
Mean-field Matsubara dynamics: Analysis of path-integral curvature effects in
rovibrational spectra
George Trenins, and Stuart C. Althorpe

Citation: The Journal of Chemical Physics 149, 014102 (2018); doi: 10.1063/1.5038616
View online: https://doi.org/10.1063/1.5038616
View Table of Contents: http://aip.scitation.org/toc/jcp/149/1
Published by the American Institute of Physics

Articles you may be interested in
Announcement: Top reviewers for The Journal of Chemical Physics 2017
The Journal of Chemical Physics 149, 010201 (2018); 10.1063/1.5043197

Perspective: Ring-polymer instanton theory
The Journal of Chemical Physics 148, 200901 (2018); 10.1063/1.5028352

Inclusion of nuclear quantum effects for simulations of nonlinear spectroscopy
The Journal of Chemical Physics 148, 244105 (2018); 10.1063/1.5036768

Perspective: How to understand electronic friction
The Journal of Chemical Physics 148, 230901 (2018); 10.1063/1.5035412

Treating linear molecule HCCH in calculations of rotation-vibration spectra
The Journal of Chemical Physics 149, 014101 (2018); 10.1063/1.5031844

Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice
The Journal of Chemical Physics 148, 102336 (2018); 10.1063/1.5004808

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162914654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1858055942/x01/AIP-PT/MB_JCPArticleDL_WP_0818/large-banner.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Trenins%2C+George
http://aip.scitation.org/author/Althorpe%2C+Stuart+C
/loi/jcp
https://doi.org/10.1063/1.5038616
http://aip.scitation.org/toc/jcp/149/1
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5043197
http://aip.scitation.org/doi/abs/10.1063/1.5028352
http://aip.scitation.org/doi/abs/10.1063/1.5036768
http://aip.scitation.org/doi/abs/10.1063/1.5035412
http://aip.scitation.org/doi/abs/10.1063/1.5031844
http://aip.scitation.org/doi/abs/10.1063/1.5004808


THE JOURNAL OF CHEMICAL PHYSICS 149, 014102 (2018)

Mean-field Matsubara dynamics: Analysis of path-integral curvature
effects in rovibrational spectra

George Trenins and Stuart C. Althorpea)

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 4 May 2018; accepted 7 June 2018; published online 3 July 2018)

It was shown recently that smooth and continuous “Matsubara” phase-space loops follow a quantum-
Boltzmann-conserving classical dynamics when decoupled from non-smooth distributions, which
was suggested as the reason that many dynamical observables appear to involve a mixture of classical
dynamics and quantum Boltzmann statistics. Here we derive a mean-field version of this “Matsub-
ara dynamics” which sufficiently mitigates its serious phase problem to permit numerical tests on a
two-dimensional “champagne-bottle” model of a rotating OH bond. The Matsubara-dynamics rovi-
brational spectra are found to converge toward close agreement with the exact quantum results at all
temperatures tested (200–800 K), the only significant discrepancies being a temperature-independent
22 cm−1 blue-shift in the position of the vibrational peak and a slight broadening in its line shape.
These results are compared with centroid molecular dynamics (CMD) to assess the importance of
non-centroid fluctuations. Above 250 K, only the lowest-frequency non-centroid modes are needed
to correct small CMD red-shifts in the vibrational peak; below 250 K, more non-centroid modes are
needed to correct large CMD red-shifts and broadening. The transition between these “shallow cur-
vature” and “deep curvature” regimes happens when imaginary-time Feynman paths become able to
lower their actions by cutting through the curved potential surface, giving rise to artificial instantons
in CMD. Published by AIP Publishing. https://doi.org/10.1063/1.5038616

I. INTRODUCTION

Results from a wide variety of approximate calculations
suggest that nuclear dynamics can often be treated classically
when confined to a single Born-Oppenheimer surface, with
most observable quantum effects originating in the quantum
Boltzmann statistics. Well-known examples include reaction
rates at low temperatures,1–10 where tunneling is dominated
by “instantonic” barrier statistics,7,8,11–14 and the vibrational
spectrum of liquid water.6,10,15–22

However, standard semi-classical theory9,10,23 implies
that such a “classical dynamics–quantum statistics” regime
does not exist, except at very short times, since it pre-
dicts that classical dynamics does not conserve the quan-
tum Boltzmann distribution, and that real-time coherence is
needed to keep systems in thermal equilibrium. Practical
simulation methods have been devised which get round this
apparent contradiction using heuristic quantum-Boltzmann-
conserving classical dynamics.24–28 Centroid molecular
dynamics (CMD)24 and (thermostatted) ring-polymer molec-
ular dynamics [(T)RPMD]25–27 have proved to be especially
practical,3–6,16–19 but the heuristic dynamics these methods
employ works in some regimes and fails in others.12,29–31

