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A random search process in a networked environment is governed by the time it takes to visit every
node, termed the cover time. Often, a networked process does not proceed in isolation but competes
with many instances of itself within the same environment. A key unanswered question is how to
optimise this process: how many concurrent searchers can a topology support before the benefits
of parallelism are outweighed by competition for space? Here, we introduce the searcher-averaged
parallel cover time (APCT) to quantify these economies of scale. We show that the APCT of the
networked symmetric exclusion process is optimised at a searcher density that is well predicted by the
spectral gap. Furthermore, we find that non-equilibrium processes, realised through the addition of
bias, can support significantly increased density optima. Our results suggest novel hybrid strategies
of serial and parallel search for efficient information gathering in social interaction and biological
transport networks.

I. INTRODUCTION

From animals foraging to T-cells hunting pathogens to
proteins examining DNA, nature relies on carefully opti-
mised random searches at many scales [1–10]. This con-
cept is not limited to biology: robotic self-assembly [11],
traffic flow management [12–14] and computer resource
allocation [15] hinge on optimising decentralised explo-
ration. In these distributed processes, the searcher, be it
a protein, an animal or a network token, must often visit
not just one site but many locations connected in a net-
work [16]. The critical measure of efficiency is then the
time to visit every node of the network, called the cover
time [17]. Single-searcher cover times are known on sim-
ple networks such as linear chains, rings and other regular
lattices [18–22], and significant progress has been made
on establishing transport statistics for more general net-
works [16, 23–28], providing a means to design topologies
that can be searched efficiently. However, when multi-
ple parallel searchers compete for space or resources, as
often occurs in the examples above, how to design opti-
mal search strategies remains a significant open question.
Our central result is that the optimal density of searchers
depends heavily, yet predictably, on network topology,
implying that search strategies can be made efficient by
careful optimisation of topology and searcher quantity.

The exclusion process represents the most fundamen-
tal model of competition for space [29–31]. It has been
key to understanding such diverse phenomena as cell mi-
gration [32], molecular traffic [33, 34], surface roughen-
ing [35] and queueing [36]. Capitalising on this breadth,
we use the exclusion process to model parallel searching
of a network and introduce the searcher-averaged paral-
lel cover time (APCT), the average per-searcher time for
all searchers to visit all nodes within a network. Strat-
egy optimisation then demands an understanding of how
both network topology and searcher density impact the

APCT. Consider, for example, a scenario with as many
searchers as nodes. Placing all searchers on the net-
work simultaneously results in an infinite APCT, while a
simple ‘serial’ strategy where a single searcher is placed
on the network, removed once it has visited every node
and replaced with a new searcher, one at a time, is al-
most always inefficient. It is therefore critical to deter-
mine the optimal, or most efficient, density of parallel
searchers minimising the APCT (Fig. 1(a)). Through
analytic and numerical results, we find that this opti-
mal density is heavily dependent on network topology.
We demonstrate that the spectral gap, which quantifies
the convergence rate of a single-searcher random walk, is
a strong predictor of a network’s density optimum and
outperforms simpler degree-based network statistics, as
measured by mutual information. We provide strategies
for optimal deployment of hybrid series–parallel searches
allowing for construction of efficiently-explored networks.
We broaden to non-equilibrium processes by generalising
to flux-conserving asymmetric exclusion processes, find-
ing a remarkable non-monotonic relationship between
density optima and the spectral gap. Our work pro-
vides an accessible route into the design of optimal search
strategies in complex environments involving equilibrium
and non-equilibrium processes.

II. AVERAGE PARALLEL COVER TIME AND
OPTIMAL DENSITY

We employ a symmetric exclusion process of M parallel
searchers on a network with N vertices (where M < N).
First, an initial configuration of searchers is gener-
ated uniformly at random with each searcher occupy-
ing its own node. The searchers then perform mutually-
excluding continuous-time random walks (CTRWs) with
i.i.d. exponential waiting times of mean τ = 1. When
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a searcher attempts to move, an adjacent node is picked
uniformly at random; if the node is vacant the searcher
moves there, and if not the move is aborted. Let T i

r be the
time for searcher i to first visit r distinct nodes. (In prac-
tice we evaluate T i

r by counting the number of attempted
jumps made by all parallel searchers until walker i visits
the r-th distinct site and rescaling by the average waiting
time 1/M . This is equivalent to describing the CTRW by
a discrete-time random walk with time step 1/M which is
sufficient when seeking only first moments as we do here.)
We define the parallel cover time CM = max1≤i≤M{T i

N}
as the time for all M searchers to each visit all N nodes,
and the expectation ⟨CM ⟩ to be taken simultaneously
over the space of all initial configurations and random
walk instances [37]. The APCT, SM = ⟨CM ⟩/M , then
quantifies the economy of scale in parallel searching: if
⟨CM ⟩ < MS1 for some M > 1 there is an efficiency gain in
parallel searching beyond the simple serial search strat-
egy. For a given network, let M∗ be the optimal number
of searchers, that is, the M for which SM is minimised,
and let ρ∗ = M∗/N be the equivalent optimal density.
For numerical methods, see Appendix A.

