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We have solved numerically the diffusive Usadel equations that describe the spatially-varying super-
conducting proximity effect in Ti−Al thin-film bi- and trilayers with thickness values that are suit-
able for Kinetic Inductance Detectors (KIDs) to operate as photon detectors with detection thresh-
olds in the frequency range of 50−90 GHz. Using Nam’s extension of the Mattis-Bardeen calculation
of the superconductor complex conductivity, we show how to calculate the surface impedance for
the spatially varying case, and hence the surface impedance quality factor. In addition, we calculate
energy-and spatially-averaged quasiparticle lifetimes at temperatures well-below the transition tem-
perature and compare to calculation in Al. Our results for the pair-breaking threshold demonstrate
differences between bilayers and trilayers with the same total film thicknesses. We also predict high
quality factors and long multilayer-averaged quasiparticle recombination times compared to thin-
film Al. Our calculations give a route for designing KIDs to operate in this scientifically-important
frequency regime.
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Keywords: Kinetic Inductance Detectors, Superconducting proximity effect, Surface impedance, Recombi-
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I. INTRODUCTION

Kinetic Inductance Detectors (KIDs) are thin-film super-
conducting devices, typically ∼ 100 nm-thick, that can
be configured as ultra-sensitive detectors for astronomical
observations across the electromagnetic spectrum.1 They
are readily fabricated by conventional ultra-high vacuum
deposition techniques and can be patterned using op-
tical lithography. KID operating temperatures are low
(T ∼ 1 K or below) giving excellent performance in terms
of energy resolution when used as microcalorimeters, or
noise equivalent power when used as bolometers. Achiev-
ing ultimate performance and low noise requires that the
operating temperature satisfies T/Tc . 0.15, where Tc

is the superconducting transition temperature. Low op-
erating temperatures ensure sufficiently long quasiparti-
cle recombination times τr such that the quasiparticle
generation-recombination noise is minimized and signal-
to-noise is maximized.2–6 In practice the minimum op-
erating temperature Tb is determined by available cryo-
genic technology, so that Tb ' 60 mK using an adiabatic
demagnetization refrigerator (ADR), or a dilution refrig-
erator, has become a practical lower-bound for experi-
ments sited in remote high-altitude terrestrial observato-
ries or on satellites. The photon detection threshold of a
KID is determined by the requirement that the photon
has sufficient energy to break a Cooper pair hν ≥ 2∆g,
where h is Planck’s constant, ν is the frequency of the
detected radiation, and ∆g is the superconducting en-
ergy gap. Each broken pair creates two excess quasi-
particles, and the timescale for the recombination of the
excess back into pairs, whilst emitting phonons, is de-
termined by τr. The effect of pair-breaking can be de-
tected by configuring the superconductor into a thin-film
L− C resonator that is readout by a low frequency mi-

crowave probe (typically 1− 10 GHz) close to the circuit
resonant frequency f0. A change in the number of pairs,
changes the superconductor complex conductivity σ, sur-
face impedance Zs, quality factor Q, and f0, and can be
observed in the through-transmission of the probe cir-
cuit. The advantage of the scheme is that as few as two
coaxial lines are required to connect from the room tem-
perature to Tb to readout an array. The readout readily
lends itself to frequency domain multiplexing. High de-
tector Q values are required to achieve high responsivity,
high sensitivity, and high multiplexing factors.1,2

There exists a particular challenge in the design of
KIDs as low frequency detectors for Cosmic Microwave
Background observations at ∼ 70 − 120 GHz from the
ground, or on a satellite,7,8 for measurement of low red-
shift CO lines at around 100− 110 GHz,9,10 or for mea-
surements of O2 rotation lines at 50 − 60 GHz for at-
mospheric profiling.11–13 At the detection threshold fre-
quency νg = 2∆g/h, the details of the photon-Cooper
pair interaction matrix (the so-called case II interaction)
mean that the interaction probability is vanishingly-small
at low temperatures and increases towards the normal-
state value only slowly as a function of ν.14 Using the
Bardeen-Cooper-Schrieffer (BCS) result ∆g = 1.76 kBTc

where kB is Boltzmann’s constant, the constraints on
Tc determined by bath temperature and pair-breaking
threshold can be parameterized as 7Tb . Tc ≤ κνg. κ de-
pends on geometry, such that, for direct absorption, κ '
14 mK/GHz at threshold, reducing to ' 10 mK/GHz if
a margin of 25% is adopted to achieve a pair-breaking
efficiency of order 30% of the normal-state value (see
Fig. 6 later). There are few elemental superconduc-
tors with the required Tc (∼ 500 − 900 mK) that sat-
isfy these constraints. For example, Al with Tc of 1.2 K
has a detection threshold of 88 GHz. Current solutions
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to this problem have been to use alloy superconductors,
such as AlMn,15 or reactively sputtered materials such as
TiN,16 such that Tc and ∆g can be adjusted to the ap-
plication. But these sub-stoichiometric compounds have
shown wide variations in their properties even in a sin-
gle deposition,17 and the current preferred solution is to
use multilayers consisting of pure Ti and stoichiometric
TiN.18,19 For transition edge sensors where it is necessary
to tune Tc, the most-common technological solution is a
metallic bi- or trilayer where the properties of a super-
conducting film S are modified by the superconducting
proximity effect due to its close electronic contact to a
lower-gap superconducting or normal metal S′. Cooper
pairs diffuse from S into S′, changing the overall super-
conducting properties of the composite. Catalano et al.8

have recently explored this approach in the context of
Al/Ti KIDs. Their prediction for the energy gap of the
bilayer used Cooper’s model20 to calculate the weighted-
average electron-phonon coupling constant N0V (N0 is
the single-spin density of electron states at the Fermi
energy and V is the interaction potential). The usual
BCS self-consistency expression was then used to solve
for Tc