It was found recently32 that a semi-classical theory that
combines classical dynamics with quantum statistics can be
derived if one assumes that the dynamics of the smooth “Mat-
subara” components of the imaginary-time Feynman paths
becomes decoupled from the dynamics of the non-smooth

a)Electronic mail: sca10@cam.ac.uk

components. Once such a decoupling is assumed, the dynam-
ics of the smooth components becomes classical, without
further approximation (since the effective ~ in the smooth
space is zero). Also, the smoothness of the paths ensures
that the plain Newtonian dynamics33 that they follow con-
serves the quantum Boltzmann distribution by giving the
paths a continuous symmetry with respect to imaginary-time
translation.

This “Matsubara” dynamics is currently a hypothesis, and
it cannot be used as a practical method because of a serious
phase problem.32 However, comparison with the valid limits of
various heuristic methods suggests that Matsubara dynamics
does account correctly for the emergence of classical dynam-
ics at thermal equilibrium. For example, RPMD works well
for short-time properties such as reaction rates,1–6,11,12 and
is the short-time limit of Matsubara dynamics;34 CMD works
well when a mean-field description of the quantum Boltzmann
distribution is suitable,29,30 and is the mean-field average of
Matsubara dynamics (where the mean-field average is over all
Matsubara modes except for the centroids);34 and the “plane-
tary model” of Smith et al.35,36 works well for high-frequency
stretch modes in liquid water and is a locally harmonic approx-
imation to the Matsubara fluctuations around the centroid.37

These comparisons suggest that we should pursue Matsubara
dynamics further since it may lead to better understanding and
improvement of practical methods such as CMD, (T)RPMD,
and the planetary model.

Here, we strengthen the evidence that Matsubara dynam-
ics gives the correct theoretical description of classical dynam-
ics and quantum Boltzmann statistics. In doing so, we also
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obtain new insight into path-integral curvature effects in vibra-
tional spectroscopy and why they cause problems for CMD.
The CMD method works well for vibrational spectroscopy of
water at ambient temperatures,18,19 but breaks down at lower
temperatures, giving red-shifts and distortions in the spectral
line shapes.16,29,30 However, the success of CMD at high tem-
peratures gives us a clue that the dynamical decoupling of
the smooth modes from the non-smooth modes in Matsubara
dynamics (the origin of which was left unspecified in Ref. 32)
probably arises from mean-field averaging.

In Sec. II, we show that a mean-field formulation of Mat-
subara dynamics is simpler to derive than the more general
formulation of Ref. 32. The phase still makes the dynamics
impractical as a method, but is sufficiently tamed that Matsub-
ara dynamics can be used to calculate the vibrational spectrum
of a two-dimensional “champagne-bottle” model of OH, as
reported in Sec. III. We find that including just the lowest
frequency non-centroid modes corrects the CMD red-shift at
temperatures down to about 250 K, but that more modes need
to be included below this, where the CMD red-shift increases
dramatically. This low-temperature breakdown as shown in
Sec. IV, results from the proximity of artificial centroid-
constrained instantons which form when the imaginary-
time Feynman paths can lower their actions by cutting
through the curved potential surface. Section V concludes the
article.

II. MEAN-FIELD FORMULATION OF MATSUBARA
DYNAMICS

One way to obtain a mean-field formulation of Mat-
subara dynamics would be to mean-field average over the
Matsubara Liouvillian, derived in Ref. 32. However, it is illus-
trative to derive mean-field Matsubara dynamics from first
principles, starting from the exact quantum Kubo-transformed
time-correlation function

CAB(t) =
∫ β

0

dλ
β

Tr
[
e−λĤ Âe−(β−λ)ĤeiĤt/~B̂e−iĤt/~

]
, (1)

where β = 1/kBT and Ĥ is the system Hamiltonian. To simplify
the algebra, we consider a one-dimensional system in which
the operators Â and B̂ are functions of position only; these
results generalise easily to many dimensions and to operators
involving momenta.

