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Abstract

We present the Supervised Directional Sim-
ilarity Network (SDSN), a novel neural ar-
chitecture for learning task-specific trans-
formation functions on top of general-
purpose word embeddings. Relying on
only a limited amount of supervision from
task-specific scores on a subset of the vo-
cabulary, our architecture is able to gener-
alise and transform a general-purpose dis-
tributional vector space to model the re-
lation of lexical entailment. Experiments
show excellent performance on scoring
graded lexical entailment, raising the state-
of-the-art on the HyperLex dataset by ap-
proximately 25%.

1 Introduction

Standard word embedding models (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,
2017) are based on the distributional hypothesis
by Harris (1954). However, purely distributional
models coalesce various lexico-semantic relations
(e.g., synonymy, antonymy, hypernymy) into a joint
distributed representation. To address this, previ-
ous work has focused on introducing supervision
into individual word embeddings, allowing them
to better capture the desired lexical properties. For
example, Faruqui et al. (2015) and Wieting et al.
(2015) proposed methods for using annotated lexi-
cal relations to condition the vector space and bring
synonymous words closer together. Mrkšić et al.
(2016) and Mrkšić et al. (2017) improved the op-
timisation function and introduced an additional
constraint for pushing antonym pairs further apart.
While these methods integrate hand-crafted fea-
tures from external lexical resources with distribu-
tional information, they improve only the embed-
dings of words that have annotated lexical relations

in the training resource.
In this work, we propose a novel approach

to leveraging external knowledge with general-
purpose unsupervised embeddings, focusing on the
directional graded lexical entailment task (Vulić
et al., 2017), whereas previous work has mostly
investigated simpler non-directional semantic simi-
larity tasks. Instead of optimising individual word
embeddings, our model uses general-purpose em-
beddings and optimises a separate neural compo-
nent to adapt these to the specific task. In particular,
our neural Supervised Directional Similarity Net-
work (SDSN) dynamically produces task-specific
embeddings optimised for scoring the asymmetric
lexical entailment relation between any two words,
regardless of their presence in the training resource.
Our results with task-specific embeddings indicate
large improvements on the HyperLex dataset, a
standard graded lexical entailment benchmark. The
model also yields improvements on a simpler non-
graded entailment detection task.

2 The Task of Grading Lexical
Entailment

In graded lexical entailment, the goal is to make
fine-grained assertions regarding the directional
hierarchical semantic relationships between con-
cepts (Vulić et al., 2017). The task is grounded in
theories of concept (proto)typicality and category
vagueness from cognitive science (Rosch, 1975;
Kamp and Partee, 1995), and aims at answering the
following question: “To what degree is X a type of
Y ?”. It quantifies the degree of lexical entailment
instead of providing only a binary yes/no decision
on the relationship between the concepts X and Y ,
as done in hypernymy detection tasks (Kotlerman
et al., 2010; Weeds et al., 2014; Santus et al., 2014;
Kiela et al., 2015; Shwartz et al., 2017).

Graded lexical entailment provides finer-grained
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Figure 1: Supervised directional similarity network
(SDSN) for grading lexical relations.

judgements on a continuous scale. For instance, the
word pair (girl → person) has been rated highly
with 9.85/10 by the HyperLex annotators. The
pair (guest→ person) has received a slightly lower
score of 7.22, as a prototypical guest is often a
person but there can be exceptions. In contrast, the
score for the reversed pair (person→ guest) is only
judged at 2.88.

As demonstrated by Vulić et al. (2017) and
Nickel and Kiela (2017), standard general-purpose
representation models trained in an unsupervised
way purely on distributional information are unfit
for this task and unable to surpass the performance
of simple frequency baselines (see also Table 1).
Therefore, in what follows, we describe a novel su-
pervised framework for constructing task-specific
word embeddings, optimised for the graded entail-
ment task at hand.

3 System Architecture

The network architecture can be seen in Figure 1.
The system receives a pair of words as input and
predicts a score that represents the strength of the
given lexical relation. In the graded entailment task,
we would like the model to return a high score for
(biology→ science), as biology is a type of science,
but a low score for (point→ pencil).