14 and hence ∆g. We will refer to this approach as
the “weighted-average model”.

A full analysis of a multilayer resonator for use as a
KID requires a proper account of the spatial variation of
its superconducting properties as a function of position
through the film, x. The best approach to this problem
is to solve the one-dimensional diffusive Usadel equations
with appropriate boundary conditions.21–25 This is the
approach we use here. For simplicity we concentrate on
Ti−Al bilayers and Al− Ti−Al trilayers although the
method would apply for any material combinations that
can be described by BCS superconductivity. We compare
the results of these proximity structures with that of Al,
since the properties of Al are well characterised, both as
a BCS superconductor, and as a mature KID system (e.g.
NIKA).26,27

In Sec.II we outline the theoretical basis of the model.
This allows us to calculate the spatial variation of the
superconducting order parameter ∆(x), the quasiparti-
cle and pair densities of states, and the superconducting
energy gap ∆g. We show how to calculate the complex
conductivity σ(x) and the surface impedance Zs taking
account of spatially varying film properties. We dis-
cuss how to take account of the ordering of a multilayer
with respect to the incident field. From Zs we calculate
the surface impedance quality factor Qs. We calculate
the position and energy dependent quasiparticle recom-
bination time τr(x,E) (E is the energy) and introduce
expressions for energy- and multilayer-averaging of τr.
Throughout these calculations we take full account of
the spatial variation of the material parameters Tc, N0,
normal-state conductivity σN, and characteristic quasi-
particle recombination time τ0 for dissimilar materials.
Whilst some of these equations have been described pre-
viously, here we present a consistent formulation using
a common framework. This is essential and means that

the model described reduces to more usual expressions in
the homogeneous BCS limit.

Section III gives details of the numerical method and
material parameters and we discuss the temperature scal-
ing used to ensure that calculations of the properties of
multilayers with different νg are done in comparable tem-
perature regimes. In Sec. IV we show some of the most
important outcomes of the modeling. The quasiparticle
and pair densities of states calculated here deviate sig-
nificantly from the homogeneous (BCS) case—this devi-
ation is a characteristic result for any multilayer. Section
V discusses and summarizes the work. Taking proper ac-
count of spatial variation not only leads to predictions for
multilayer performance for Q and τr that are surprising
at first sight, but also predicts significant benefits from
using multilayers as detectors operating below 90 GHz.

II. THEORY

A. Usadel equation and self-consistency

Our analysis of multilayers is based on Usadel’s model
for the generalized proximity effect in the dirty-limit.
Layer boundaries within multilayer structures function
as scattering centers and ensure that the behavior of the
structure is governed by dirty-limit equations.22 The one-
dimensional Usadel equation states that21–24

~DS
∂

∂x

(
Ĝ
∂

∂x
Ĝ

)
= [~ωnσz + ∆̂(x), Ĝ]. (1)

The matrices are defined such that

Ĝ(x, ~ωn) =

(
G F
F ∗ −G

)
and ∆̂(x) =

(
0 ∆(x)

∆∗(x) 0

)
,

where ~ = h/2π, subscript S denotes the layer of the
material, ωn = 2πkBT

(
n+ 1

2

)
/~ are the Matsubara fre-

quencies, n = 0, 1, 2 . . . , σz is the Pauli matrix, ∆(x) is
the superconducting order parameter, and [a, b] = ab−ba
is the commutator. DS = 2πξ2

STckB/~ is the diffusion
coefficient, where ξS is the coherence length. G and F
are the normal and anomalous Green’s functions and the
normalization conditions are Ĝ2 = 1̂, and G2 +FF ∗ = 1.
The analytic continuation of the Green’s functions into
the continuous domain of quasiparticle energies E is
achieved by ~ωn → −iE in Eq. (1).

In the θ-parameterization, which automatically satis-
fies the normalization conditions, we have

Ĝ(x, ~ωn) =

(
cos θ sin θ
sin θ − cos θ

)
,

where θ = θ(x, ~ωn). This yields the θ-parameterized
Usadel equation

~DS

2

∂2θ

∂x2
= ~ωn sin θ −∆(x) cos θ. (2)
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Eq. 2 needs to be solved along with the superconducting
self-consistency equation

∆(x) ln

(
Tc

T

)
− 2πkBT

∑
ωn>0

(
∆(x)

~ωn
− sin θ

)
= 0, (3)

subject to appropriate boundary conditions (BCs) intro-
duced in Ref. [28]. At the open boundaries of the S or S′

layers of bilayer S′ − S or trilayer S− S′ − S structures,
the BCs are

∂θS,S′

∂x
= 0. (4)

At the S− S′ interfaces,

1

ρS

∂θS
∂x

=
1

ρS′

∂θS′

∂x
, (5)

γB,SξS
∂θS
∂x

= sin(θS′ − θS). (6)

At the S′ − S interfaces,

γB,S′ξS′
∂θS′

∂x
= sin(θS − θS′). (7)

Here γB,S = RB/(ρSξS) is a measure of boundary re-
sistivity, ρS,S′ are the normal-state resistivities of S,S′

layer, and RB is the product of the boundary resistance
between the S− S′ layers and its area.