Following Ref. 32 and earlier work,11,38,39 we can re-write
CAB(t) in “ring-polymer” form as

CAB(t) = lim
N→∞

∫
dq

∫
d∆

∫
dz AN (q)BN (z)

×

N∏
l=1

〈ql−1 − ∆l−1/2|e
−βN Ĥ |ql + ∆l/2〉

× 〈ql + ∆l/2|e
−iĤt/~ |zl〉〈zl |e

iĤt/~ |ql − ∆l/2〉, (2)

where βN ≡ β/N, ∫ dq ≡ ∫
∞
−∞ dq1 . . . ∫

∞
−∞ dqN , and similarly

for ∆ and z, and

AN (q) =
1
N

N∑
i=1

A(qi) (3)

and similarly for BN (q). Inserting complete sets of momentum
states,

δ(∆l − ∆
′
l ) =

1
2π~

∫ ∞
−∞

dpl eipl(∆l−∆
′
l)/~, (4)

we obtain

CAB(t) = lim
N→∞

1
(2π~)N

∫
dq

∫
dp

[
e−βĤ

]

N
(p, q)

× AN (q) eL̂tBN (q), (5)

where the generalized Wigner transform
[
e−βĤ ]

N (p, q) and the
quantum Liouvillian L̂ are given in the Appendix. We empha-
sise that no approximation has yet been made; Eq. (5) is just
a generalization of the standard Wigner identity which allows
quantum time-correlation functions to be written in terms of
phase-space variables.23

Following Ref. 32, we introduce the free-ring-polymer
normal-mode coordinates40,41

Qn =
1
N

N∑
l=1

Tlnql, n = 0,±1, . . . ,±nN (6)

with nN = (N − 1)/2 and

Tln =




1 n = 0,
√

2 sin(2πln/N) n = 1, . . . , nN ,
√

2 cos(2πln/N) n = −1, . . . ,−nN ,
(7)

and the associated frequencies

ω′n =
2
βN~

sin
(nπ

N

)
. (8)

We then take the limit N → ∞ and define the set of M low-
est frequency modes (|n| ≤ (M − 1)/2) to be the “Matsubara
modes” QM , so-called because their associated frequencies
simplify to

ωn =
2nπ
β~

(9)

since M � N. The significance of the Matsubara modes is that
any linear combination of them gives a smooth and continu-
ous distribution of q as a function of imaginary time.32,42,43

Inclusion of the other |n| > (M − 1)/2 “non-Matsubara modes”
gives, in general, a discontinuous non-differentiable distribu-
tion in q, resembling a random walk. The Matsubara modes
PM , DM give similarly smooth distributions of p and ∆.

The only approximation we will make to the exact dynam-
ics of Eq. (1) is to assume that the quantum Louivillian operator
L̂ can be replaced by its mean-field average

L̂MF(QM , PM )

= lim
N→∞

∫ dp ∫ dq
[
e−βĤ

]
N
δM (q, QM )δM (p, PM ) L̂(p, q)

∫ dp ∫ dq
[
e−βĤ

]
N
δM (q, QM )δM (p, PM )

,

(10)

where

δM (q, QM ) =
nM∏

n=−nM

δ*
,
Qn −

1
N

N∑
i=1

Tinqi
+
-

(11)

is a product of Dirac δ-functions in the Matsubara modes QM ,
δM (p, PM ) is similarly defined for PM , and nM = (M − 1)/2.
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We also need to expand AN (q) in terms of normal modes, then
truncate at |n| ≤ nM , giving

AM (QM ) = lim
N→∞

1
N

N∑
i=1

A(q̃i), (12)

where

q̃i =

nM∑
n=−nM

TinQn (13)

and similarly for BN (q). This last step can be justified by noting
that the ring-polymer distribution will damp off functions of Qn

for sufficiently large n, allowing M in AM (QM ) and BM (QM )
to be treated as a convergence parameter. However, we give no
justification at present for the use of Eq. (10), except for the
numerical results presented in Sec. III.44

On evaluating the mean-field average in Eq. (10) (see the
Appendix), we find that

L̂MF(QM , PM ) =
nM∑

n=−nM

Pn

m
∂

∂Qn
−
∂F(QM )
∂Qn

∂

∂Pn
, (14)

where F(QM ) is the free energy

e−βF(QM ) = lim
N→∞

(
m

2π βN~2

) (N−M)/2

NM/2

×

∫
dq e−β[WN (q)−SM (QM )]δM (q, QM ) (15)

in which WN (q) is the ring-polymer potential energy

WN (q) = VN (q) +
1
N

N∑
l=1

m(ql+1 − ql)2

2(βN~)2
, (16)

where ql+N ≡ ql, VN (q) is defined analogously to AN (q), and

SM (QM ) =
m
2

nM∑
n=−nM

ω2
nQ2

n (17)

is the Matsubara component of the “polymer springs.” Tak-
ing the mean-field average over the non-Matsubara modes has
therefore made the dynamics classical.45 This is because the
Matsubara phase-space (PM , QM ) has an effective Planck’s
constant of zero, as first noted in Ref. 32.