A. Efficient search for ring-like topologies

Parallel search of a ring lattice is optimal at a strik-
ingly low density (ρ∗ = 0.05 when N = 100; Fig. 1(a)),
and it becomes increasingly inefficient as M increases.
This is due to the strong confinement effects of single-
file diffusion [38–43]. That said, parallel searching is still
more efficient than simple serial searching for a range of
ρ (Fig. 1(a), dashed line). Remarkably, however, a par-
allel search on a ring lattice can be made significantly
more efficient by introducing only a small number of
additional edges. To demonstrate, we consider a form
of the Newman–Watts ensemble [44] that interpolates
between the two extremal topologies of the ring lattice
and the complete network. Starting from a ring lattice,
we add a fixed number of random additional edges, or
shortcuts (Fig. 1(b), inset). The optimal density rapidly
approaches that of the complete network, ρ∗ = 0.47,
even with only 3–4% of the possible shortcuts added on
N = 100 nodes (Fig. 1(b)).

Parallel search efficiency on the complete network can
be evaluated exactly. In Appendix B, we derive the
APCT

SM =
(N − 1)2

M(N −M)
h(M(N − 1)), (1)

where h(i) is the i-th harmonic number. The optimal
density of parallel searchers, ρ∗, for a given N can then
be calculated from M∗ = argminM SM , which gives
ρ∗ → 0.5 in the limit N → ∞ (Appendix B). Equa-
tion (1) can be written as SM = ϕS̃M where S̃M is
the non-interacting APCT (Appendix B) and ϕ = (1 −
N−1)/(1 − ρ) is a mean-field correction. This accounts
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FIG. 1. (a) APCT on the ring lattice for interacting (×) and
non-interacting (+) searchers as a function of searcher density
ρ = M/N , where N = 100. The optimal density ρ∗ (marked)
can be seen as the minimum of the APCT; dashed horizon-
tal line denotes the area below which parallel search is faster
than serial search. Each APCT was calculated from 105 ran-
dom walk instances. (b) Mean optimal density of Newman–
Watts networks with N = 100 as a function of the number
of shortcuts (example inset). Coloured band indicates ±1
s.d. Optimal densities were calculated (Appendix A) for 1000
Newman–Watts realisations for a range of added edges.

for the average slow-down due to aborted moves by as-
suming two-site occupancy probabilities to be products
of single-site densities (Appendix C). While it is exact
for the complete network by spatial homogeneity, this
need not hold in general.

For general networks, naïve mean-field approximations
(MFAs) [29–31] can lead to drastically inaccurate esti-
mation of the APCT and optimal density. Taking the
near-Gumbel-distributed single searcher cover times on
random networks [16] and attempting to incorporate ex-
clusion through rescaling by ϕ fails for many networks:
under this MFA the predicted optimal density as N be-
comes large approaches ρ∗ = 0.5 (Appendix C), but for
networks of low average degree, and for the ring lattice
(Fig. 1(a)) in particular, this is far from the true ρ∗ eval-
uated numerically (Fig. 2). Insight into this inaccuracy
can be drawn from asymptotic estimates of the APCT
on the ring lattice in the high density regime. Consider
M = N − k searchers with k ≪ N vacancies. Inspired
by particle-hole duality [38] we can follow the vacancies
instead of the searchers. The parallel cover time is then
the time taken for the net displacement of the vacancies
to first reach (N − 1)(N − k) (Appendix B). For large N
the vacancies are approximately non-interacting, mean-
ing their net displacement is approximately that of a sin-
gle vacancy moving k times faster, that is, τvac = 1/k.
Standard results [20] then imply

SN−k ∼ (N − 1)[(N − 1)(N − k) + 1]

2k
. (2)

This estimate does extremely well in predicting the
APCT (Appendix B, Fig. 5). It is exact for k = 1,
and only noticeably deviates when ρ . 0.85 for N = 100.
Equation (2) reveals that the APCT at high density is
O(N3), while the MFA suggests an APCT of ϕS̃N ∼
O(N2), an order of magnitude difference, highlighting
the failure of the MFA to capture spatial correlations.
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FIG. 2. Spectral gap predicts optimal parallel search den-
sity. Optimal densities were calculated for 1500 random net-
works on N = 100 nodes with average degree between 2 and 5
(Appendix D). Each point represents one network with aver-
age degree indicated by colour, with three topologically con-
trasting networks highlighted. Solid grey curve denotes the
mean MFA-predicted optimal density as a function of G from
numerically-determined single-searcher cover times. Dashed
red curve shows best-fit expansion ρ∗(G; 0.7556, 0.2933). Two
real-world transport networks are indicated by stars: the Lon-
don Underground (lower) and American airports (upper).

B. General topologies and the spectral gap

Can we identify a topological heuristic to predict den-
sity optima for general networks? Given the adjacency
matrix A and the diagonal matrix D whose entries are
the node degrees, define the random walk transition ma-
trix P = D−1A. The eigenvalues {λi} of P deter-
mine how fast the probability distribution of a single-
searcher random walk converges to its equilibrium (that
is, mixes) [45]. The largest eigenvalue is necessarily
λ1 = 1, and we define the spectral gap, G, as the differ-
ence in magnitude between the first and second largest
eigenvalues G = 1 − max26i6N{|λi|}. The closer G is to
zero, the slower a random walk converges [45]. The spec-
tral gap is then a natural candidate for predicting density
optima as the features of networks that slow down con-
vergence, such as bottlenecks (identified through nodes
of high betweenness centrality [46]), also significantly
increase the parallel cover time. Furthermore, single-
searcher cover times can be related to the eigenvalues
of the combinatorial Laplacian L = D−A [23], which in
turn relate to those of P = I−D−1L via the normalised
Laplacian [47].