Finally, the quasiparticle density of states is given
by N(x,E) = N0(x)Q(x,E), where Q(x,E) =
Re[cos θ(x,E)], and N0(x) is the position-dependent sin-
gle spin density of electron states. We define the pair-
breaking threshold 2∆g for the proximity structure as
twice the energy for which the DoS becomes appreciably
non-zero (N/N0 > δ), where δ is the numerical precision.

B. Nam’s formulation for conductivities

Nam’s equations29 are a generalization of the Mattis-
Bardeen30 theory into strong-coupling and impure super-
conductors. The real and imaginary parts of the complex
conductivity σ = σ1 − jσ2 can be expressed as

σ1(ν)

σN
=

1

hν

∫ −∆g

∆g−hν
dE g1(E, hν + E) (8)

[1− 2f(E + hν, T )]

+
2

hν

∫ ∞
∆g

dE g1(E, hν + E)

[f(E, T )− f(E + hν, T )] ,

σ2(ν)

σN
=

1

hν

∫ ∆g

∆g−hν,−∆g

dE g2(E, hν + E) (9)

[1− 2f(E + hν, T )]

+
1

hν

∫ ∞
∆g

dE

{g2(E, hν + E) [1− 2f(E + hν, T )]

+ g2(hν + E,E) [1− 2f(E, T )]} ,

where the lower limit of the first integral in Eq. (9) refers
to the larger of the two energies ∆g − hν and −∆g, and
f(E, T ) is the Fermi distribution function.The coherence
factors g1,2 are given by

g1(E, hν + E) = Q(E)Q(hν + E) + P (E)P (hν + E),

g2(E, hν + E) = −Q̃(E)Q(hν + E)− P̃ (E)P (hν + E),

where Q(E), Q̃(E), P (E), P̃ (E), are the generalized
quasiparticle and pair densities of states

Q(E) + jQ̃(E) = Re[cos θ(E)] + j Im[cos θ(E)]

P (E) + jP̃ (E) = Re[−j sin θ(E)] + j Im[−j sin θ(E)].

C. Surface Impedance, Transfer Matrices and
Quality Factor

… …
Z0

dZ

dGvs
v

is i i0

v0

FIG. 1. Transmission line representation of a multilayer as a
combination of layers of thickness dx, terminated at vacuum
of impedance Z0.

In order to calculate Zs, we use a transmission line
model where the multilayer is sub-divided into a combi-
nation of thin layers31 each represented by an equivalent
circuit of series impedance dZ = j2πνµ0dx and shunt
admittance dG = σ(ν, x)dx, terminating at vacuum, as
shown in Fig. 1. We represent the thin layers by trans-
mission (ABCD) matrices.32 Cascading the resulting ma-
trices of all layers we have[

vs

is

]
=

∏
all layers

[
1 j2πνµ0dx

σ(ν, x)dx 1

] [
v0

i0

]
, (10)

where v0/i0 = Z0 is the impedance of free space. The
surface impedance is then Zs = vs/is. The layer facing
the incoming field corresponds to the left-most matrix in
the cascaded multiplication chain. In this way calculation
of Zs for multilayers straightforwardly takes account of
the physical ordering of high and low conductivity films
with respect to the incident field. The model described
is a full calculation of Zs and reduces to the expressions
in Ref. [31] for homogeneous superconducting films in all
limits.
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We quantify Q for a multilayer resonator used as a
KID with the surface impedance quality factor1 Qs(ν) =
Im(Zs)/Re(Zs). Qs is representative of the achievable
Q, capturing the underlying physics of the spatially-
dependent energy storage and loss in the multilayer, and
is related to Q via Eq. (20-21) of Ref. [1]. A complete
model to calculate Q would require a full electromagnetic
model of the KID geometry (be-it microstrip, coplanar
waveguide, lumped-element KID etc.) including electro-
magnetic coupling and field-fringing effects, but this is
beyond the scope of this work. Our calculations of Zs for
superconducting multilayers will enable full electromag-
netic modeling to be done for the first time.

