑚,0
(𝛼)

= [ ∑ (1 +∑
𝜆𝑠,𝑙
(𝛼)

𝜇𝑠,𝑙
(𝛼)

𝑛

𝑙=1

+
𝜆𝑖𝑛
(𝛼)

𝜇𝑖𝑛
(𝛼)
)
 𝜆𝑚
(𝛼)

 𝜆𝑖
(𝛼)

𝑚

𝑖=𝑏+1

+∑∏
𝜆𝑗+1
(𝛼)

𝜆𝑗
(𝛼) + 𝜆𝑖𝑛

(𝛼)

𝑏−1

𝑗=𝑖

1

𝜆𝑏
(𝛼) + 𝜆𝑖𝑛

(𝛼)
𝜆𝑚
(𝛼) (1 +∑

𝜆𝑠,𝑙
(𝛼)

𝜇𝑠,𝑙
(𝛼)

𝑛

𝑙=1

𝑏

𝑖=1

+
𝜆𝑖𝑛
(𝛼)

𝜇𝑖𝑛
(𝛼)
+
𝜆𝑖𝑛
(𝛼)

𝜇𝑀
(𝛼)
)

+
𝜆1
(𝛼)

𝜇𝑅
(𝛼)
  ∏

𝜆𝑗+1
(𝛼)

𝜆𝑗
(𝛼) + 𝜆𝑖𝑛

(𝛼)

𝑏−1

𝑗=1

1

𝜆𝑏
(𝛼) + 𝜆𝑖𝑛

(𝛼)
𝜆𝑚
(𝛼)]

−1

 

(23) 

By combining the computed operation cost in (15) - (17) with 

the steady state information in (18) to (23), the overall cost for 

PV system can be calculated by Equation (24): 

 

𝐶𝑆
(𝛼)

=∑𝐶𝑣,𝑖
(𝛼)
𝜋𝑖,0
(𝛼)

𝑚

𝑖=1

+ 𝐶𝑝
(𝛼) (∑𝜋𝑖,𝑛+1

(𝛼)

𝑚

𝑖=1

+∑𝜋𝑖,𝑛+2
(𝛼)

𝑏

𝑖=1

)

+ 𝐶𝑢
(𝛼) (∑∑𝜋𝑖,𝑙

(𝛼)

𝑛

𝑙=1

𝑚

𝑖=1

+ 𝜋0,0
(𝛼))

+ 𝐶𝑖𝑛
′(𝛼)∑𝜇𝑖𝑛

(𝛼)𝜋𝑖,𝑛+1
(𝛼)

𝑚

𝑖=1

+ 𝐶𝑀
′(𝛼)∑𝜇𝑀

(𝛼)𝜋𝑖,𝑛+2
(𝛼)

𝑏

𝑖=1

+∑∑𝐶𝑠,𝑙
(𝛼)𝜇𝑠,𝑙

(𝛼)𝜋𝑖,𝑙
(𝛼)

𝑛

𝑙=1

𝑚

𝑖=1

+ 𝐶𝑅
′(𝛼)𝜇𝑅

(𝛼)𝜋0,0
(𝛼)

 

(24) 

 

The overall cost for the 𝛼𝑡ℎ  PV system is the summation of 

penalty of performance degradation, downtime due to 

maintenance and failures, inspection cost, major maintenance 

cost, replacement cost. By comparing the  𝐶𝑆
(𝛼)

 at different  𝑏 

value, we can find the optimal maintenance threshold b to 

minimize the 𝐶𝑆
(𝛼)

. Then we can update the expected 

performance of 𝛼𝑡ℎ PV system with equation. (25) and (26). 

 

𝔼[𝑋0𝛼
(𝛼)
] = 𝜋0,0

(𝛼)
+ ∑ 𝜋𝑖,𝑛+2

(𝛼)𝑏
𝑖=1 + ∑ ∑ 𝜋𝑖,𝑗

(𝛼)𝑛
𝑗=1

𝑚
𝑖=1       (25) 

𝔼[𝑋𝑖𝛼
(𝛼)
: 0 < 𝑖 ≤ 𝑚, 𝑖 ∈ ℕ] = 𝜋𝑖,0

(𝛼)
+ 𝜋𝑖,𝑛+1

(𝛼)
          (26) 

 

This process is applied to all PV systems and iterated until all 

𝐶𝑆
(𝛼)
: 1 ≤ 𝛼 ≤ 𝑘 reaching to convergence. Then, the expected 

annual ownership cost of the MG 𝐶𝐺  can be calculated as 

equation (27). 