We start by mapping both input words to cor-
responding word embeddings w1 and w2. The

embeddings come from a standard distributional
vector space, pre-trained on a large unannotated
corpus, and are not fine-tuned during training. An
element-wise gating operation is then applied to
each word, conditioned on the other word:

g1 = σ(Wg1w1 + bg1) (1)

g2 = σ(Wg2w2 + bg2) (2)

w̃1 = w1 � g2 (3)

w̃2 = w2 � g1 (4)

where Wg1 and Wg2 are weight matrices, bg1 and
bg2 are bias vectors, σ() is the logistic function
and � indicates element-wise multiplication. This
operation allows the network to first observe the
candidate hypernym w2 and then decide which fea-
tures are important when analysing the hyponym
w1. For example, when deciding whether seal is
a type of animal, the model is able to first see the
word animal and then apply a mask that blocks
out features of the word seal that are not related
to nature. During development we found it best to
apply this gating in both directions, therefore we
condition each word based on the other.

Each of the word representations is then passed
through a non-linear layer with tanh activation,
mapping the words to a new space that is more
suitable for the given task:

m1 = tanh(Wm1w̃1 + bm1) (5)

m2 = tanh(Wm2w̃2 + bm2) (6)

where Wm1 , Wm2 , bm1 and bm2 are trainable pa-
rameters. The input embeddings are trained to pre-
dict surrounding words on a large unannotated cor-
pus using the skip-gram objective (Mikolov et al.,
2013), making the resulting vector space reflect
(a broad relation of) semantic relatedness but un-
suitable for lexical entailment (Vulić et al., 2017).
The mapping stage allows the network to learn a
transformation function from the general skip-gram
embeddings to a task-specific space for lexical en-
tailment. In addition, the two weight matrices en-
able asymmetric reasoning, allowing the network
to learn separate mappings for hyponyms and hy-
pernyms.

We then use a supervised composition function
for combining the two representations and return-
ing a confidence score as output. Rei et al. (2017)
described a generalised version of cosine similarity
for metaphor detection, constructing a supervised
operation and learning individual weights for each



feature. We apply a similar approach here and mod-
ify it to predict a relation score:

d = m1 �m2 (7)

h = tanh(Whd+ bh) (8)

y = S · σ(a(Wyh+ by)) (9)

where Wh, bh, a, Wy and by are trainable parame-
ters. The annotated labels of lexical relations are
generally in a fixed range, therefore we base the
output function on logistic regression, which also
restricts the range of the predicted scores. by allows
for the function to be shifted as necessary and a
controls the slope of the sigmoid. S is the value
of the maximum score in the dataset, scaling the
resulting value to the correct range. The output y
represents the confidence that the two input words
are in a lexical entailment relation.

We optimise the model by minimising the mean
squared distance between the predicted score y and
the gold-standard score ŷ:

L =
∑
i

(yi − ŷi)2 (10)

Sparse Distributional Features (SDF). Word
embeddings are well-suited for capturing distri-
butional similarity, but they have trouble encod-
ing features such as word frequency, or the num-
ber of unique contexts the word has appeared in.
This information becomes important when decid-
ing whether one word entails another, as the system
needs to determine when a concept is more general
and subsumes the other.

We construct classical sparse distributional word
vectors and use them to extract 5 unique features
for every word pair, to complement the features
extracted from neural embeddings:

• Regular cosine similarity between the sparse
distributional vectors of both words.

• The sparse weighted cosine measure, de-
scribed by Rei and Briscoe (2014), comparing
the weighted ranks of different distributional
contexts. The measure is directional and as-
signs more importance to the features of the
broader term. We include this weighted cosine
in both directions.

• The proportion of shared unique contexts,
compared to the number of contexts for one
word. This measure is able to capture whether

one of the words appears in a subset of the
contexts, compared to the other word. This
feature is also directional and is therefore in-
cluded in both directions.

We build the sparse distributional word vectors
from two versions of the British National Corpus
(Leech, 1992). The first counts contexts simply
based on a window of size 3. The second uses a
parsed version of the BNC (Andersen et al., 2008)
and extracts contexts based on dependency rela-
tions. In both cases, the features are weighted us-
ing pointwise mutual information. Each of the five
features is calculated separately for the two vector
spaces, resulting in 10 corpus-based features. We
integrate them into the network by conditioning the
hidden layer h on this vector:

h = tanh(Whd+Wxx+ bh) (11)

where x is the feature vector of length 10 and Wx

is the corresponding weight matrix.