Having made the mean-field approximation, we can inte-
grate out the non-Matsubara modes from the time-correlation
function (see the Appendix), obtaining

cAB(t) =
1

(2π~)M

∫
dPM

∫
dQM e−β

[
P2

M/2m+F(QM )
]

× eiβθM (PM ,QM )A(QM )eL̂MF tB(QM ), (18a)

where

θM (PM , QM ) =
nM∑

n=−nM

ωnPnQ−n (18b)

is the Matsubara phase. Following similar arguments to
Ref. 32, one can prove that θM (PM , QM ) is a constant of the
motion, ensuring that L̂MF(QM , PM ) conserves the quantum
Boltzmann distribution in Eq. (18). At t = 0, one may analyti-
cally continue Pn→ Pn + iωnQ−n,34 which removes the phase
and cancels out −SM (QM ) in Eq. (15), leaving the (standard)
ring-polymer distribution.

Equations (10) and (18) give the mean-field version of
Matsubara dynamics. For M = 1, they reduce to centroid
molecular dynamics (CMD);24 for M > 1, they generalise the
dynamics to include M − 1 non-centroid Matsubara modes.
As mentioned above, the mean-field averaging in Eq. (10) is
the only approximation made to the exact quantum dynamics;
we make no attempt here to justify it, but report numerical
comparisons with the exact quantum results in Sec. III.

III. MATSUBARA DYNAMICS
OF A VIBRATING-ROTATING OH BOND
A. Two-dimensional “champagne-bottle” model

We applied the mean-field Matsubara equations, Eq. (18),
to a two-dimensional “champagne-bottle” model of a vibrat-
ing and rotating OH bond, similar to that used in Refs. 29
and 30. The radial polar coordinate r represents the OH bond
length and the polar angle θ represents rotation in a plane. The
potential is taken to be a Morse function

V (r) = D0

[
1 − e−α(r−req)

]2
(19)

with req = 1.8324, D0 = 0.18748, and α = 1.1605 a.u.; the
reduced mass µ = 1741.05198 a.u. The absorption intensity is
calculated as

n(ω)α(ω) ∝
1

2πZ

∫ ∞
−∞

dt e−iωtCµ̇µ̇(t)f (t), (20)

where Z is the quantum partition function, Cµ̇µ̇(t) is the Kubo-
transformed dipole-derivative autocorrelation function, and
f (t) is the window function

f (t) =
1

1 + e( |t |−t1/2)/τ
(21)

with parameters t1/2 = 400 fs and τ = 25 fs, chosen to model the
decorrelation time in liquid water.20,31 A linear dipole moment
surface µ̇ = q̇ is used, with the proportionality constant in
Eq. (20) set to unity.

Figure 1 plots the exact quantum spectrum (calculated
using a discrete variable representation) at 200–800 K. These
temperatures are sufficiently low with respect to the vibrational
spacing (3590 cm−1) that the centre of the vibrational peak is
temperature-independent.

B. CMD calculations

For M = 1, the mean-field Matsubara equations, Eq. (18),
are equivalent to CMD. We used standard path-integral molec-
ular dynamics (PIMD) methodology6,46–51 to calculate the
CMD approximations to the vibrational spectrum of the
champagne-bottle model. The mean-field forces were eval-
uated on a regular grid, using cubic spline interpolation to
approximate the intermediate values. Mean-field force calcu-
lations were performed with 64, 32, and 16 beads at 200, 400,
and 600–800 K, on a grid of 64 points from 0.5 to 2.0 Å at
400–800 K and 128 points at 200 K.

The results of the CMD calculations are shown in Fig. 1
and exhibit the well-known “curvature problem,”29,30 whereby
the CMD vibrational peak shifts to the red as the temperature is
lowered. Two aspects of this behavior are worth pointing out.
First, at 800 K, the CMD peak is in very close agreement with
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FIG. 1. Mean-field Matsubara simulations of the two-dimensional
champagne-bottle rovibrational spectrum, compared with the exact quantum
results, and with TRPMD and CMD. Note the temperature-independent
absorption maxima of the Matsubara and TRPMD vibrational peaks and the
CMD red-shift which grows rapidly on decreasing the temperature from 400
to 200 K.

the exact quantum peak, except for a small blue-shift (22 cm−1)
and a slight overestimate in the width of the peak. Note that the
classical peak at this temperature (not shown) is blue-shifted
by about 105 cm−1 on account of zero-point energy violation,
and is similarly broadened. Second, the red-shift of the CMD
peak increases gradually down to about 250 K, and the line
shape remains close to the exact result; but below about 250 K,
the red-shift increases dramatically (to 215 cm−1 at 200 K),
and the line shape broadens noticeably. We return to these two
points below.

