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Abstract

Shape-dependent modes dominate the optical states of nanoparticles in the infrared spectra of

ionic crystals and in the visible spectra of plasmonic metals. Here, the characteristic dispersion, or

the shift in energy associated with the spatial period of surface charge oscillations, of surface modes

governed by charges on the faces of prismatic nanoparticles is shown to follow the same form as the

dispersion of the antisymmetric and cavity modes of infinite thin films and cylinders. Examination

of the quasi-static eigenmodes of cubic particles with and without an internal octahedral cavity

reveals the origins of this antisymmetric character and demonstrates self-coupling in the particles

containing cavities. In these particles, interactions between the face and cavity modes give rise

to distinctive optical states at energies approaching the longitudinal optical phonon frequency in

ionic crystals or the bulk plasma frequency in metal nanoparticles.
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I. INTRODUCTION

The use of modes to describe the electromagnetic response of nanoparticles is pervasive

in the application of dielectric theory to ionic crystals at infrared frequencies and plasmonic

metal particles at near infrared, visible, and ultraviolet frequencies. Modes arise for ana-

lytical solutions for high-symmetry particles,1–3 and for particles where the dimensions are

significantly smaller than the corresponding wavelength, electrostatic approximations allow

for a description strictly in terms of geometric eigenmodes of the particle defined in terms of

surface charges.4–6 With the development of techniques capable of directly imaging signatures

of these modes, including electron energy loss spectroscopy (EELS),7,8 cathodoluminescence

(CL),9,10 as well as near field optical techniques,11 a complete understanding of the variety of

shape-dependent particle modes is essential in nano-optics. While the dispersion of modes

arising from symmetries associated with the corners and edges of prismatic nanoparticles

have been described in detail, modes on the faces of prismatic particles have been reported

experimentally12–15 with little comment.

Here, the character of such face modes is explained in the context of anti-symmetric

thin film surface modes and cavity modes of extended and finite systems. These systems,

which exhibit the same fundamental type of dispersion characteristics as face modes in

nanoparticles, are then combined to exploit these properties for tailoring the photonic states

close to the longitudinal optical (LO) phonon frequency (ωLO) or the bulk plasma (ωP )

frequency in ionic crystal and metal nanoparticles, respectively.

Since the resurgence of EELS mapping in plasmonics,7 the so-called dispersion of particles

such as plasmonic rods has been examined16–18 and likewise has been examined for ionic

crystal rods19 once more with the introduction of EELS characterization of ionic crystal

modes at meV-resolution.8 In particle dielectric theory, the term dispersion signifies the

shift in mode energy as a function of q = ω/v, where v is the velocity of the incident

electromagnetic field and ω is the angular frequency, and is associated with a wavevector-

like quantity (2π/λ) determined from the spatial nodes or antinodes in the standing wave

on a particle surface. In addition to rod geometries, which have been shown to follow

the dispersion characteristics of infinite cylinders, the edge modes of lithography-fabricated

planar rectangular structures have likewise been reported to follow a similar quasi-universal

dispersion relationship.20 In the case of decahedral nanoparticles, the dependence of the
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mode energy on mode order (scaling with wavevector), has also been described in terms of

tight-binding models for charges at particle corners and edges.15 In all of these systems, as

the order (defined generally in terms of the changes in sign of surface charges associated

with these modes and therefore associated with the wavevector) increases the energy of the

mode increases. Notably, the energies of these modes increase toward a cluster point at the

energy corresponding to the surface plasmon for a dielectric half-space (ωS), understandable

given that at large wavevectors and rapid oscillations of the associated surface charge the

geometry of the system has minimal effect and the modes resemble those of a planar surface

(see also Ref. 2, 3, and 5).