D. Multilayer-averaged Quasiparticle
Recombination Times

We use the low-energy expression for quasiparticle re-
combination time given by Ref. [33] and the material-
characteristic electron-phonon coupling time constant τ0
as described by Kaplan et al..34 We ignore quasiparticle
scattering, which becomes very slow at low temperatures
for low energy quasiparticles.34 The recombination life-
time is given by

τ0(x)

τr(x,E)
=

1

(kBTc)3[1− f(E, T )]

∫ ∞
E+∆g(x)

dΩ Ω2

[n(Ω, T ) + 1] f(Ω− E, T )(
Q(x,Ω− E) +

∆(x)

E
P (x,Ω− E)

)
, (11)

where Ω is the phonon energy and n(Ω, T ) is the Bose
distribution. We note here the change in sign within
the final bracket of Eq. (11) compared with Eq. (7d) of
Ref. [33]. This ensures that τr here reduces to Kaplan’s
result (Eq. (8), Ref. [34]) with the appropriate expres-
sions for Q and P for homogeneous BCS superconduc-
tors.

Assuming thermal equilibrium, we use Q(x,E) and
f(E, T ) as weights to obtain the energy-averaged recom-
bination time as a function of position

〈τr(x)〉E =

∫∞
∆g(x)

τr(x,E)N0(x)Q(x,E)f(E, T ) dE∫∞
∆g(x)

N0(x)Q(x,E)f(E, T ) dE
.

(12)
Applying weighted averaging over both energy and posi-
tion, the multilayer-averaged quasiparticle recombination
time is obtained,

〈τr〉E,x =

∫ ∫∞
∆g(x)

τr(x,E)N0(x)Q(x,E)f(E, T ) dE dx∫ ∫∞
∆g(x)

N0(x)Q(x,E)f(E, T ) dE dx
.

(13)
For thin films at low temperatures where 〈τr〉E,x �
d2

Al,Ti/2DAl,Ti, Eq. 13 represents the best-estimate of
the overall quasiparticle recombination time, including
the effect of quasiparticle trapping, provided the number

of excess quasiparticles is small such that recombination
with thermal quasiparticles dominates. A full solution
for strong non-equilibrium conditions, such as high load-
ing or strong pulses, requires solving the self-consistency
equation with the kinetic equations describing quasipar-
ticle and phonon coupling,35 and is beyond the scope of
the current work.

III. METHODOLOGY

Al AlTi

dTi dAl =25 nm
𝑥 (nm)

0

dAl =25 nm

(a)

AlTi
dTi dAl =50 nm

𝑥 (nm)
0

(b)

FIG. 2. (a) The geometry of trilayer Al− Ti−Al devices.
Al layers have dAl = 25 nm. The central Ti thickness is dTi.
Position is denoted by coordinate x which is zero at the centre
of the Ti layer. (b) The geometry of bilayer devices. The Al
has dAl = 50 nm. x = 0 coincides with the Ti−Al interface.

TABLE I. Table of physical parameters of material proper-
ties.

Aluminium Titanium
Tc (K) 1.21 0.41

∆g (µeV ) 182 61
νg (GHz) 88 29
ξ (nm) 1702 1102

N0 (1023/eV cm3) 0.1741 0.411

V (10−23 eV cm3) 0.9601 0.3441

ΘD (K) 4231 4261

σN (/µΩ m) 1803 34

τ0 (ns) 3955 79605

RRR 5.53 3.56

1 Reference [36].
2 Calculated using dirty limit expression for ξ from Ref. [22].
3 Measurements by the Cambridge Quantum Sensors Group.
4 Reference [37].
5 Reference [38].
6 Reference [39]

The Usadel equation (2) and the self-consistency equa-
tion (3) are solved iteratively, with appropriate BCs, for
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Ti−Al bilayers and Al− Ti−Al trilayers with the ge-
ometry shown in Fig. 2, at T = 0.1 K and γB,Al = 0.01
or γB,Al = 100 to represent both high and low transmis-
sion interfaces. Our solver uses MATLAB’s multipoint
boundary value problem numerical solver. The solver
computes the residuals using geometry-specific bound-
ary function handles, to ensure that the solution satisfies
Eqs. (4) to (7). The detailed steps of our implementation
are as follows:

(i) A uniform trial ∆(x) = (∆Al + ∆Ti)/2 is used to
solve for θ(x, ~ωn), using Eq. (2) with maximum
n = 125. θ(x, ~ωn) is then used to solve for ∆(x)
using Eq. (3). The solution then updates ∆(x).

(ii) An iterative loop of step (i) continues until conver-
gence is achieved in ∆(x), such that the relative
change in ∆(x) between the final two iterations is
less than 0.001%.

(iii) The Usadel equation is then solved once using ∆(x)
from (ii) in the domain of continuous quasiparticle
energy E to obtain θ(x,E). This is done by apply-
ing ~ωn → −iE to Eq. (2).

(iv) Other properties, i.e. σ1,2, Zs, Qs, and τr, are cal-
culated from θ(x,E) using equations described in
Sec. II.

A list of basic physical parameters used in this pa-
per can be found in Table I. Data for superconducting
coherence lengths are calculated using the dirty limit ex-
pression, ξ =

√
ξ0l/3, from Ref. [22], where ξ0 is the

BCS coherence length, and l is the electron mean free
path. Calculation of ξ is supplemented by Al residual
resistivity ratio (RRRAl) from the Cambridge Quantum
Sensors Group, Ti residual resistivity ratio (RRRTi) from
Ref. [39], and Ti mean free path at 300K (lTi,300K) from
Ref. [40].