C. Mean-field Matsubara calculations

Mean-field Matsubara spectra for M > 1 were calculated
using a straightforward generalization of Eq. (18) to 2M Mat-
subara modes (XM , YM ), with AM = BM taken to be Ẋ0 and Ẏ0.
For M > 1, it is only practical to evaluate F(XM , YM ) on the
fly, using an extension to 2M modes of the partially-adiabatic
CMD technique of Ref. 50. This entails using N-bead ring-
polymers, with the mean-fielding over the 2(N − M) highest
modes accomplished through adiabatic decoupling, by shift-
ing the respective frequencies to a large valueΩ, and re-scaling
the associated masses mn = m(ωn/Ω)2. To ensure proper
sampling, a Langevin thermostat is attached to each of the
mean-fielded modes, with the friction coefficient set to the
optimal value of 2Ω.51

Converged M = 3 spectra were obtained for N = 32 at
200 K and N = 16 at 400–600 K; the M = 5 spectrum was

calculated for N = 24. The adiabatic frequency was taken to
be Ω = Γ/βN~, with the adiabatic separation Γ = 32 at all
temperatures. The drawback of this approach is that a small
time-step ∆t is needed to cope with the rapid motion of the
mean-fielded modes; we used ∆t = 0.003125 fs.

As expected, the most challenging part of the calcula-
tion was integrating over the phase θM , which was done by
evaluating the ratio

cAB(t) =

〈
cos(βθM )A(QM )eL̂MF tB(QM )

〉〈
exp

(
−β

∑
mω2

nQ2
n/2

)〉 , (22)

where 〈·〉 denotes thermal averaging according to the dis-
tribution e−β[P2

M/2m+F(QM )], and the sum in the denominator
is over the M non-mean-fielded modes. The sampling was
done by averaging over an ensemble of partially adiabatic tra-
jectories, each 1000 fs long. For a given number of modes
M, the convergence is slower at higher temperatures, as the
system samples more of the phase-space, making the inte-
grand in the numerator of Eq. (22) more oscillatory. With the
computing resources available, we were unable to go beyond
M = 1 at 800 K, M = 3 at 600 and 400 K, and M = 5 at
200 K. For the M = 3 calculations, 6 × 106, 3 × 107, and
8 × 107 trajectories were used at 200, 400, and 600 K; for
M = 5, 3× 108 trajectories were used, the latter taking three
weeks on 128 CPU cores to complete. Even within these limits,
small numerical artifacts are likely to remain in the rovibra-
tional spectra, resulting from imperfect adiabatic separation
and sampling.

Figure 2 illustrates the convergence of the mean-field Mat-
subara results with respect to M. As mentioned above, we were
unable to include more than a few non-mean-fielded modes,
owing to the oscillatory Matsubara phase. However, the results
for M = 1, 3, 5 at 200 K (Fig. 2), for which the CMD red-shift
is greatest, suggest that these small values of M are suffi-
cient to converge the position and the overall shape of the
vibrational peaks. Some convergence artifacts remain, visible
as “wiggles” in the spectra in Fig. 2. These artifacts are not

FIG. 2. Convergence of the mean-field Matsubara rovibrational spectrum
with respect to the number of non-mean-fielded modes 2M. Spectra for
M = 3 and M = 5 at 400 and 200 K, respectively, are also plotted in Fig. 1.
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sampling errors: they are the result of incomplete convergence
with respect to M and indicate that a small component of the
dynamics requires a long “tail” of Matsubara modes to be
described correctly. Some of the wiggles can be made to dis-
appear if the fluctuations around the centroid are approximated
by local normal modes (these results not shown), suggesting
that they are caused by vibration-rotation coupling. The con-
vergence “tail” is thus probably the result of using Cartesian
rather than polar Matsubara modes.

Even with the convergence errors discussed above, the
Matsubara results in Fig. 1 are in strikingly good agreement
with the exact quantum results, across the entire 200–800 K
temperature range tested. Most importantly, the Matsubara
vibrational peak positions are correctly independent of tem-
perature, with the 22 cm−1 blue-shift observed in the CMD
results at 800 K remaining constant down to 200 K to within
the sampling error.52 The slight broadening of the vibrational
line shape seen in the CMD results at 800 K also continues in
the Matsubara results down to 200 K (although the line shapes
are likely to be somewhat distorted by the convergence errors
mentioned above). If we rule out the possibility of a long con-
vergence tail in M changing the position of the vibrational
peak, we can infer that the 22 cm−1 red-shift and the slight
narrowing of the quantum vibrational peak with respect to the
Matsubara peak are the only significant real-time coherence
effects.

Subject to these caveats, we can also infer that CMD
agrees closely with Matsubara dynamics at 800 K, and gives
a reasonable approximation to it down to about 250 K. In this
temperature range, the CMD red-shifts are small and can be
corrected by including just the |n| = 1 Matsubara modes. How-
ever, below 250 K, the CMD red-shift increases dramatically.
At 200 K, the |n| = 2 modes are also needed to correct the
red-shift, and many more modes would be required at lower
temperatures.