There is a tight relationship between the spectral gap
and the optimal density of searchers for general networks
(Fig. 2), quantified through high mutual information
(Appendix E). Sampling over random networks of mini-
mum degree two and average degree between two and five
(Appendix D) reveals that topology has a huge impact on
optimal parallel search strategies: for a small spectral gap

(Fig. 2, left-most inset) networks have low average degree
and a high concentration of nodes of degree two, result-
ing in linear chains along which the single-file diffusion
of searchers significantly increases the cover time [38–
43]. Indeed, for a linear chain the parallel cover time is
finite only for a single searcher; for two or more searchers
the left- (right-) most searcher will never reach the right-
(left-) most site due to the effect of single-file diffusion.
The naïve MFA fails to capture this relationship (Fig. 2,
grey curve), demonstrating the importance of long-lived
occupancy correlations. The MFA only becomes valid
for networks of average degree nearing five, where the
density optima approach that of the complete network
(ρ∗ = 0.47 for N = 100). Typically, these networks
have a small fraction of degree two nodes and are more
highly connected (Fig. 2, right-most inset). A power se-
ries ρ∗ (G; a, b) = Gb[1/2−(1/2− a) (1− G)], constructed
such that ρ∗(1) = 1/2 to match the N → ∞ limit of the
complete graph, matches the data well (Fig. 2, red curve)
and provides an easily-computed predictive approxima-
tion.

Beyond random networks, we find that two real-world
transport networks further validate this relationship in
practice (Fig. 2). Firstly we consider the London Un-
derground network (from Ref. [48], which includes the
Docklands Light Railway, with one spurious disconnected
node deleted from the dataset). The average degree of
this network is 2.31 where the number of nodes is 306,
the spectral gap of the symmetric random walk of a sin-
gle searcher is 0.003 and the estimated optimal density
is 0.0915 (Fig. 2). Our second real world network is the
top 500 busiest US airports, where the nodes represent
each airport and an edge connects two nodes if there is
at least one direct flight between the two airports [49].
The average degree of the network is 11.9 where the num-
ber of nodes is 500. The spectral gap of the symmetric
random walk of a single searcher is 0.0237 and the nu-
merically estimated optimal density is 0.26. Despite the
network’s high average degree the optimal density is still
prohibitively low, which is excellently predicted via its
spectral gap (Fig. 2). Simpler statistics based on the de-
gree distribution fail in such cases and have lower mutual
information over our graph ensemble (Appendix E).

III. OPTIMISING PARALLEL SEARCH
STRATEGIES

Our results enable the design of optimal search strate-
gies for arbitrary numbers of searchers. Suppose Mtot
searchers, potentially more than N , need to each cover
a given network. A hybrid series–parallel strategy com-
prises sequentially introducing batches of searchers, with
each batch covering the network in parallel to comple-
tion before being removed and replaced by the next
batch. Let ki be the number of times i parallel searchers
are introduced sequentially; for example, k1 = 3 and
k2 = 4 denotes performing three successive searches
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FIG. 3. (a) Optimal search strategy as Mtot is increased for a
random network of N = 20 nodes (inset) with ρ∗ = 0.35. Val-
ues at fixed Mtot give the non-zero components of the strategy
vector kopt. (b) Mean number of searchers per instance ⟨kopt⟩
for the optimal search strategies of the complete network, the
random network in (a) and the ring lattice on N = 20 nodes,
showing the approach of ⟨kopt⟩ towards the optimal APCT
densities ρ∗ = 0.45, 0.35 and 0.15 respectively for large Mtot.
APCTs are averages over 105 random walk instances.

with one searcher and four successive searches with two
searchers. A hybrid strategy is then defined by the vec-
tor k = (k1, . . . , kN−1). The optimal strategy, kopt, min-
imises the overall cover time T =

∑N−1
i=1 ki⟨Ci⟩ subject

to the constraint
∑N−1

i=1 iki = Mtot. As Mtot increases
the solution of this integer programming problem typi-
cally yields a strategy comprising a mixture of searcher
numbers near the optimal density (Fig. 3).

To investigate the optimal strategy in the regime where
Mtot ≫ N ≫ 1 we consider the corresponding continu-
ous optimisation problem. Let C̄(ρ) be the mean parallel
cover time of the search process with searcher density
ρ ∼ i/N for N ≫ 1. We define k(ρ) as our real-valued
strategy function (as Mtot ≫ N) that gives the frequency
of serial searches that have searcher density ρ. Thus our
optimisation process is to select k(ρ) such that we min-
imise the total cover time functional

Γ[k] =

∫ 1

0

k(ρ)C̄(ρ)dρ, (3)

subject to the constraint

N

∫ 1

0

ρk(ρ)dρ = Mtot. (4)

We introduce a rescaled strategy function f(ρ) =

Nρk(ρ)/Mtot and total cover time Γ̃[f ] = Γ[k]/Mtot. We
note that the rescaled cover time is

Γ̃[f ] =

∫ 1

0

f(ρ)C̄(ρ)
Nρ

dρ =

∫ 1

0

f(ρ)A(ρ)dρ, (5)

where A(ρ) = C̄(ρ)/(Nρ) is the APCT. Our final version
of the optimisation problem is to minimise

Γ̃[f ] =

∫ 1

0

f(ρ)A(ρ)dρ, (6)

subject to the constraint∫ 1

0

f(ρ)dρ = 1. (7)

The APCT, A(ρ), has a minimum value at the optimal
density ρ∗ ∈ (0, 1), thus the function that will solve our
optimisation problem is f(ρ) = δ(ρ− ρ∗) or equivalently
the optimal strategy is k(ρ) = Mtotδ(ρ − ρ∗)/(Nρ), i.e.
to have all serial searches operating at the optimal den-
sity ρ∗. Thus for large networks whose optimal density
becomes difficult to evaluate, our results present a simple
strategy to optimise mutually excluding search: approx-
imate ρ∗ via the easily-computed spectral gap (Fig. 2),
and then perform searches in batches at this density.