A. Scaling the temperature

We scale the temperature of calculation for both Qs and
τr, in order to remove the effect of reducing νg. Re-
ducing the temperature of the calculation removes the
effect of a reduced ∆g to first-order. The principal tem-
perature dependence of both Qs and τr arises from the
Fermi functions in Eqs. 8, 9 and 12 leading to a close-to
exp(−∆g/kBT ) dependence at a fixed T in both cases.
Scaling T removes this effect, giving comparable operat-
ing regimes but it also means that in practice lower ex-
perimental temperatures are required. For Al, we choose
T = 170 mK i.e. close to the onset of the experimentally-
observed low-temperature limit of τr seen in all low-Tc

superconductors .1,4,41 The limiting temperature scales
as T/Tc for many low temperature superconductors, al-
though we are unaware of similar measurements in multi-
layers. For all multilayers, the temperature is scaled such

that T = 170 mK × (∆g/∆Al). Even-so, for the thick-
est trilayer with threshold as low as νg = 50 GHz an
operating temperature T = 95 mK would be sufficient,
well-above the experimentally accessible range using an
ADR.

IV. RESULTS

A. Density of states gap and pair-breaking
threshold
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FIG. 3. DoS for 5 Al− Ti−Al trilayers at the open boundary
of the Al (solid lines) and at the centre of the Ti (dashed
lines). (a) red line, dTi = 25 nm, (b) blue line, dTi = 50 nm,
(c) green line, dTi = 100 nm, (d) cyan line, dTi = 150 nm,
and (e) purple line, dTi = 200 nm. The total Al thickness is
50 nm, T = 0.1 K and γB,Al = 0.01. The inset shows the DoS
at different positions of a 25nm− 100nm− 25nm multilayer.
(i) red line, centre of Ti layer, (ii) blue line, Ti-side of internal
Ti-Al interface and, (iii) green line, external Al boundary .
T = 0.1 K and γB,Al = 0.01.

Figure 3 shows the normalized densities of states (DoS)
for 5 Al− Ti−Al trilayers with Ti thicknesses, (a) to (e),
25, 50, 100, 150 and 200 nm respectively, at the open Al
boundaries (solid lines) and at the centre of the Ti layer
(dashed lines). The total Al thickness is 50 nm. The
DoS is BCS-like for the thinnest Ti layer (trace (a)) due
to both dAl and dTi being much smaller than their re-
spective coherence lengths. The DoS broadens for thicker
Ti films. For very thick Ti layers (not shown) the DoS
at the Ti layer tends to the BCS DoS for Ti, whereas
the DoS at edge of the Al broadens further and does
not tend to any BCS limit. The broadening behaviour
highlights the need for a rigorous model beyond BCS-
like DoS approximations. In this numerical study, we
use δ = 0.01 to determine the pair-breaking threshold
2∆g. For clarity we have only indicated this for trace (e).
The inset shows the DoS at different positions within the
25nm− 100nm− 25nm multilayer. Trace (i) shows the
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FIG. 4. DoS for 5 Ti−Al bilayers at the open boundary of
the Al (solid lines) and at the open boundary of the Ti (dashed
lines). (a) red line, dTi = 25 nm, (b) blue line, dTi = 45 nm,
(c) green line, dTi = 80 nm, (d) cyan line, dTi = 105 nm, and
(e) purple line, dTi = 130 nm. The total Al thickness is 50 nm,
T = 0.1 K and γB,Al = 0.01.

DoS at the centre of Ti layer, (ii) the DoS at the Ti-
side of the internal Ti-Al interface, (iii) the DoS at the
external Al boundary. The DoS does not vary greatly
with position in the Al layer. The high Al normal-state
conductivity, compared to Ti, restricts the extent of vari-
ation of DoS in the Al layer. The DoS at different posi-
tions along the same device share a common energy gap
because all films are relatively thin (d ∼ ξ).

Figure 4 shows the DoS for 5 Ti−Al bilayers of Al
thicknesses, (a) to (e), 25, 45, 80, 105 and 130 nm re-
spectively at the open Al boundaries (solid lines) and at
the open Ti boundaries (dashed lines). Ti thicknesses for
the bilayers were chosen to give the same pair-breaking
thresholds as the trilayers. A key difference between bi-
and trilayers with equal ∆g is the reduction in the DoS
in the Al layer near ∆g for bilayers. At large values of
dTi, the reduction is more pronounced as individual Al
layer thicknesses (instead of total Al layer thickness) be-
comes more important to the DoS. This reduction in the
DoS has immediate impact on the thermal quasiparticle
density Nth(x) = 4

∫
N0Q(x,E)f(E, T ) dE in the Al and

likewise changes σ and τr.