IV. CENTROID-CONSTRAINED INSTANTONS

To investigate why CMD breaks down rapidly below
250 K, we plot in Fig. 3 the centroid mean-field force

−dF/dR0, R0 =

√
X2

0 + Y2
0 , at 200–600 K, and overlay this

with the CMD Boltzmann distribution as a function of R0. As
has been noted previously,29,30 the force flattens out for values
of R0 less than a certain radius, and this radius increases as
the temperature decreases. Figure 3 shows immediately why
CMD breaks down below about 250 K: at 400 and 600 K,
the quantum Boltzmann distribution is well separated from
the flat region, but at 200 K, the distribution starts to overlap
it.

It is easy to identify the origin of the flattening. Figure 4
shows the centroid-constrained ring-polymer distribution at
three points along a single trajectory at 400 K and at 200 K.
The 200 K trajectory is one of the 6% of trajectories that
make it into the flat region at this temperature. During the
400 K trajectory, the distribution moves as a relatively compact
“blob,” stretching slightly at the inner turning point as it pushes
against the repulsive wall; the minimum-energy ring-polymer
within the distribution (i.e., the imaginary-time Feynman path

FIG. 3. The CMD mean-field force −dF(R0)/dR0 (red line) plotted on top of
the corresponding Boltzmann distribution ∝ R0e−βF(R0) (shaded blue). The
dotted vertical lines indicate the position of the critical radius Rc given by
Eq. (23). Note that Rc coincides with the onset of the flattening of the force,
and that the Boltzman distribution overlaps Rc at 200 K.

with the least action) is a point at the centroid. During the
200 K trajectory, by contrast, the distribution smears out at
the turning point, where the minimum-energy ring-polymer
has a delocalised geometry (Fig. 4). Since this geometry is an
extremal point on the ring-polymer surface, subject to the cen-
troid constraint, the path followed by the beads corresponds to
a periodic orbit on the inverted potential surface, subject to a
time-averaged constraint. In other words, by constraining the
centroid in the distribution, the CMD method creates artificial
instantons below 250 K.

We can make analogies with instanton formation in quan-
tum rate theory7,8,12–14 to understand what is happening at
these lower temperatures. In rate theory, instantons form below
a cross-over temperature; in the CMD dynamics considered
here, it is more convenient to define a “cross-over radius” Rc.
By minimising the ring-polymer energy subject to the cen-
troid constraint, one can show (see the supplementary material)
that

Rc ' −
1

mω2
1

dV
dr

������r=Rc

, (23)

whereω1 is the first Matsubara frequency as defined in Eq. (9).
The values of Rc at 200–800 K are shown in Fig. 3 and are
found to coincide with the onset of the flat region of the cen-
troid force. For R0 < Rc, the potential is sufficiently curved that
a centroid-constrained ring-polymer can minimize its energy
by stretching and moving outwards (leaving the position of
the centroid unchanged); it cannot stretch around a perfectly
circular path since this would correspond to a purely rotational
periodic orbit on the inverted potential, with a period greater
than β~; so the orbit follows a gently parabolic curve which
cuts through the circular potential energy surface. The varia-
tion of V along the parabolic curve is plotted in Fig. 5, which
shows that the imaginary-time periodic orbit on the inverted
potential resembles a conventional instanton or “bounce” in

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022824
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FIG. 4. Snapshots of CMD trajectories on the Morse potential of Eq. (19)
(black contour lines, req dotted), with centroid-constrained bead distribu-
tions shown in red and corresponding minimum-energy ring-polymer con-
figurations in blue. Note the artificial instanton in the 200 K trajectory at
12.9 fs.

barrier tunneling.7,8,12,13 For R0 > Rc, the potential is not
sufficiently curved for the ring-polymers to be able to lower
their energy by cutting through the potential, and hence the
minimum-energy ring-polymer collapses to a point at the
centroid.

The two temperature regimes are thus analogous to the
“shallow” and “deep” tunneling regimes in reaction rate

FIG. 5. Potential energy along the beads (discrete imaginary-time steps) of
the artificial centroid-constrained instanton shown in Fig. 4. The path length
s is taken to be a linear function of the polar coordinate θ. The potential
energy varies because the path followed by the instanton in Fig. 4 is gently
parabolic.

theory,12 with 250 K being the approximate “cross-over tem-
perature” for the OH model. Just as in rate theory, the notion of
a precise cross-over temperature is somewhat artificial since it
refers to the switch in the position of the ring-polymer station-
ary point from the collapsed to the instanton geometry. In rate-
theory, instanton-like delocalisation starts to happen above
crossover, as a result of softening of the lowest-frequency
Matsubara mode. Analogous behavior is responsible for the
large red-shift in the CMD vibrational peak at 200 K. Only
6% of the CMD trajectories make it into the flat region
(R0 < Rc), but a majority of trajectories get sufficiently close to
R0 = Rc for the first Matsubara mode to soften appreciably. At
lower temperatures (not shown here), all the CMD trajectories
enter the flat region to form instantons, giving rise to much
greater red-shifts and broadening of the vibrational peak (e.g.,
see the 100 K red-shifts calculated for a similar OH model in
Ref. 29).