IV. ASYMMETRIC SEARCH PROCESSES

Until now, we have only considered the symmetric ex-
clusion process, where searchers uniformly sample a tar-
get node from their neighbours. However, many biologi-
cal and physical systems are not in equilibrium, possess-
ing non-zero probability currents in stationary state that
markedly change the possible physical behaviours [34].
To model this, we now explore directed networks with
bias in the choice of target node. To avoid searchers ac-
cumulating at nodes we restrict to flux-conserving (bal-
anced) networks, where each vertex has an equal num-
ber of inwards- and outwards-biased edges (and is there-
fore necessarily of even degree; Fig. 4(a)). For each edge
biased u → v, we define the transition probabilities as
pu→v = (1 + 2ε) /du and pv→u = (1− 2ε) /dv, where
du, dv are the vertex degrees and ε ∈ [0, 1/2] controls
the bias. Thus the probability a searcher exits a node
through an outwardly biased edge is 1/2 + ε.

Asymmetric processes facilitate a significantly greater
optimal density than the equivalent unbiased process on
the ring lattice. We find numerically that the optimal
density for N = 100 and ε = 0.25 is ρ∗ = 0.51 (with
high confidence; Appendix A) compared to ρ∗ = 0.05 in
the symmetric case ε = 0. This is a marked increase
in ρ∗ that even exceeds the symmetrically-biased com-
plete network for which ρ∗ < 0.5. Here, conservation
of flux forces there to be only two viable orientations for
the edges, all either clockwise or anticlockwise, effectively
adding a constant drift to the symmetric process. As for
symmetric exclusion, intuition can be drawn from asymp-
totic estimates of the APCT in the high density regime
for the ring lattice. Let p and q = 1− p be the probabili-
ties of moving clockwise and anticlockwise, respectively.
In Appendix B we show that, for large N and small va-
cancy count k, the APCT for M = N − k searchers with
p > q is approximately SN−k ∼ (N −1)/(p− q)k. This is
O(N) for a non-negligible bias, two orders of magnitude
smaller than Eq. (2). In addition, the APCTs in the low
and high density regimes are both O(N) (Appendix B)
in contrast to the unbiased process, whose low and high
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FIG. 4. (a) A random network for the asymmetric exclusion
process, where N = 100. The arrows depict the directional
bias of the random searchers between nodes. (b) Frequency
of optimal densities for a variety of biases. (c) Mean optimal
density as a function of spectral gap for symmetric (ε = 0) and
asymmetric (ε = 0.1) exclusion processes. Coloured bands are
±1 s.d. (d) APCT at optimal searcher density for a variety
of biases. Results in (b) and (d) are from the same ensemble
of 2250 random networks of average degree between 2 and
5 (Appendix G). In (c) an additional 2000 networks are in-
cluded with average degree between 2 and 3. APCTs in (d)
are averages over 105 random walk instances.

density APCTs we recall as O(N2) and O(N3), respec-
tively, indicating bias induces a qualitative change in the
APCT.

Beyond the ring lattice, general flux-conserving net-
works of low degree also see a significantly enhanced op-
timal density for sufficient bias, with a far narrower dis-
tribution of optimal densities (Fig. 4(b)). Dramatic in-
creases in optimal density particularly occur for networks
with G ≈ 0 (Fig. 4(c)): these have a high concentration of
degree two nodes implying many linear chains, the edges
of which must have the same directional bias (Fig. 4(a)).
More surprisingly, for networks with extremely small
spectral gaps (G ≈ 0) we see a non-monotonic relation-
ship between G and ρ∗ on average. This phenomenon is
also captured by the APCT at optimal density (Fig. 4(d))
where networks with G ≈ 0 typically have APCTs below
those of networks with greater G. This shows that the ad-
dition of flux-conserving bias can have a counterintuitive
impact on search efficiency and optimality (which can be
orientation dependent; Appendix F). For example, con-
sider Mtot = 100 searchers on the random network in
Fig. 4(a) using the optimal serial–parallel strategy ver-
sus the same search on the ring lattice. Without bias
(ε = 0), the random network has an average search time
of 6.6×104 and the ring lattice has time 4.8×105. In con-
trast, with ε = 0.25, these times become 8.5 × 103 and
8.3 × 102, respectively. Thus, random flux-conserving

bias inverts the networks’ relative efficiency, implying
care must be taken when attempting to improve the effi-
ciency of network search processes by naïve biasing.