Additional Supervision (AS). Methods such as
retrofitting (Faruqui et al., 2015), ATTRACT-REPEL

(Mrkšić et al., 2017) and Poincaré embeddings
(Nickel and Kiela, 2017) make use of hand-
annotated lexical relations for optimising word rep-
resentations such that they capture the desired prop-
erties (so-called embedding specialisation). We
also experiment with incorporating these resources,
but instead of adjusting the individual word embed-
dings, we use them to optimise the shared network
weights. This teaches the model to find useful
regularities in general-purpose word embeddings,
which can then be equally applied to all words in
the embedding vocabulary.

For hyponym detection, we extract examples
from WordNet (Miller, 1995) and the Paraphrase
Database (PPDB 2.0) (Pavlick et al., 2015). We
use WordNet synonyms and hyponyms as positive
examples, along with antonyms and hypernyms as
negative examples. In order to prevent the network
from biasing towards specific words that have nu-
merous annotated relations, we limit them to a max-
imum of 10 examples per word. From the PPDB
we extract the Equivalence relations as positive
examples and the Exclusion relations as negative
word pairs.

The final dataset contains 102,586 positive pairs
and 42,958 negative pairs. However, only binary la-
bels are attached to all word pairs, whereas the task



requires predicting a graded score. Initial experi-
ments with optimising the network to predict the
minimal and maximal possible score for these cases
did not lead to improved performance. Therefore,
we instead make use of a hinge loss function that
optimises the network to only push these examples
to the correct side of the decision boundary:

L =
∑
i

max((y − ŷ)2 − (
S

2
−R)2, 0) (12)

where S is the maximum score in the range and
and R is a margin parameter. By minimising Equa-
tion 12, the model is only updated based on ex-
amples that are not yet on the correct side of the
boundary, including a margin. This prevents us
from penalising the model for predicting a score
with slight variations, as the extracted examples
are not annotated with sufficient granularity. When
optimising the model, we first perform one pre-
training pass over these additional word pairs be-
fore proceeding with the regular training process.

4 Evaluation

SDSN Training Setup. As input to the SDSN net-
work we use 300-dimensional dependency-based
word embeddings by Levy and Goldberg (2014).
Layers m1 and m2 also have size 300 and layer h
has size 100. For regularisation, we apply dropout
to the embeddings with p = 0.5. The margin R
is set to 1 for the supervised pre-training stage.
The model is optimised using AdaDelta (Zeiler,
2012) with learning rate 1.0. In order to control
for random noise, we run each experiment with 10
different random seeds and average the results. Our
code and detailed configuration files will be made
available online.1

Evaluation Data. We evaluate graded lexical en-
tailment on the HyperLex dataset (Vulić et al.,
2017) which contains 2,616 word pairs in total
scored for the asymmetric graded lexical entail-
ment relation. Following a standard practice, we
report Spearman’s ρ correlation of the model output
to the given human-annotated scores. We conduct
experiments on two standard data splits for super-
vised learning: random split and lexical split. In the
random split the data is randomly divided into train-
ing, validation, and test subsets containing 1831,
130, and 655 word pairs, respectively. In the lexical

1http://www.marekrei.com/projects/sdsn

Random Lexical
DEV TEST DEV TEST

FR - 0.299 - 0.199
SGNS-DEPS - 0.250 - 0.253

WN-WuP - 0.212 - 0.261
SGNS-DEPS (concat+r) - 0.539 - 0.399
Paragram+CF (cos) - 0.346 - 0.453
Paragram+CF (mul+r) - 0.386 - 0.439

SDSN 0.708 0.658 0.547 0.475
SDSN+SDF 0.722 0.671 0.562 0.495
SDSN+SDF+AS 0.757 0.692 0.577 0.544

Table 1: Graded lexical entailment detection results
on the random and lexical splits of the HyperLex
dataset. We report Spearman’s ρ on both validation
and test sets.

split, proposed by Levy et al. (2015), there is no
lexical overlap between training and test subsets.
This prevents the effect of lexical memorisation,
as supervised models tend to learn an independent
property of a single concept in the pair instead of
learning a relation between the two concepts. In
this setup training, validation, and test sets contain
1133, 85, and 269 word pairs, respectively.2

Since plenty of related research on lexical en-
tailment is still focused on the simpler binary de-
tection of asymmetric relations, we also run ex-
periments on the large binary detection HypeNet
dataset (Shwartz et al., 2016), where the SDSN out-
put is converted to binary decisions. We again
report scores for both random and lexical split.