This general dispersion relationship, in conjunction with the strongest optical effects often

associated with low-order particle dipole modes, has promulgated a widespread description of

particle optics in terms of the lowest energy modes. In the development of surface plasmon

tomography, both in approaches to the reconstruction of quasi-static eigenmodes21 or in

the reconstruction of the photonic density of states,22,23 the n-lowest energy modes have

been selected for basis sets used for three-dimensional reconstructions. Similar approaches

using the n-lowest energy modes have been used for the demonstration of the effect of bi-

orthogonality of the eigenvectors associated with the surface charges in such systems.24

However, it has been well-known since early work on the infrared response of ionic crystal

cubes that some high energy modes, specifically modes above the surface mode energy ωS,

contribute significantly to the optical spectrum.25,26 These modes are described here as ‘face’

modes based on the distribution of surface charges across the faces of prismatic nanoparticles

as well as the previous descriptions of these modes observed in EELS experiments on cubes

and other prismatic particles.13–15 These modes are not captured in approaches truncating

the description to the n-lowest energy modes. This work offers a description of why face

modes appear at energies above ωS, first by examining the geometric analogues in the modal

description to anti-symmetric thin film surface modes and cylindrical cavity modes as well as

examining the eigenmodes of prismatic and spherical particles. In turn, these characteristics

lead to a model particle geometry consisting of a cube containing an octahedral cavity which

highlights possibilities for coupling face and corner modes. This geometry demonstrates

unique optical properties including pinning mode energies at the LO phonon or bulk plasma

frequency and showcasing opportunities for localized creation and depletion of photonic

states on nanoparticle faces.
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The incorporation of cavity mode resonances is particularly relevant given recent reports

of plasmonic properties in Al voids27 as well as frame particle geometries.28,29 The comple-

mentarity between cavity and particle modes has been understood for some time,30 but the

coupling mechanisms in single frame particles requires understanding the dispersion charac-

teristics of particle face modes. Such coupling mechanisms will in turn also inform work on

nanopore optics31,32 which exhibit geometric attributes of convex and concave surfaces.

II. THEORETICAL CONTEXT FOR FACE MODE DISPERSION

In order to describe dispersion in face modes for prismatic nanoparticles, the dielectric

theory formalism is briefly reviewed for high symmetry and arbitrary geometry cases and

then used to explain the properties of two fundamental branches in surface mode energies.

The origins of mode dispersion are then discussed in terms of the boundary element method

(BEM)4,5,33 before examples are presented in a series of prismatic particles with octahedral

symmetry.

A. Dispersion in thin films and cylinders

Analytical solutions are possible for the modes of infinite thin films, infinite cylinders,

and spheres. The symmetric modes of a film of thickness a are given by:5

ε+(ω) = −1 + e−2qa

1− e−2qa
, (1)

where q = ω/v. The antisymmetric modes are given by replacing ε with ε−1.

For a Drude dielectric function of the form ε(ω) = 1 − (ω2
P/ω

2), this returns the usual

expression for symmetric and antisymmetric thin film surface plasmons:5

ω± = ωP

√
1∓ e−2qa

2
. (2)

For an infinite cylinder, the modes are analogously given by:5

εm(ω) =
Im(qa)K ′m(qa)

I ′m(qa)Km(qa)
, (3)

where again q = ω/v, a is the radius of the cylinder, and I and K are the modified

Bessel functions of the first and second kinds, respectively. The primes denote derivatives
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with respect to the arguments of the modified Bessel functions and m gives the azimuthal

symmetry.5,34 The dispersion relation for a cylindrical hole or cavity is given, as for the

antisymmetric thin film modes, with ε replaced by ε−1.5

These dispersion relations, cast in terms of plasmonic metal structures with a Drude

dielectric function are presented in Fig. 1. The expressions in terms of ε, however, are also

appropriate for surface phonon modes in ionic crystals.8,19 In Fig. 1, it should be noted

that for the thin film (Fig. 1(a)), the two branches observed are for a single structure while

the two branches for cylindrical symmetry derive from two separate structures, the convex

cylindrical wire and the concave cylindrical hole (Fig. 1(b)).

In the case of finite particle modes, a sphere provides sufficient symmetry for analytical

modal expansions.2,5 In the quasi-static approximation, sphere modes are given by:

ε` = −1 + `

`
, (4)

where the integer ` defines the number of nodes in the surface charge distribution.