V. SUMMARY

To conclude, we have introduced the APCT as a fun-
damental measure of how efficiently a network can sup-
port mutually excluding random search processes. We
found that the optimal density of concurrent searchers
can vary from 1–2% to nearly 50% depending on topol-
ogy, and showed that this topological dependence can be
efficiently captured by the spectral gap for both artifi-
cial random graphs and real-world transport networks.
Finally, we generalised to a biased, non-equilibrium pro-
cess and uncovered a qualitative change in the topologi-
cal dependence of optimal densities. This evidences how
the transport process itself must be taken into account
when optimising random search, and leads us to ask
whether there is an efficient statistical characterisation of
the topology–transport interplay for general active net-
worked processes [33, 50–52]. More broadly, our work
paves the way towards new strategies for topology opti-
misation in process allocation and flow transport prob-
lems across physical and biological networked systems.
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Appendix A: Numerical evaluation of cover time
statistics and optimal densities

All cover time statistics presented in this work were cal-
culated as follows. We do not explicitly sample from the
exponential waiting time distribution; rather, we sample
the next attempted jump and update the time statistic of
interest, t, by the average waiting time, t = t+ τ/M . As
we are only interested in the first moments of the cover
times, linearity of expectation implies that this suffices.

We now detail our numerical procedure for evaluating
optimal densities. Suppose we have a network with N
nodes and we wish to calculate the optimal number of
parallel searchers, M∗, that minimises the APCT. For
efficiency we begin using a small number of random walk
instances (initially 103) that we increase as we get closer
to M∗. Starting at M = 1 we calculate the average cover
time S1, then increase M by one and run another sam-
ple of random walk instances, calculating S2 and so on.
After generating a new APCT for j+1 parallel searchers
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we ask whether Sj+1 > Sj to see whether j is a candidate
for M∗. If not we increase M by one, however if so then
we increase the number of random walk instances to 104

and return to the previous number of parallel searchers
j, where we recalculate Sj and Sj+1, and check again to
see if Sj+1 > Sj . Once we have moved to 104 random
walk instances we still check to see if the new APCT is
greater than the old one, as before. Once we find a den-
sity of parallel searchers that appears to be the minimum
we increase the number of random walk instances used
for the final time to 105. Then the number of searchers
that are found to minimise the APCT using 105 random
walk instances is taken to be M∗, the optimal number
of searchers. This was typically enough realisations such
that the standard error when calculating the APCTs re-
sulted in mutually excluding 95% confidence intervals ei-
ther side of the optimal density.

Appendix B: Average parallel cover times for
ring-like topologies

1. Complete network

We consider the complete network with N nodes. First
we calculate the APCT without interactions. Let Xi

r be
the time taken for the ith searcher to first visit r+1 dis-
tinct sites, given it has just visited r distinct sites. Note
that Xi

r is geometrically distributed with success proba-
bility (N−r)/(N−1). Then the mean cover time for the
single searcher is ⟨C1⟩ =

∑N−1
r=0 ⟨Xi

r⟩ = (N − 1)h(N − 1),
where h(i) is the i-th harmonic number. For M non-
interacting searchers we start with M distinct sites cov-
ered (if every searcher initially occupies its own node)
and the parallel cover time is the time taken to visit
MN distinct sites (N distinct sites for each of the M
searchers). We define Yr to be the time taken for the
overall number of distinct sites visited by the entire
population to hit r + 1 given r distinct sites have just
been visited. Yr is now geometrically distributed with
success probability (MN − r)/(M(N − 1)). Therefore,
⟨CM ⟩ = 1/M

∑NM−1
r=M ⟨Yr⟩ = (N−1)h(M(N−1)), where

the pre-factor of 1/M appears as the expected time for
the next jump for M random searchers. Thus the APCT
for the complete network for non-interacting searchers is

S̃M =
N − 1

M
h(M(N − 1)). (B1)

In order to include the effect of interactions, we need
to calculate the probability that an attempted jump is
not blocked by another searcher. Due to the unique
topology of the complete network this probability is sim-
ply (N − M)/(N − 1). We can redefine the geometri-
cally distributed variables Yr to have success probability
(MN − r)/(M(N − 1))× (N −M)/(N − 1). The APCT
for the complete network with M interacting searchers is

therefore

SM =
(N − 1)2

M(N −M)
h(M(N − 1)), (B2)

where we note that SM = (N−1)/(N−M)S̃M is exactly
the mean-field approximation (MFA), discussed in Ap-
pendix C. Re-writing in terms of the density, ρ = M/N ,
and taking the limit N → ∞, gives

(N − 1)2

Nρ(N −Nρ)
h(Nρ(N−1)) ∼ 1

ρ(1− ρ)
log

(
ρN2

)
. (B3)

To find the optimal density, we then differentiate the
right-hand side of Eq. (B3) and equate the derivative to
zero, this yields the relation

1− ρ∗

1− 2ρ∗
= log(ρ∗) + log(N2). (B4)

For the equality (B4) to hold as N → ∞ we need that
ρ∗ → 1/2 (as ρ∗ → 0 yields a trivial solution). Thus
the optimal density for parallel search on the complete
network is ρ∗ = 1/2. Substituting in ρ∗ = 1/2 + ξ and
linearising in ξ we arrive at

ξ ≈ 1

2

[
1− 2log

(
2N2

)]−1
. (B5)

For large N , ξ ∼ −(8 logN)−1 and so ξ < 0 and ξ → 0,
thus ρ∗ → 1/2 from below. More over, for N = 100 we
have ξ ≈ −0.03 and so ρ∗ ≈ 0.47.