 

𝐶𝐺 = 𝐷𝑂𝐶∗ + ∑ 𝐶𝑆
(𝛼)𝑘

𝛼=1                         (27) 

IV.  ILLUSTRATIVE CASE STUDY 

In this section, we demonstrate the applicability of the overall 

approach with an illustrative example. Consider a MG, as 
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illustrated in Fig 1. Nodes D1 and D2 represent residential and 

commercial sectors, respectively. Two PV systems with rated 

capacities of, respectively, 300 kW and 1200 kW are denoted 

as nodes R1 and R2. Both R1 and R2 are multi-array PV 

systems with 5 and 20 arrays. 15 PV modules are considered in 

each array. The hourly output power in renewable nodes is 

determined according to hourly solar radiation. Three years’ 

historical data on demand profiles, solar radiation, and 

electricity price are considered. Nodes S1 and S2 represent 

ESSs with 300kWh/60kW and 1600kWh/220kW (the first 

number is storage capacity and the second number indicates the 

maximum power capacity or power rating), which are 

determined according to [9]. Also, the following eligibility 

matrices show the configuration of the above network: 

 

𝐸𝑆𝐿 =
 𝐷1 𝐷2
𝑆1
𝑆2

[
1 1
0 1

]
2×2

 , 𝐸𝑅𝑆 =
 𝑆1 𝑆2
𝑅1
𝑅2

[
1 1
0 1

]
2×2

, 

𝐸𝑅𝐿 =
 𝐷1 𝐷2
𝑅1
𝑅2

[
1 0
0 1

]
2×2

 

Table 1 shows the maintenance parameters and costs 

considered in this example (failure and maintenance rates are 

based on the real solar farm in a university campus in New 

Jersey. Cost values are adopted based on the study developed 

in [16]). According to this table, the maintenance duration is 

non-negligible (several days). Knowing the actual value of PV 

system in different days leads to better maintenance planning to 

avoid the high penalty cost of failure or performance 

degradation. As illustrated, maintenance action cost is a 

function of the number of modules that need to be replaced 

which is determined by the maintenance strategy.  

 

Table 1 - maintenance parameters and costs  

Parameters  Value (α=1, R1) Value (α=2, R2) 

𝑚(𝜶) 5 20 

𝑛(𝜶) 5 5 

1/𝜇𝑠,1
(𝜶)

 6 days 6 days  

𝜆𝑠,1
(1)

 0.5/per year 0.5/per year 

𝐶𝑠,1
′(𝜶)

 2000 12000 

1/𝜇𝑠,2
(𝜶)

 4 days 4 days 

𝜆𝑠,2
(𝜶)

 0.3/per year 0.3/per year 

𝐶𝑠,2
′(𝜶)

 2000 $ 12000 $ 

1 𝜇𝑖𝑛
(𝜶)⁄  1 mins 1 mins 

1/𝜆𝑖𝑛
(𝜶)

 1 day 1 day 

𝐶𝑖𝑛
′(1)

 0 0 

𝐶𝑅
′(𝜶)

 360,000 $ 1,440,000 $ 

1 𝜇𝑅
(𝜶)⁄  15 days 15 days 

𝐶𝑀
′(𝜶)

 3000 + 1920(m(1) − b(1))  3000 + 1920(m(2) − b(2))  

1 𝜇𝑀
(𝜶)⁄  1 days 1 days 

 

In the following section, we present the average annual 

operation cost of a MG, described in Fig 1, in different 

performance degradations and failure states of R1 and R2 

(calculated in the upper layer). Then we present the optimal 

maintenance strategy for each of PV systems. Since the 

performance of PV systems is observable in real-time, the only 

decision variable in maintenance planning is determining the 

threshold state for major maintenance action (threshold state 

“b”). For comparative analysis, we run the top-down model for 

the MG without ESDs, and analyze the impact of ESDs on the 

MG’s maintenance planning. The existence of ESDs in a MG 

increases the value of PV systems, so we expect that the 

existence of ESDs brings the threshold stage earlier (higher “b” 

value).  

As mentioned earlier R1 and R2, respectively, consist of 5 and 

20 PV arrays. Therefore, there exist 6 and 21 states of operation 

for R1 and R2. For example, renewable resource R1 is 

operating with 0%, 20%, 40%, 60%, 80% and 100% of its 

maximum capacity according to the number of functioning PV 

arrays. Fig. 5Fig. 5 shows the average annual operation cost of 

the example case when PV systems are operating in different 

states of deterioration.  