For arbitrary particle geometries, the BEM approach in the quasi-static approximation

allows for the statement of the solution of the Poisson equation as an eigenvalue problem

given in terms of the surface charges σ:19

F |σ〉 = λi |σ〉 , (5)

where λi are the eigenvalues. In alternative form, this may be written as

Λ(ω)σ(ω) =

∫
ds′Fσ(s, ω) , (6)

where

F =
−n · (s− s′)

|s− s′|3
(7)

F is the normal derivative of the Coulomb kernel given in terms of n, the surface normals

for a surface element at s and another element at s′. Λ(ω) is then defined as:

Λ(ω) = 2π
1 + εparticle/εmedium

1− εparticle/εmedium

. (8)

For ambient vacuum (εmedium = 1), this expression can be further simplified in terms of

the particle dielectric function only. Λ(ω) can now be used to relate the surface charge
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FIG. 1. (Color online) Surface mode dispersion relations for (a) a thin film and (b) a cylinder.

The antisymmetric (ω−) and symmetric (ω+) modes of the film are shaded magenta and black,

respectively. The lowest azimuthal order (m = 0) modes of an infinite cylindrical hole (magenta) or

wire (black) are likewise shaded according to their energy relative to the surface mode ωS (dashed

line). Mode energies are shown for a Drude dielectric function defined by bulk plasma frequency

ωP . The dispersion is plotted as a function of qa where q = ω/v and a is the film thickness (a)

or radius (b).

distribution and the dielectric function of the particle. The frequency-dependent dielectric

function ε(ω) determines the eigenfrequencies ωi for a particular eigenmode i for a given

value of the dielectric function εi:

εi = −1 + γi
1− γi

, (9)
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where now γi = −λi/2π following equation 8.

The form of these expressions is identical for ε in equations 1, 4, and 9. For the thin

film modes γi = e−2qa, and for the sphere modes γi = (2` + 1)−1. In each case (likewise

also for equation 3) there are two fundamental mode varieties, defined by the exchange of ε

and ε−1. The exchange of ε and ε−1 is in fact an exchange of εparticle and εmedium following

the simplification in equation 8. This exchange suggests an exchange of the interior and

exterior dielectric contributions to the mode, most apparent in the wire/hole geometry but

also present in the thin film and particle geometries for modes on the upper branch. The

exchange of εparticle and εmedium in particle modes reflects the change in the dominant fields

inside or outside the particle (vide infra).

The universal symmetry of the two branches is often omitted from descriptions of sur-

face mode dispersion.19,34 This result is linked to Apell’s sum rules for complementary

structures,30 though here the general case for a single particle is emphasized. Note that

in the general case (equation 9) these two categories are exchanged for λi > 0 and λi < 0.

It can therefore be understood that for particle eigenmodes with λi > 0 and λi < 0, the

face modes correspond to the ω− or concave cavity branch while the corner modes belong

to the ω+ or convex branch. For modes tending toward λi = 0, the surface mode ε = −1 is

recovered, and these modes may be said to have “edge” character.

The origin of these two branches of shape-dependent modes can be examined further in

terms of the contributions to the mode energy (equations 5-6) of pairs of surface elements

for key geometries. Figure 2 presents a visualization of these cases. The denominator in

equation 7 determines that contributions to the integral in equation 6 will be dominated by

nearby surface charges of any substantial magnitude.

For a thin film the relevant surface elements will be adjacent elements as well as elements

on the parallel surface. In the case of surface charges on adjacent elements, the dot product

of the surface normal n and (s−s′) is zero. In the case of the parallel surface, n and (s−s′) are

aligned and contribute maximally. For symmetric charges, the integral grows more negative

due to the sign on F , resulting in a lowering of the mode energy (for negative ε increasing

with ω). For antisymmetric charges, the contributions from the top and bottom surfaces

cancel due to the change in the sign of σ. The energy splitting can also be understood in

terms of the electric fields associated with the surface charges, with increased fields within

the metal film for the antisymmetric charge distribution.

7



s – s’

n
1

n
2

E

Exterior !elds

dominate

Interior !elds

dominate

ω+ ω-

Convex Concave

Corner Face

FIG. 2. (Color online) Schematic illustration of key cases encountered in determining the energy

of surface plasmon modes. Red and blue segments represent surface elements of opposite charge.

Purple curved arrows illustrate the dominant fields. Straight arrows indicate the surface normals

n and the separation vector (s− s′) in equation 7.