2. Symmetric search on the ring lattice in the high
density regime

a. One vacancy

Consider a ring lattice of N nodes with M = N − 1
searchers each occupying their own node. Rather than
modelling the searchers moving we can instead model
the vacancy as a random walker. If the vacancy jumps
N − 1 times clockwise (anti-clockwise) then every single
searcher has jumped one site anti-clockwise (clockwise).
Thus we can see that the mean cover time for all searchers
to visit all nodes is the mean first passage time of the
vacancy to visit (N−1)2+1 distinct nodes. On an infinite
lattice in one dimension, it is a well known result [20] that
the mean first passage time for the span of the random
walk to visit r distinct nodes is r(r−1)/2. Therefore the
mean cover time for N−1 interacting searchers on a ring
is

⟨CN−1⟩ =
(
(N − 1)2 + 1

2

)
. (B6)

The APCT for the ring lattice with N − 1 parallel
searchers is therefore

SN−1 =
1

N − 1

(
(N − 1)2 + 1

2

)
. (B7)

For large N , this is O(N3).
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FIG. 5. APCT for the ring lattice in the high density regime
where N = 100. The +’s represent data generated from sim-
ulations of the search process, the solid curve is an interpola-
tion of the APCT calculated using the asymptotic estimates
in Eq. (2). All APCTs were calculated from 105 random walk
instances.

b. Several vacancies

We again have a ring lattice with N nodes. Let
M = N −k be the number of searchers and suppose that
k ≪ N so we are still in the high density regime. We now
consider, as before, the random walk of the k vacancies
instead of the searchers directly. In the limit of large N
the vacancies are non-interacting and therefore we can
treat the vacancies as being approximately independent.
The net displacement of the k vacancies can then be ap-
proximated as the sum of k independent normally dis-
tributed random variates with mean zero. Equivalently
we consider a single vacancy that moves on average k
times faster, that is, with mean waiting time τvac = 1/k.
This random walker needs to visit (N − 1)(N − k) + 1
distinct sites in order for the all the searchers to have
visited every site, thus the mean cover time is

⟨CN−k⟩ ∼
1

k

(
(N − 1)(N − k) + 1

2

)
. (B8)

Note that the factor of 1/k appears because the collective
vacancy moves k times faster than a single vacancy. The
APCT for the ring lattice in the high density regime is
therefore

SN−k ∼ 1

k(N − k)

(
(N − 1)(N − k) + 1

2

)
. (B9)

We see that the APCT in the high density regime is still
of magnitude O(N3). The asymptotic estimate (B9) of
the APCT matches well to simulations in the high density
regime (Fig. 5).

3. Asymmetric search on the ring lattice in the
high density regimes

a. Single searcher

We define a random walk on the integers, Z, where the
searcher starts at the origin and at each timestep moves
to the right with probability p or left with probability
q = 1 − p. Chong et. al [53] showed that the expected
number of steps to reach m distinct sites (not including
the origin) is

⟨Tm⟩ = gm−1hm−1

sm−1sm
, (B10)

where gk =
∑k

i=0(i+ 1)pk−iqi, hk =
∑k

i=0(i+ 1)piqk−i,
and sk =

∑k
i=0 p

iqk−i. For a lattice of length N we can
write down directly the expected cover time,

⟨C1⟩ =
gN−2hN−2

sN−2sN−1
. (B11)

For p > q and large N it is known that the cover time is
asymptotically

⟨C1⟩ ∼
1

p− q

(
N − 1− q

p− q
+O

(
N2(q/p)N

))
.

(B12)

b. Single vacancy

We now consider N − 1 interacting searchers on a ring
lattice of length N with asymmetric transition probabili-
ties p and q. In order to calculate the parallel cover time
we consider the vacancy as a random walker on the inte-
gers Z. The vacancy has to visit (N − 1)2 distinct sites
(not including the origin) in order for every searcher to
have visited every site. Therefore, if we let m = (N−1)2,
the average number of jumps the vacancy has to make is
given in Eq. (B10). In the limit of large N we have that
the APCT for N − 1 searchers is

SN−1 ∼ 1

(p− q)(N − 1)

(
(N − 1)2 − q

p− q

)
. (B13)

Thus, for moderate bias where p − q is not small, the
APCT for N − 1 searchers is two orders of magnitude
smaller than the APCT in the case of the symmetric
exclusion process.

c. Multiple vacancies

We consider the case where we have k vacancies, where
k ≪ N . As for the symmetric exclusion process we con-
sider instead a single asymmetric random walker that
moves on average k times faster than a single vacancy,
and we are interested in the time taken for the vacancy
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FIG. 6. The APCTs of an asymmetric exclusion process on
the ring lattice, where p = 0.75 and q = 0.25, from simulation
(asterisks) and from the analytical approximation in the high
density regime (solid line; (B14)). All APCTs were calculated
using 105 random walk instances.

to visit m = (N − 1)(N − k) new sites (not including the
origin). Therefore we can write down the APCT for the
high density regime as

SN−k ∼ 1

(p− q)k(N − k)

(
(N − 1)(N − k)− q

p− q

)
∼ N − 1

(p− q)k
. (B14)

In Fig. 6 we provide a plot of the APCT for an asymmet-
ric random walk on a ring lattice with transition proba-
bilities p = 0.75 and q = 0.25 for all numbers of searchers,
as well as the estimates in the high density regime, where
we see excellent agreement for k ≤ 5.