Figure 5 shows the pair-breaking threshold 2∆g (the
right-hand scale shows νg) for: (a) red line, Al− Ti−Al
trilayer with γB,Al = 0.01, (b) blue line, Ti−Al bilayer
with γB,Al = 0.01, (c) green line, Al− Ti−Al trilayer
with γB,Al = 100, and (d) cyan dashed line, weighted-
average model. In all cases T = 0.1 K and the total
Al thickness is 50 nm. Comparing (a) with (b) we see
that the thresholds for bi- and trilayers are not the same
and the bilayer gap is lower with the same Ti thickness
and interface transparency. This is a direct result of the
BCs Eqs. (4) to (7) and self-consistency Eq. (3). Al as
the outer layers of a trilayer acts to increases ∆(x) in
the Ti from both sides, whereas the external BCs for
Ti in a bilayer cannot. Comparing (a) with (c) where
γB,Al = 0.01, 100 respectively representing a clean, high-
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FIG. 5. Pair-breaking threshold 2∆g as a function of central
Ti thickness with fixed total Al thickness 50 nm. (a) red line,
trilayer with γB,Al = 0.01, (b) blue line, bilayer with γB,Al =
0.01, (c) green line, trilayer with γB,Al = 100, and (d) cyan
line, weighted-average model. T = 0.1 K. The inset shows the
DoS for trilayer of 25nm− 100nm− 25nm geometry at middle
of Ti layer (red) and edge of Al layer (blue), γB,Al = 100.

transmission or a dirty, low-transmission interface, we see
that the threshold is reduced as the interface becomes less
transmissive. In other simulations we find that ∆g is a
weak function of γB,Al provided γB,Al . 1. Comparing
all of (a)-(c) with (d) the weighted-average model, we
see that the latter significantly over-estimates the effi-
ciency of the proximity effect in reducing ∆g. In this
analysis, the fixed total Al thickness at 50 nm results in
deviation from the weighted-average model, even when
coupled with very thin Ti layer. The weighted-average
model gives the same prediction for both bi- and trilayers
because the total Al thickness is fixed: the detail im-
posed by the geometry is lost. It can be seen from all of
(a) to (c) that the proximity effect is a long range dif-
fusive process that extends over much longer distances
than the component coherence lengths.

The inset shows the DoS for a trilayer of
25 nm− 100 nm− 25 nm geometry at the centre of the
Ti layer (red line) and the outer boundary of the Al layer
(blue line), calculated for γB,Al = 100. In this case, where
the film coupling is weak, the DoS across the multilayer
shows more structure with two relatively broad peaks,
the first somewhat greater than ∆g and the second ∆2

close to ∆Al. The DoS at the centre of the Ti increases
significantly from zero at ∆g, and shows a small increase
at ∆2. The DoS at the edge of the Al increases slowly
from zero at ∆g and shows a large increase at ∆2. For
very low transmission boundaries γB,Al →∞, the DoS at
the middle of the Ti increases exclusively at ∆g = ∆g,Ti

whilst the DoS at the edge of the Al increases exclusively
at ∆2 = ∆g,Al, the proximity coupling disappears in this
case and we find a BCS-like DoS for the individual layers.

The overall effect on KID performance as a result of
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these spatially varying DoS with dTi is not obvious at
first sight. In the next sections we explore the impacts
on Zs, Qs and τr for bi- and trilayers.

B. Conductivity, Impedance and Quality Factor
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FIG. 6. Normalized real (solid line) and imaginary (dashed
line) conductivities for two trilayers, (a) red line, dTi = 25 nm,
(b) blue line, dTi = 200 nm. The black lines are calculated for
Al. T = 0.1 K, and γB,Al = 0.01. The total Al thickness is
50 nm. The inset shows the variation of 2∆g as a function of
dTi.

Figure 6 shows normalized conductivities σ/σN as a func-
tion of ν for two trilayers with (a) dTi = 25, and (b)
200 nm. The total Al thickness is 50 nm. Full lines show
σ1 and dashed lines σ2. The black lines show calcula-
tions for Al for comparison. In all cases T = 0.1 K and
γB,Al = 0.01 and dAl = 50 nm. Also indicated is νg for
the 25 nm− 200 nm− 25 nm trilayer. The ratio σ1/σN is
identical to the superconducting to normal-state photon
absorption ratio.14 σ1/σN has a threshold at νg = 2∆g/h
and shows a slow increase above threshold. As a result,
although Al KIDs have νg = 88 GHz, they only oper-
ate efficiently above 100 GHz or even 120 GHz.8 We find
that changes in the normalized σ/σN are small as a func-
tion of position within a particular bi- or trilayer, and
thus we have not shown these results. This is a result of
the highly-transmissive interfaces. However, the absolute
values of σ are very different in the Al and Ti layers due
to the very different values of σN.