For a convex curved geometry, such as a sphere, the surface normals for the adjacent

surface charges are no longer perpendicular to (s− s′) and the exterior fields are enhanced,

resulting in similar lowering of the mode energy. For concave cavities, the fields are now in

the dielectric material, resulting in an increase in mode energy. For a corner-type eigenmode,
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the majority of all surface elements are near zero charge and these do not contribute to the

integral. Again, nearby surface elements will have like-charge and contribute to lowering

the energy of the eigenmode. In contrast to corner modes, for face modes the majority

of surface elements contain charge. However, for prismatic particles with flat surfaces, the

charges on the same face do not contribute to the integral in equation 6 due to perpendicular

n and (s− s′). The nearest contributing surface charges now appear on adjacent faces, and

these are necessarily opposite in sign if charge neutrality and the characteristic symmetry

of the particle surface are to be maintained. Although these “antisymmetric” charges are

not on parallel surfaces as in the thin film, they contribute in the same way to the integral

in equation 6 in that pairs of surface elements will cancel contributions to the integral due

to opposite signs of the surface charges σ. As for concave cavities, the fields associated

with face modes are also enhanced within the particle body, resulting in an increased energy

relative to ωS.

Langbein noted that these modes in cubic particles are bulk-like due to their field

distribution.26 However, experimental EELS on surface plasmons in cubes13 demonstrates

that the modes extend into vacuum and remain part of the surface mode family. The

bulk-like properties noted by Langbein26 are the preponderance of fields within the particle,

and this property is reflected in the mode energies. Recent experimental evidence as well

as alternative particle geometries capitalizing on face mode coupling (Sec. III) encourages

further exploration of their properties.

B. Eigenmodes of cubes and cuboctahedra

The behavior of face modes given in Section II A can be applied to understand trends

in the eigenmodes of the continuous transition from a cube to a cuboctahedron. Through-

out this transition, octahedral symmetry is maintained. Figure 3 presents the eigenmodes

expressed in terms of the mode-specific dielectric function value εi. These modes were

calculated using MNPBEM, a Matlab (Mathworks) toolbox implementation of the BEM

method.33,35 Particle shapes were first determined using a Wulff construction Matlab

toolbox36 and the surfaces were smoothed and meshed with level of detail meshing rou-

tines in Avizo (Thermo Fisher Scientific) software. Particle surfaces were constructed of

6 000 surface elements in each case, giving rise to a total of 6 000 eigenmodes for each particle
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FIG. 3. (Color online) Eigenmode energies (in terms of ε(ω)) for a cube, a truncated cube, a

cuboctahedron, and a sphere. The modes are shaded according to their position relative to the

surface mode εS . Modes above εS are magenta and modes below εS are black. The highest energy

mode is depicted above for the octahedral-symmetric particles.

geometry. All 6 000 eigenmodes were calculated in order to capture the face modes which

are not found with solvers that calculate only a subset of the n-lowest eigenmodes. The

6 000 surface element particle calculations agree for the cube geometry with values for εi

reported by Langbein.26 The first 6 000 modes of a sphere are shown for reference as well,

calculated by equation 4. The modes above εS are shown in magenta to distinguish from

the modes below εS, and the highest energy modes for each octahedral-symmetric geometry

are shown for reference.

For the cube geometry, the lowest energy modes appear at approximately ε = −4 and

the highest energy modes appear at approximately ε = −0.5. As the cube is truncated

and then transformed to a cuboctahedral geometry, the lowest energy modes increase and

the highest energy modes decrease. Broadly, this trend can be understood as the particle

becoming more sphere-like. The sphere has a lowest energy mode at ε = −2 and as the faces

on the cuboctahedron become more equally sized, the overall geometry transitions toward

the sphere mode structure. The decrease in the highest energy modes likewise follows as the

face modes disappear for the sphere structure.
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The highest energy modes also highlight characteristics of face modes shown schemati-

cally in Fig. 2. The highest surface charge densities appear at the junctions between two

perpendicular faces, as expect from equation 7. In all cases, the highest energy modes (most

positive εi) have alternating signs of the surface charge on each face, further reinforcing the

relationship between the distribution of surface charges characteristic of face modes and the

ω−-like behavior of the eigenmode energy.