 
Fig. 5: MG average annual operation cost with different 

performances of PV systems (in the existence of storage units) 

In the lower layer, the optimal threshold for major maintenance 

action is determined with considering these operation cost 

values received from the upper layer. The maintenance model 

results show that the optimal threshold state “b” for renewables 

R1 and R2 are respectively 4 and 18. It means that major 

maintenance action should be taken after 1st PV module failure 

in R1 and after 2nd PV module failure in R2. The optimal 

threshold state minimizes the average annual cost in the MG. It 

is worthwhile highlighting that the major novelty of the 

proposed model is that it is optimizing the long-term 

maintenance strategy of PV systems by considering the 

operational condition of the MG.  

The value of the ESDs can be analyzed by comparative 

analysis. We consider the same MG in the previous example 

without any ESDs. In the absence of ESDs, the excessive output 

of renewable energy will be wasted. Hence, the value generated 

from PV systems decreases in the absence of storage units. Fig. 

6Fig. 6 shows the MG’s expected annual operating costs in the 

absence of storage units. As illustrated, the expected annual 

operation costs are close to each other in deterioration stages 

above 16 in R2 and 1 in R1. Thus, we expect that the 

maintenance model postpones the major maintenance action to 

the smaller threshold state “b” in the absence of storages. 

Running a maintenance model for the new operational 

condition of the network shows the same results. The 

maintenance model suggests doing a major maintenance action 
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after 4th PV module failure (threshold “b”,16) in R2 and after 

3rd PV module failure (threshold “b”,2) in R1. 

 
Fig. 6: MG average annual operation cost with different 

performances of PV systems (in the absence of storage units)  

Moreover, comparing the average annual total cost of a MG in 

these two examples (when optimal threshold “b” is selected) 

reveals the value that ESDs add to the PV systems in a MG. Fig. 

7 demonstrates the average annual cost of a MGin these two 

examples for different values of threshold state “b”. As 

illustrated in Fig.6 (c) and (d) the minimum ownership cost in 

the existence and absence of storage units are about 

2.11 × 105$ and 2.98 × 105$  respectively. This implies that 

the existence of storage units approximately adds 8.7 ×  104$  

to the value generated by PV system R2 in the MG. 

The illustrative example shows that the maintenance strategy of 

PV systems should be optimized based on their value within the 

MG. A PV system’s value needs to be expressed by considering 

the operational condition of the network. By considering the 

network level information in asset level maintenance planning, 

it enables the network owner to plan the maintenance 

expenditure more efficiently.  

PV systems are generally serviced by their manufacturers and 

the warranty contracts are stipulated between the service 

provider and the PV system owner. Under such contracts, all 

material cost for the replacement of system components are 

covered by the service provider for the duration of the warranty 

period. Moreover, system owner pays the service provider a 

fixed amount of money for the warranty period which is usually 

relative to the system capacity. This kind of service contract 

does not consider the real value of the PV system within the 

MG and only consider the system size, which may lead to waste 

of the money for either side. This study suggests that the 

warranty contract between service provider and system owner 

should be based on the performance of the system within the 

MG. For instance, our illustrative example shows that the value 

of the same capacity PV system (R2) is more in the existence 

of ESD, which means that system owner should spend more on 

maintenance to maintain the output of system over 90%. 

However, in the absence of ESDs the owner should spend less 

on maintenance since 80% of performance is still economically 

beneficial. If the warranty contract between system owner and 

service provider is stipulated based on the system performance 

(meaning that system owner pays a percentage of electricity 

cost saved as a result of PV system operation to the service 

provider in exchange for the maintenance service), then it is 

mutually beneficial for both service provider and system owner 

with such type of warranty contract.  

 
Fig. 7: Comparing average annual total cost for different threshold states "b" of R1 and R2 in two examples 

V.  CONCLUSION  

In this paper, we investigated the operation and maintenance 

policy for the grid-connected solar-powered MG composited by 

multi-array PV systems and ESDs. A top-down approach for 

optimizing the maintenance policies of PV systems is 

developed. In the upper layer, the maximum value of MG under 

different condition states of PV systems is calculated. This 

information is then utilized in the lower layer maintenance 

model. The long-term asset’s ownership cost of the MG could 

be expressed analytically by disaggregating the network level 

information. It enables us to compare the performance of 

different maintenance policies and find the optimal strategy to 

minimize the network ownership cost. Presented case studies 

illustrate that same PV systems in MGs with a different 

configuration should have different maintenance strategies. The 

proposed approach could be used in the stipulation process 
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between MG owner and PV system maintenance provider to 

minimize the money waste on both sides. 
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