Figure 7 shows the frequency dependence of the real
and imaginary parts of Zs = Rs + jXs for 2 trilayers
with (a) dTi = 25, and (b) 200 nm. Here ν is chosen
to emphasize signal frequencies. The structure evident
in Rs and Xs above νg arises because both the DoS and
σN are dependent on position. This structure would be
absent if a simple BCS-like DoS were assumed to carry
out the calculation of Rs and Xs. The surface resistance
Rs decreases sharply with decreasing frequencies near νg,
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FIG. 7. Frequency dependence of Rs (solid line) and Xs

(dashed line) for two trilayers: (a) red line, dTi = 25 nm,
(b) blue line, dTi = 200 nm. T = 0.1 K and γB,Al = 0.01
and dAl = 25 nm. The inset shows the variation of Rs (solid
lines) and Xs (dashed lines) for a bilayer with dTi = 130 nm,
at frequencies close to νg = 61 GHz. The blue lines indicate
incidence on the Ti surface, the red lines indicate incidence
on the Al surface.

and tends-to zero below νg as exp (−νg/kBT ). We find
that contributions from the Al layers to Zs are more im-
portant by virtue of its higher σN compared to Ti. In-
terestingly, at low frequencies, the thickest trilayer (blue
line) has the lowest dissipative component Rs (barely vis-
ible) and highest reactive component Xs. The inset of
Fig. 7 shows the variation of Rs and Xs for a bilayer
with dTi = 130 nm, at frequencies close to νg = 61 GHz.
Rs is almost independent of orientation, while Xs shows
significant differences when a bilayer is illuminated from
different sides. This highlights the need to properly ac-
count for geometry when modeling multilayer resonators.

In order to show the effect on the detection sensitiv-
ity of a KID fabricated from these bi- and trilayers, in
Fig. 8 we plot Qs, at scaled temperatures in the range of
100 mK for the lowest gap multilayers up to 170 mK for
Al. Qs increases by a factor ' 2 as dTi increases from 25
to 200 nm. Changing the thickness of an Al KID by the
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FIG. 8. Frequency dependence of Qs for trilayers with varying
dTi. (a) red line, dTi = 25 nm, (b) blue line, dTi = 200 nm.
T = 0.1 K, γB,Al = 0.01, with total Al thickness of 50 nm.
The inset shows the variation of Qs with ν = 3 GHz as a func-
tion of νg: (red solid line) trilayers, (blue solid line) bilayers
with incidence on the Al surface, (blue dashed line) bilayers
with incidence on the Ti surface. The temperature of the cal-
culation is scaled such that T = 170 mK × (∆g/∆Al) for all
multilayers.

same amount would change QS by a factor ' 3. From
the point-of-view of KID operation this begins to sug-
gest that there is little penalty in device sensitivity even
having engineered the reduced threshold.

The inset of Fig. 8 shows Qs at ν = 3 GHz representing
a typical KID readout frequency, as a function of thresh-
old νg. The solid blue line shows Qs for bilayers with
the field incident on the Al surface, the dashed blue line
shows Qs for bilayers with field incident on the Ti surface.
In both cases as νg is reduced Qs increases due to the in-
crease in total thickness but note that the geometry— in
this case the ordering with respect to the incident field—
also affects Qs. The effect of increasing dTi is more sig-
nificant when the field interacts from the Ti side. The
solid red line shows Qs for Al-Ti-Al trilayers. At high
thresholds νg ∼ 70 GHz, corresponding to thin Ti layers,
Qs for the trilayer lies between the bilayer Q-values. The
increase of the trilayer Qs compared to bilayers at low νg
can be understood from Fig. 5: a thicker Ti layer is re-
quired in trilayers to achieve the same νg. Two points are
important. Qs for multilayer resonators with low νg re-
main highly-suitable for KIDs. The ordering of a bilayer
with respect to the field is also important to maximizing
Qs. This emphasizes the need for full electromagnetic
modeling of the field distributions.

C. Quasiparticle Lifetimes in Multilayers

Here we show results of calculations of energy- and
multilayer-averaged recombination times 〈τr(x)〉E and
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FIG. 9. Energy-averaged recombination times 〈τr〉E for five
proximity trilayers of Al− Ti−Al geometry, compared to
that of thin-film Al (dashed line), as a function of position
x. (a) red line, dTi = 25 nm, (b) blue line, dTi = 50 nm, (c)
green line, dTi = 100 nm, (d) cyan line, dTi = 150 nm, and (e)
purple line, dTi = 200 nm. γB,Al = 0.01. The temperature of
the calculation is scaled such that T = 170 × (∆g/∆Al) mK
for each trilayer. The inset shows multilayer-averaged recom-
bination times 〈τr〉E,x as a function of Ti thickness for (i) red
line, trilayer with total Al layer thickness 50 nm, (ii) blue line,
bilayer with Al layer thickness 50 nm.

〈τr〉E,x respectively. For all multilayers, the temperature
is scaled such that T = 170 mK× (∆g/∆Al).

Figure 9 shows 〈τr(x)〉E as a function of position for
trilayers with five Ti thicknesses (a) to (e) 25, 50, 100,
150 and 200 nm respectively and, for comparison, calcu-
lation for Al. For the thinnest trilayer, Fig. 9 (a) 〈τr〉E is
close-to the calculated value for Al. For thicker trilayers
〈τr〉E increases in both the Al and Ti layers. This arises
from the reducing quasiparticle density of states in the
Al at low energies as dTi increases (see Fig. 3), and the
combined effect of the reduced lower limit of the integral
in Eq. (11) and the Ω2 dependence of the phonon den-
sity of states factor within that integral. The situation is
similar for bilayers.