III. FACE MODE COUPLING

The development of face modes in Sec. II establishes several hypotheses about the way in

which face modes are expected to couple with other modes. For face modes to couple with

corner modes, they will necessarily involve faces of a concave cavity which are expected to

disperse toward more negative values of εi. A model system to demonstrate these predictions

consists of a cubic particle containing an octahedral cavity. In this way, the symmetry of

the entire particle remains octahedral, and the faces of the cavity are optimally oriented to

be close and of the same symmetry character as the corners of the cube. In this geometry,

the external cube face modes in turn are expected to couple with the corner modes of the

cavity.

A. Modes of a cube with an octahedral cavity

Figure 4 presents the eigenmodes calculated for a cube containing an octahedral cavity,

where the extent of the octahedral cavity is approximately the side length of the cube. This

geometry is defined as having a relative cavity size of 1. Figure 4 shows the surface charges

on the exterior as well as for the interior of the particle, where half of the particle has been

removed from view. At high energy (εi ≈ 0), the surface charge on the exterior is located

on the cube faces as expected. It is entirely of a single sign. This can be interpreted in

the context of the interior charges, and these are shown to be entirely the opposite sign,

with maximum charges at the cavity corners. The next two high-energy modes likewise

show this type of antisymmetric face-corner coupling, as expected from Sec. II. Symmetry

considerations for eigenmodes of nanoparticles in general define one mode as transforming

like the identity (1 ). This is shown on the far right of Fig. 4, with a single sign of charges
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FIG. 4. (Color online) Eigenmodes of a cube containing an octahedral cavity. The three highest

energy modes are shown on the left and the three lowest energy modes are shown on the right. The

corresponding value of ε is given where defined and the symmetry character is identified below the

exterior and interior visualizations for each mode.

only on the exterior of the particle. Although this particle eigenmode does not appear in

spectra of ionic crystals or plasmonic nanoparticles (its value of λi = −2π and γi = 1 results

in a zero in the denominator of equation 9), it is present in the eigenmode description for all

particles. In the cube containing an octahedral cavity, the highest energy mode appears as

the antisymmetric mode of the same underlying symmetry. In this case, the antisymmetric

mode maintains overall charge neutrality of the surface and may contribute to the photonic

states of the system.

The lowest energy corner modes exhibit the expected exterior charge distributions of

the dipole (x, y, z) and quadrupole (xy, yz, xz) modes of a cube. Notably, the values of εi,

however, are significantly shifted to lower energies than for a cube without a cavity. By

examining the interior surface charges, it becomes clear that symmmetric coupling with

the interior octahedral faces is present in the system as predicted given symmetry and

dispersion considerations. The low order antisymmetric modes (ε = −0.128 and ε = −0.145)

present the antisymmetric pairs for dipolar and quadrupolar symmetry. These eigenmodes

corroborate the explanation of face mode dispersion in Sec. II.

To establish the coupling phenomena present in this system further, a series of particles

with increasing cavity sizes were simulated, as coupling depends on relative spatial proximity.
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FIG. 5. (Color online) (a) High energy branch eigenmode energies and (b) low energy branch

eigenmode energies for increasing cavity size for a cube containing an octahedral cavity. The

particle geometries are shown for reference at the top.

Figure 5 presents the mode evolution for a cube with no cavity to a cubic frame where the

“cavity” exceeds the size of the cube. Such particle geometries resemble experimentally

realized hollow frame particles.28,29 In Fig. 5(a), the eigenmode energies of the high energy

branch initially shift toward ε = 0 with increasing cavity size. However, when the cavity

size exceeds the size of the cube, the surface area of the faces is reduced and a new edge

is opened in the structure, resulting in a decrease in the antisymmetric modes due to the

increased similarity to the edge modes and the surface mode (εS = −1). In Fig. 5(b), the

low energy branch modes shift non-linearly toward increasingly negative values of ε.