It is important not to push the analogy with rate theory
too far: the instantons in rate-theory are real, but the centroid-
constrained instantons identified above are artificial. However,
the change in the quantum statistics that takes place at about
250 K is real: below this temperature, the ring-polymers are
sufficiently floppy that they can lower their energy by cutting
through the curvature of the potential surface.53

Periodic orbits and related objects can sometimes show
special behavior in two dimensions (2D), and for this rea-
son, we also examined centroid trajectories in the three-
dimensional (3D) version of the model.54 We found that
the extra degree of freedom permitted a different type of
instanton to form, corresponding to a circular periodic orbit
in a plane tangential to R0 on the inverted potential sur-
face. One of these circular instantons is shown in Fig. 6.
Despite the different instanton geometries, the 3D centroid-
constrained distributions have very similar behavior to the
2D distributions because the crossover radius Rc for the
3D circular orbits is the same as that for the 2D parabolic
orbits, which also extremise the action in 3D (see the sup-
plementary material). As a result, the 3D mean-field centroid
force flattens out at the same radial displacement as the 2D
force. Curvature effects are slightly bigger in 3D because
the Boltzmann distributions overlap the flat region slightly
more. Similar circular instantons have also been found in
CMD distributions for gas-phase water,55 suggesting that the
2D picture developed here applies to vibrational spectroscopy
generally.

FIG. 6. A circular-orbit artificial instanton formed during a CMD trajectory
at 200 K in a three-dimensional champagne-bottle model of OH (the instanton
beads are shown as white spheres for the H-atom, red for the O-atom). Plotted
on the right is a side-on view of the same instanton (in white), together with a
parabolic instanton (in blue) from a two-dimensional calculation at the same
temperature with the same centroid constraint.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022824
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V. CONCLUSIONS

We have shown that Matsubara dynamics can be derived
more simply as a mean-field theory. This does not solve the
phase problem, but does make the approach sufficiently prac-
tical to treat model systems. In tests on a two-dimensional
model of a rotating OH bond, the Matsubara vibrational spec-
tra were found to agree closely with the exact quantum results
over the entire 200–800 K temperature range tested. This is a
strong piece of evidence in support of the idea that Matsubara
dynamics account for the classical part of the exact dynam-
ics in a quantum Boltzmann distribution. Real-time quantum
coherence effects were found to be minor in the OH model: a
22 cm−1 red-shift in the position of the quantum vibrational
peak (with respect to the Matsubara result) and a slight narrow-
ing in its shape. It seems reasonable to expect a comparably
small red-shift and narrowing in the OH-stretch band of bulk
water.

We also found that quantum Boltzmann statistics responds
to the curvature of the OH potential in two distinct ways, giv-
ing rise to “shallow curvature” and “deep curvature” regimes
which are loosely analogous to the “shallow tunneling” and
“deep tunneling” regimes in quantum rate theory.12 The
crossover temperature (250 K in the OH model) marks the
point at which imaginary-time Feynman paths can lower their
actions by cutting through the curved potential surface. This
behavior gives rise to artificial instantons in CMD, explain-
ing why CMD gives a reasonable approximation to Matsub-
ara dynamics above the crossover temperature, but a poor
one below it. Although tested on a simple model, we expect
this result to generalise and for it to be possible to estimate
the crossover temperature in bulk systems by searching for
centroid-constrained instantons that minimise the action. It
is likely that the crossover temperature for the OH-stretch
band in bulk water is below freezing since CMD works well
for the liquid18,19 but gives significant vibrational red-shifts
for ice.16

SUPPLEMENTARY MATERIAL

See supplementary material for a derivation of Eq. (23)
for both the parabolic and circular instantons.
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APPENDIX: MATHEMATICAL DETAILS

The generalised Wigner transforms in Eq. (5) are
[
e−βĤ

]

N
(p, q)

=

∫
d∆

N∏
l=1

〈ql−1 − ∆l−1/2|e
−βN Ĥ |ql +∆l/2〉e

ipl∆l/~

(A1)

and

[
B̂(t)

]
N

(p, q) =
∫

d∆
∫

dz BN (z)