Figure 10 shows 〈τr(x)〉E as a function of position for
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FIG. 10. Energy-averaged recombination times 〈τr〉E for five
proximity bilayers of Ti−Al geometry, compared to that of
thin-film Al (dashed line), as a function of position x. (a)
red line, dTi = 25 nm, (b) blue line, dTi = 45 nm, (c) green
line, dTi = 80 nm, (d) cyan line, dTi = 105 nm, and (e) purple
line, dTi = 130 nm. γB,Al = 0.01. The temperature of the cal-
culation is scaled such that T = 170 mK× (∆g/∆Al) for each
bilayer. The inset shows multilayer-averaged recombination
times 〈τr〉E,x as a function of νg for (i) red line, trilayer with
total Al layer thickness 50 nm, (ii) blue line, bilayer with Al
layer thickness 50 nm.

bilayers for five Ti thicknesses (a) to (e) 25, 45, 80, 105
and 130 nm respectively and dAl = 50 nm. The Ti thick-
nesses are chosen so that νg for (a) to (e) in Fig. 10 are
the same as (a) to (e) in Fig. 9. Although similar, in de-
tail we see that the bilayer recombination times are now
longer in both the Ti and Al compared to trilayers with
the same νg. This arises from the reduced DoS in the Al
in bilayers compared to trilayers with the same νg, noted
earlier in Sec. IV A. This emphasizes the importance of
a full calculation of the spatially-dependent DoS.

The inset of Fig. 9 shows 〈τr〉E,x as a function of dTi for
bilayers and trilayers. As expected from the main plots,
〈τr〉E,x increases with dTi and for bilayers the increase is
more rapid. The behaviour here can be understood from
Fig. 5, ∆g changes more quickly with dTi for bilayers than

trilayers. The detailed differences arise from the different
dTi required to achieve a given νg in the two instances,
the differing spatial variations in the DoS in Al and Ti,
(in particular the reduced Al DoS in a bilayer having the
same νg —compare Figs. 3 and 4), and also the effect of
the weighting with N0 and dTi used in the calculation of
〈τr〉E,x in Eq. (13).

The inset of Fig. 10 shows 〈τr〉E,x as a function of
the experimental requirement νg for both bilayers and
trilayers. We find that bilayers and trilayers with the
same νg have very similar multilayer-averaged recombi-
nation times, the bilayer being of order 20% longer, so
that both behave comparably. The choice between them
can be made on the basis of other considerations - ease
of deposition or material processing or film thickness re-
quirements for example. We have not included the effect
of phonon-trapping in these calculations.42 For thicker
multilayers we would expect phonon-trapping to provide
an additional enhancement of the effective quasiparticle
lifetime.

V. DISCUSSION AND CONCLUSIONS

We have described a full analysis of multilayer resonators
suitable for KIDs based on the diffusive Usadel equations
with appropriate boundary conditions that takes proper
account of the spatial variation of the superconducting
properties as a function position in the film. We calculate
the spatial variation of the superconducting order param-
eter ∆(x), the quasiparticle and pair densities of states,
the superconducting energy gap ∆g, the complex con-
ductivity σ, and energy- and multilayer-averaged τr for
Al-Ti multilayers. We account for the spatial variation
of Tc, N0, normal-state conductivity σN, and characteris-
tic quasiparticle lifetime τ0. We have also described how
to calculate the surface impedance Zs including varying
film properties and the ordering of the multilayer with
respect to the incident fields. Our predictions of ∆g dif-
fer significantly from earlier predictions that were based
on the weighted-average model, and indicate differences
between bilayers and trilayers with the same total film
thicknesses.

The calculated quasiparticle and pair densities of states
for the Al-Ti multilayers considered here deviate sig-
nificantly from the homogeneous (BCS) case. We pre-
dict high quality factors Qs and long multilayer-averaged
quasiparticle recombination times 〈τr〉E,x compared to
thin-film Al. Following Ref. [2], we define a figure-of-
merit for multilayers such that F(ν) ∝ Qs〈τr〉E,xΘ(ν −
νg), where Θ is the Heaviside step function, giving appro-
priate weight to the required detection threshold. Even
without evaluation, considering values of Qs and 〈τr〉E,x
shown in Figs. 8 and 10, values of F(ν) for Al-Ti multi-
layers would be comparable to or better than those of Al
films whilst achieving the required νg. The multilayer
structures described in this study are excellent candi-
dates for high-sensitivity, multiplexible KIDs with tar-
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geted low-frequency detection thresholds.

Our work demands a programme of theoretical and
experimental investigation of proximity-effect resonators
for KID applications. For the first time, full electromag-
netic modeling of multilayer resonators is possible. We
find that full consideration of the field distribution is es-
sential, particularly if bilayers are to be used. We find
that in terms of detector sensitivity, there should be little
difference in the performance of bi- and trilayers provided
the geometry is properly considered. We have also iden-

tified relatively simple experimental measurements that
would confirm our predictions of multilayer behaviour.
Demonstrating high Q and long τr in Al-Ti multilayers
is critical for KIDs based on multilayers to become the
preferred solution for sub-100 GHz detection. Further
work is required to optimise device geometry and ma-
terial combinations for particular applications. Overall,
we have described a coherent approach to calculating the
properties of superconducting multilayers for use as KIDs
for experimentally important applications at frequencies
in the range 50− 100 GHz.
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