These shifts in the mode energies with cavity size reinforce the face-corner coupling

suggested in Fig. 4. The ω−-like coupling of the high energy branch modes resembles shifts

toward increasingly “anti-bonding” states, to adopt terminology from hybridization theory,37
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consistent with self-hybridization of coupled modes in the particle geometry.24 These results

also suggest an additional effect on the photonic states and spectra of these particles, for

both ionic crystals where the dielectric function is bounded by transverse optical (TO) and

LO phonon modes and surface plasmons where the dielectric function is bounded by 0 and

ωP . In both cases, for highly non-linear shifts of symmetric modes toward lower energy, the

corner modes will be pinned at the TO phonon mode energy ωTO or near zero for surface

plasmons. The upward shift of the antisymmetric modes will likewise be pinned at ωLO or ωP .

This conclusion has significant implications particularly for spatially resolved spectroscopies,

such as EELS, for imaging surface phonon and surface plasmon modes. For EELS of ionic

crystals, the importance of particle modes between ωTO and ωS has been recently reported8

and explained.19 This discussion of face modes underscores the additional complexity of

states between ωS and ωLO also present in these systems. For plasmonic studies, such as

those for nanoframes,29 these findings provide an interpretative framework for modes and

mode coupling effects involving the high energy branch of particle eigenmodes.

B. Optical effects of antisymmetric and cavity coupling

Although face modes have been routinely observed in convex prismatic particles, it is

not obvious from eigenmode calculations alone that the mode coupling effects in a cube

containing an octahedral cavity are experimentally significant. In order to probe the effects

on the observable photonic states of the system, spatially resolved dipole decay rate38 maps

and EELS maps were calculated for the cube and for the cube containing an octahedral

cavity with a relative cavity size of 1. Figure 6 presents maps and dipole decay rate spectra

for these particles. The total dipole decay rate is plotted as these modes are only weakly

radiative. The calculations were performed in MNPBEM using the dielectric function for

silver tabulated by Johnson and Christy.39

For a convex cube particle, the conventional face mode map is recovered for both dipole

decay rate and EELS (Fig. 6). However, with the addition of the cavity (see also Fig. 4), the

dipole decay rate changes significantly across the face. At 3.57 eV (in the low energy branch

below ωS), a peak appears corresponding to a map with a spike in dipole decay rate at the

center of the particle face. This is corroborated in the EELS map showing EELS intensity

at each of the five separable face centers (the sixth is overlapping in projection). At 3.73 eV
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FIG. 6. (Color online) (a) Maps of the position-dependent total dipole decay rate (left) and the

EELS probability (right) for a cube particle at 3.7 eV. The dipole decay rate is calculated for

the out-of-plane dipole orientation (x) at a plane approximately 2 nm above the particle surface.

(b) Dipole decay rate (x) and EELS maps at 3.57 eV and 3.73 eV for a cube containing an

octahedral cavity. (c) Dipole decay rate spectra for the out-of-plane orientation (x) and one in-

plane orientation (y). Intensities in maps and the spectra are normalized from 0 to 1 for ease of

comparison.

(very close to ωP ), the identical location at the face center is significantly depleted for the

dipole decay rate as well as for the EELS map. Inspection of the induced surface charges

confirms that at 3.73 eV the off-center trajectories excite antisymmetric face modes with

charges at the corners of the octahedral cavity.

These map features are further illustrated in the dipole decay spectra, a measure of the

orientation-specific photonic states of the system.40 In the dipole decay spectra, particularly

in the in-plane y-direction, a splitting of photonic states around ωS and the nearly coincident

cube face mode energy is observed. These results illustrate that the mode coupling accounted

for in Fig. 4 is manifest in experimentally observable spatial and spectral signatures as a
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peak splitting and spatially localized re-arrangement of the photonic states of the system.

A Fano-like dip at the cube face mode energy in the dipole decay spectra as well as in the

creation and depletion of localized states at the face center suggest unconsidered optical

effects made possible through face-corner coupling in this particle/cavity geometry.

IV. SUMMARY

A framework for the interpretation of face mode dispersion in ionic crystal and plasmonic

metal nanoparticles has been presented. The two fundamental branches of surface modes

have been explained to link antisymmetric, concave, and face-dominated surface modes.

This identification of common dispersion characteristics led to the design of a particle sys-

tem with coupled face and corner modes in symmetric and antisymmetric symmetries. The

consequences for the photonic states of the coupled system outline the experimental feasi-

bility of detecting these properties with high-resolution EELS and establish principles for

manipulating the optical properties of hollow frame particles and pore structures of emerging

technological interest.
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