Results and Analysis. The results on two Hyper-
Lex splits are presented in Table 1, along with the
best configurations reported by Vulić et al. (2017).
We refer the interested reader to the original Hy-
perLex paper (Vulić et al., 2017) for a detailed
description of the best performing baseline models.

The Supervised Directional Similarity Network
(SDSN) achieves substantially better scores than all
other tested systems, despite relying on a much
simpler supervision signal. The previous top ap-
proaches, including the Paragram+CF embeddings,
make use of numerous annotations provided by
WordNet or similarly rich lexical resources, while
for SDSN and SDSN+SDF only use the designated
relation-specific training set and corpus statistics.
By also including these extra training instances
(SDSN+SDF+AS), we can gain additional perfor-

2Note that the lexical split discards all cross-set training-
test word pairs. Consequently, the number of instances in each
subset is lower than with the random split.



Lexical split Random split
P R F P R F

Dual-T 70.5 78.5 74.3 93.3 82.6 87.6
HypeNet-hybrid 80.9 61.7 70.0 91.3 89.0 90.1
H-feature 70.0 96.4 81.1 92.6 85.0 88.6

SDSN 82.8 84.6 83.7 94.0 86.7 90.2
SDSN+SDF 82.6 86.0 84.2 92.8 88.7 90.7

Table 2: Results on the HypeNet binary hypernymy
detection dataset.

mance and push the correlation to 0.692 on the
random split and 0.544 on the lexical split of Hy-
perLex, an improvement of approximately 25% to
the standard supervised training regime.

In Table 3 we provide some example output from
the final SDSN+SDF+AS model. It is able to success-
fully assign a high score to (captain, officer) and
also identify with high confidence that wing is not
a type of airplane, even though they are semanti-
cally related. As an example of incorrect output,
the model fails to assign a high score to (prince,
royalty), possibly due to the usage patterns of these
words being different in context. In contrast, it as-
signs an unexpectedly high score to (kid, parent),
likely due to the high distributional similarity of
these words.

Glavaš and Ponzetto (2017) proposed a related
dual tensor model for the binary detection of asym-
metric relations (Dual-T). In order to compare our
system to theirs, we train our model on HypeNet
and convert the output to binary decisions. We
also compare SDSN to the best reported models of
Shwartz et al. (2016) and Roller and Erk (2016),
which combine distributional and pattern-based
information for hypernymy detection (HypeNet-
hybrid and H-feature, respectively).3 We do not
include additional WordNet and PPDB examples
in these experiments, as the HypeNet data already
subsumes most of them. As can be seen in Table 2,
our SDSN+SDF model achieves the best results also
on the HypeNet dataset, outperforming previous
models on both data splits.

5 Conclusion

We introduce a novel neural architecture for map-
ping and specialising a vector space based on lim-
ited supervision. While prior work has focused
only on optimising individual word embeddings
available in external resources, our model uses

3For more detail on the baseline models, we refer the
reader to the original papers.

S P

captain officer 8.22 8.17
celery food 9.3 9.43
horn bull 1.12 0.94
wing airplane 1.03 0.84

prince royalty 9.85 4.71
autumn season 9.77 3.69

kid parent 0.52 8.00
discipline punishment 7.7 3.32

Table 3: Example word pairs from the HyperLex
development set. S is the human-annotated score
in the HyperLex dataset. P is the predicted score
using the SDSN+SDF+AS model.

general-purpose embeddings and optimises a sep-
arate neural component to adapt these to the spe-
cific task, generalising to unseen data. The system
achieves new state-of-the-art results on the task
of scoring graded lexical entailment. Future work
could apply the model to other lexical relations or
extend it to cover multiple relations simultaneously.
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