Appendix C: The mean-field approximation

The MFA rescales non-excluding cover times by ap-
proximating how many additional jumps are needed
when exclusion is considered, thus accounting for aborted
moves. In order to approximate this scaling we con-
sider the occupancy probabilities of nodes adjacent to
a searcher attempting a move. Let Oν denote the occu-
pancy of node ν, where a value 1 corresponds to the node
being occupied and a value 0 to the node being vacant.
For a searcher at node ω, let ν be the neighbouring site
which the searcher attempts a move to. The probability
the neighbouring node is vacant (i.e. the move is success-
ful) is P(Oν = 0|Oω = 1). Bayes’ rule allows this proba-
bility to be written in terms of a two-site occupancy prob-
ability, P(Oν = 0,Oω = 1)/P(Oω = 1). The MFA comes
from approximating the two-site occupancy probability
to be the product of single-site occupancy probabilities:

P(Oν = 0,Oω = 1) ≈ P(Oν = 0)P(Oω = 1). Therefore
the probability of the attempted move being successful is
approximately P(Oν = 0) and thus is independent of the
searcher location ω. This probability is the fraction of the
number of vacant sites over the number of total sites that
are not ω, namely, (N −M)/(N − 1). Denoting ⟨C⟩ and
˜⟨C⟩ to be the excluding and non-excluding cover times re-

spectively, we approximate ⟨C⟩ = ˜⟨C⟩× (N −1)/(N −M)

or equivalently ⟨C⟩ = ϕ ˜⟨C⟩, where ϕ = (1−N−1)/(1− ρ)
and ρ = M/N .

We consider the cover time of a single searcher on a
general network. Following Ref. [16], suppose that the
cover time is Gumbel distributed with parameters µ ∈ R
and β > 0. The probability density function p(t) of the
cover time is

p(t) =
1

β
exp

[
− t− µ

β
− exp

(
− t− µ

β

)]
, (C1)

where γ is the Euler–Mascheroni constant and the mean
cover time is γβ+µ > 0. Introducing the general scaling
x = (t− µ)/β gives the standard Gumbel distribution.

Now let the maximum cover time of M independent
random walkers be σ = max{t1, . . . , tM}, or in the
rescaled variables y = max{x1, . . . , xM}. Due to inde-
pendence of the individual cover times y is also Gumbel
distributed with ⟨y⟩ = γ+ log(M). We transform the co-
ordinates back to give ⟨σ⟩ = β{γ + log(M) + µ/β}. The
APCT for M non-interacting searchers is then

S̃M =
β

M

{
γ + log(M) +

µ

β

}
. (C2)

(Note that for the APCT with interactions we cannot
make analytic progress with σ = max{t1, . . . , tM}, as
before, because the individual cover times, ti, are no
longer independent and so we cannot easily apply ex-
tremal value theory.) The MFA SM = ϕS̃M , where
ϕ = (1 − N−1)/(1 − ρ), then gives an approximate ex-
pression for the APCT with interactions

SM =
β
(
1−N−1

)
Nρ(1− ρ)

{
γ + log(Nρ) +

µ

β

}
. (C3)

We would like to find the density that minimises the
APCT for a network that has a single particle cover time
that is Gumbel distributed with parameters (µ, β). Set-
ting dSM/dρ = 0 to find the optimal ρ = ρ∗ yields

1− ρ∗

1− 2ρ∗
= γ +

µ

β
+ log(N) + log(ρ∗), (C4)

similar to Eq. (B4). Note that γ + µ/β > 0 as the mean
cover time must be positive and β is always positive.
Then for Eq. (C4) to hold as N → ∞ we require that
ρ∗ → 1/2 (as ρ∗ → 0 yields a trivial solution). Substi-
tuting ρ∗ = 1/2+ ξ into Eq. (C4) and linearising in ξ we
find that

ξ ≈ 1

2

[
1− 2

(
γ +

µ

β
+ logN

2

)]−1

. (C5)
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FIG. 7. The rescaled distributions for the cover times of all
1500 networks used to generate Fig. 2 (red) against the stan-
dard Gumbel distribution (black). The cover time distribu-
tions for each network are estimated using 106 random walk
instances.

Thus, as N → ∞, we have ξ < 0 and ξ → 0, so we
conclude that ρ∗ → 1/2 from below.

In order to justify the assumption that the cover times
are Gumbel distributed, for all 1500 networks used to
generate Fig. 2 we simulated n = 106 cover times, ti, for
single searchers and used the data to calculate maximum
likelihood estimators for the Gumbel distribution which
are

β̂ =
1

n

n∑
i=1

ti −
∑n

i=1 tiexp(−ti/β̂)∑n
i=1 exp(−ti/β̂)

, (C6)

and

µ̂ = −β̂ log
{
1

n

n∑
i=1

exp(−ti/β̂)

}
. (C7)

Using the maximum likelihood estimators we rescaled the
cover times using the transformation x = (t − µ̂)/β̂ and
present the distribution of cover times for each of the
networks against the standard Gumbel distribution. We
see in Fig. 7 that across the entire range of the networks
seen in Fig. 2 the Gumbel approximation is valid.

Appendix D: Generating random symmetric
networks

In this section we explain the procedure used to sample
the random networks seen in Fig. 2.

1: Select m and N , the required number of edges and
the number of nodes of the network respectively, such
that m ≥ N .

2: Sample uniformly the target degree distribution, d⃗,
such that every node has degree at least two, i.e.
d⃗ = 2(1, . . . , 1) +Multinomial(2(m−N), N).

op
tim

al
 d

en
si

ty

0

0.5

2 5average degree

London Underground

FIG. 8. The same networks as in Fig. 2, with optimal density
now plotted against average network degree.