×

N∏
l=1

〈ql − ∆l/2|e
−iĤt/~ |zl〉

× 〈zl |e
iĤt/~ |ql + ∆l/2〉e

ipl∆l/~ (A2)

with [B̂(0)]N (p, q) = BN (q).
To obtain the quantum Liouvillian L̂N in Eq. (5), we

generalise the standard derivation of the Moyal series,23 differ-
entiating [B̂(t)]N (p, q) with respect to t, and using integration
by parts to pull the Heisenberg time-derivatives in front of the
integral, giving

d
dt

[
B̂(t)

]
N

(p, q) = L̂N

[
B̂(t)

]
N

(p, q), (A3)

where

L̂N =

N∑
l=1

pl

m
∂

∂ql
− V (ql)

2
~

sin *.
,

←−
∂

∂ql

~

2

−→
∂

∂pl

+/
-

(A4)

and the arrows indicate that the differential operators act to the
left and right, respectively.

To evaluate the mean-field integrals in Eq. (10), we first
rewrite L̂N in terms of the normal-mode coordinates (PN , QN )
as

lim
N→∞

L̂N = LM + lim
N→∞

L̂N ,M , (A5)

where

LM = lim
N→∞

nM∑
n=−nM

Pn

m
∂

∂Qn

− VN (Q)
2N
~

sin *.
,

nM∑
n=−nM

~

2N

←−
∂

∂Qn

−→
∂

∂Pn

+/
-

(A6)

involves derivatives of only the Matsubara modes (PM , QM ),
and L̂N ,M involves also derivatives of the non-Matsubara
modes. We do not need to know L̂N ,M explicitly (although
it can easily be obtained using trigonometric identities32,41),
since its mean-field average is zero on account of the
derivatives in the non-Matsubara modes. This leaves us
with LM , which simplifies (without approximation, because
M � N) to

LM = lim
N→∞

nM∑
n=−nM

Pn

m
∂

∂Qn
−
∂VN (Q)
∂Qn

∂

∂Pn
(A7)

with VN (Q) defined analogously to AN (Q) of Eq. (3).
To carry out the mean-field average in Eq. (10), we

therefore need to evaluate the integrals

In(PM , QM ) =
∫

dp
∫

dq
[
e−βĤ

]

N
δM (q, QM )

× δM (p, PM )
∂VN (Q)
∂Qn

. (A8)
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Integrating over p gives

In(PM , QM ) = (2π~)N−MNM
∫

dDM

∫
dq

× 〈ql−1 − ηl−1/2|e
−βN Ĥ |ql + ηl/2〉

× δM (q, QM )
∂VN (Q)
∂Qn

nM∏
k=−nM

eiDkPkN/~ (A9)

with

ηl =

nM∑
n=−nM

TlnDn. (A10)

Writing the bra-kets as

lim
N→∞
〈ql−1 − ηl−1/2|e

−βN Ĥ |ql + ηl/2〉

=

(
m

2π βN~2

)1/2

e−βN [V (ql+ηl/2)+V (ql−1−ηl−1/2)]/2

× e−[ql−ql−1+(ηl+ηl−1)/2]2m/2βN~
2
, (A11)

we obtain

lim
N→∞

In(PM , QM )

= lim
N→∞

(2π~)N−M
(

m

2π βN~2

)N/2

× NM
∫

dDM

∫
dq δM (q, QM )

∂VN (Q)
∂Qn

×

N∏
l=1

e−βN [V (ql+ηl/2)+V (ql−ηl/2)]/2e−(ql−ql−1)2m/2βN~
2

×

nM∏
k=−nM

e−D2
k N2m/2β~2

eDkQ−kωkNm/~eiDkPkN/~, (A12)

where we have made use of the orthogonality of T and the
relations

Tl+1 n = Tln + O(N−1),

Tl+1 n − Tl n = Tl −nωn βN~ + O(N−2) (A13)

(easily proved using trigonometric identities). In the limit
N → ∞, the integrals over DM can be done analytically
(since the e−D2

k N2m/2β~2
terms allow one to neglect the ηl-

dependencies in V ), giving

lim
N→∞

In(PM , QM ) = lim
N→∞

NM/2
(

2πm
βN

) (N−M)/2

e−βP2
M/2m

× eiβθM (PM ,QM )
∫

dq e−β[WN (q)−SM (QM )]

× δM (q, QM )
∂VN (Q)
∂Qn

. (A14)

Substituting this expression into Eq. (10) and evaluating the
analogous integral in the denominator gives Eq. (15). A similar
integration over p and DM in the time-correlation function
[noting that AM (QM ) and eL̂MF tBM (QM ) are independent of the
non-Matsubara modes] gives Eq. (18a).
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