3: Allocate di stubs to the i-th node for i ∈ {1, . . . , N}.
4: while there are stubs remaining do
5: if the only remaining connections to choose from

result in self-loops or multiple-edges then start over
and return to step 2.

6: else select two distinct nodes (avoiding self-loops)
with stubs remaining uniformly at random and con-
nect them with an edge only if they have not already
been connected (avoiding multiple-edges).

7: end if
8: end while
9: if the resulting network is not connected then return

to step 2.
10: else take the resulting network to be a single reali-

sation.
11: end if

Appendix E: Quantifying the predictive capacity of
the spectral gap versus the average degree

Here, we evidence the lesser predictive capacity of the
average degree compared to the spectral radius. We
present estimates for the uncertainty coefficient between
the optimal density, ρ∗, and two network properties: the
spectral gap, G, and the average degree, d̄. For two ran-
dom variables X and Y , the uncertainty coefficient is de-
fined as U(X|Y ) = I(X,Y )/H(X), where I(X,Y ) is the
mutual information between X and Y and H(X) is the
Shannon entropy of X. This measures what proportion
of the total possible information about X we can learn by
observing Y , with 0 ≤ U(X|Y ) ≤ 1. A coefficient of zero
means that X and Y are independent, while a coefficient
of one means that Y completely predicts X.

As we do not have access to the distributions for the
optimal density or the spectral gap, we must rely on esti-
mations of the mutual information. We use the algorithm
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(a) (b)

FIG. 9. Two sampled networks from Fig. 2 that have identical
degree distribution but markedly different optimal densities:
(a) ρ∗ = 0.01, (b) ρ∗ = 0.11.

proposed by Ross [54]. For the data presented in Fig. 2
the uncertainty coefficient between the optimal density
and the spectral gap is estimated to be U(ρ∗|G) = 0.4835
while for the same networks the average degree gives an
uncertainty coefficient of U(ρ∗|d̄) = 0.3769, demonstrat-
ing greater mutual information between the optimal den-
sity and the spectral gap compared to the average degree.

To see this, in Fig. 8 we replot Fig. 2 with aver-
age degree on the horizontal axis. While there is still
a good correlation, visual inspection suggests that even
our restricted ensemble networks of low average degree
are not as well correlated as with spectral radius, with
a greater number of outliers. Our two real-world net-
works are notable examples: the London Underground
network, marked in Fig. 8, clearly deviates from the bulk,
while the US airports network is an even worse match to
the trend at the off-axis point d̄ = 11.9, ρ∗ = 0.26. In-
deed, consider two of the sampled networks from Fig. 2,
shown in Fig. 9, which have identical degree distributions
{3, 3, 3, 3, 2, . . . , 2}: we find that the network in Fig. 9(a)
has an optimal density ρ∗ = 0.01 while that in Fig. 9(b)
has ρ∗ = 0.11, differing by a factor of 11. Thus aver-
age degree (or any degree distribution statistic) can be a
poor predictor of optimal density. However, the spectral
gaps for these networks are, respectively, G = 0.0005 and
G = 0.0012, with the more-than-doubled spectral gap of
(b) compared to (a) accounting for its higher optimal
density, particularly since small changes in G near zero
have large effects on ρ∗.

Appendix F: Optimal density and asymmetric
orientations

There are typically multiple topologically distinct ways
to bias the edges of the same undirected network, even
when fluxes are balanced. These different biases can in-
duce different cover time properties. For example, con-
sider the five distinct orientations of the same network in
Fig. 10(a–e). For bias strength ε = 0.1 these have opti-
mal densities ρ∗ = 0.40, 0.41, 0.41, 0.40 and 0.40 for (a) to
(e) respectively (with high statistical confidence). While
these differences are slight, the corresponding APCTs dif-
fer more markedly (Fig. 10(f)), and such differences will

(a) (b)

(c)

(e)

(d)

(f)
115

95

AP
C

T

0.35 0.44searcher density

(a) (b) (c)
(d) (e)

FIG. 10. (a–e) Five distinct flux-conserving (balanced) bias
orientations for a given fixed undirected network. (f) The
APCTs for each of the graphs (a–e) as a function of searcher
density near the optima. Each APCT is calculated from 106

random walk instances.

be particularly important if a large number of searchers
are being employed in a hybrid series–parallel search
strategy. In larger networks, we would expect this varia-
tion between different directional biases to be amplified.

Appendix G: Generating random balanced directed
networks

In this section we describe the sampling procedure for
the asymmetric random networks in Fig. 4.

1: Select m and N , the required number of edges and
the number of nodes of the network respectively, such
that m ≥ N .

2: Sample uniformly the target degree distribution for
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outwardly biased edges, d⃗out, such that every node
has outward degree at least one, i.e. d⃗out =
(1, . . . , 1) +Multinomial(m−N,N).

3: Set the degree distribution for the inwardly biased
edges to be d⃗in = d⃗out.

4: Allocate d⃗out(i) = d⃗in(i) outward stubs and inward
stubs to the i-th node for i ∈ {1, . . . , N}.

5: while there are stubs remaining do
6: if the only remaining connections to choose from

result in self-loops or multiple-edges then start over
and return to step 2.

7: else select uniformly at random a node with an

outward stub and a distinct node with an inward
stub. Connect these two nodes with an edge with
preferential direction from the outward node to the
inward node as long as these nodes have not been
connected before.

8: end if
9: end while

10: if the resulting network is not connected then return
to step 2.

11: else take the resulting network to be a single reali-
sation.

12: end if
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