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Abstract 8 

Oxidation of n-pentane with molecular oxygen to sec-pentanols was performed in the presence 9 

of a free radical initiator (di-tert-butyl peroxide) and a boron compound (sec-butyl metaborate), 10 

with in situ adsorption of water on molecular sieve 3A. Kinetics of the reaction was studied in 11 

a laboratory-scale batch reactor over a broad range of conditions (130‒150°C, 20‒30 bar, 5‒10 12 

vol% O2) in order to establish the optimum parameters for maximising the selectivity and yield 13 

of sec-pentanols. Results show that the initiator markedly improves the rate of oxidation, and 14 

hence yield, compared to thermal oxidation without an initiator, while the boron species 15 

enhances the selectivity to sec-pentanols. Under the conditions investigated, maximum sec-16 

pentanol selectivity is 56% with an alcohol-to-ketone ratio of 3.6:1 for the borate-assisted 17 

oxidation compared to 33% and 1.1:1, respectively, for the oxidation without borate. This work 18 

demonstrates the feasibility of oxyfunctionalization of n-pentane with industrially relevant 19 

selectivity and yield.  20 

Keywords: Selective oxidation; n-pentane; borate ester; initiator; selectivity 21 

 22 

1. Introduction 23 

Light paraffins, such as C4 and C5 alkanes, are abundant hydrocarbon resources that are key 24 

components of liquefied petroleum gas (LPG) and naphtha. In recent times, stricter government 25 

regulations have been introduced to minimise the evaporative emission of volatile organic 26 

compounds from motor vehicles as well as upstream and mid-stream gasoline vapour emissions 27 

from distribution and storage systems, which cause air pollution problems, including high 28 

ground-level ozone or smog. One approach that has been adopted is the control of Reid Vapour 29 

Pressure (RVP), which is a measure of gasoline volatility. New environmental regulations 30 

impose strict specifications on refiners for the level of light hydrocarbons which can be present 31 

in gasoline blends to meet emission targets. The drive towards low-RVP and high-octane fuels 32 
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has increased the availability of C4 and C5 alkanes, consequently, there is considerable interest 33 

from the petrochemical industry in novel processes for the upgrading and conversion of these 34 

low-cost hydrocarbon feedstocks into chemicals of higher commercial value. 35 

 36 

Developments in catalysis and process design has led to industrial-scale exploitation of n-37 

butane for the production of maleic anhydride and acetic acid through catalytic gas-phase and 38 

liquid-phase selective oxidations, respectively [1,2]. n-Pentane, on the other hand, has so far 39 

not witnessed the same level of large-scale oxyfunctionalization application. Currently, n-40 

pentane is mostly processed by steam cracking at high temperatures to make olefins by 41 

dehydrogenation [3]. A significant disadvantage of this process is that it is highly endothermic, 42 

requiring temperatures in the range of 500‒800°C to drive the reactions towards olefins, and is 43 

therefore very energy intensive. There are a few reported routes for the transformation of n-44 

pentane via oxidation, as shown in Scheme 1. These include oxidative dehydrogenation to 1- 45 

and 2-pentenes [4], and selective oxidation to a mixture of phthalic and maleic anhydrides [5,6]. 46 

These two processes are gas-phase heterogeneous catalytic oxidation reactions, which take 47 

place at 350‒500°C. A third option is the direct oxidation of n-pentane in the liquid phase with 48 

molecular oxygen at temperatures in the range of 100‒150°C, with or without a catalyst, into 49 

oxygenated products, such as alcohols and ketones. Despite the potential economic value of 50 

these approaches, there are currently no practical industrial applications of any of these routes 51 

for the conversion of n-pentane.  52 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Potential routes for the conversion of n-pentane to petrochemicals. 

 53 
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The liquid-phase oxidation of n-pentane to alcohols and ketones is a significant challenge. One 54 

of the main issues with the activation of n-pentane, like other light alkanes, is its low reactivity 55 

[7]. Small chain alkanes are considerably more difficult to oxidise than longer-chain alkanes as 56 

shown by the rate of oxygen uptake in Table 1. Reactivity increases with decreasing C‒H bond 57 

strength as chain length increases [1,8]. As a result of its relatively low reactivity compared to 58 

higher alkanes, the oxidation of n-pentane under typical conditions of liquid-phase reactions 59 

gives conversion that is too low for commercial exploitation.  60 

 61 

A second issue is that the process is typically limited by poor selectivity to alcohols. Selectivity 62 

is challenging for two reasons. Liquid-phase oxidations are free radical reactions, which are 63 

indiscriminate, with oxidative attack on all reactive C–H groups in the alkane molecule. 64 

Consequently, for alkanes with more than four carbon atoms such as n-pentane, a complex 65 

mixture of oxygenated products is formed, including hydroperoxides, alcohols, ketones, 66 

carboxylic acids, and esters with all possible isomers. Furthermore, the desired alcohols are 67 

more reactive than the starting alkane, and are thus more readily over-oxidised into ketones and 68 

acids. Hence, the oxidation process offers little control over alcohol selectivity [9,10]. 69 

 70 

Table 1. Relative oxidation rates of different linear alkanes [1,11]. 71 

n-Alkane 

Relative oxidation rate 

(oxidation rate =
mol O2

(mol alkane) × time
) 

Ethane 0.001 

Propane 0.1 

Butane 0.5 

Pentane 1.0 

Hexane 7.5 

Octane 200 

Decane 1380 

 72 

A number of studies have been published in the literature on the liquid-phase oxidation of n-73 

pentane, largely involving the application of transition metal-based homogeneous and 74 

heterogeneous catalysts [12–15]. Despite these attempts, however, none of the reported studies 75 

has attained pentane conversion and selectivity to alcohols that are high enough for industrial 76 
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exploitation. It is evident, therefore, that the direct oxidation of n-pentane to alcohols with high 77 

selectivity and yield continues to be a challenge. 78 

 79 

There are a number of strategies for enhancing the selectivity of partial oxidation reactions [16]. 80 

One concept that has been reported for improving alcohol selectivity in alkane oxidations is the 81 

Bashkirov process, which involves the use of boron compounds such as boric acid, boric oxide 82 

and borate esters [17–19]. These boron species function as Lewis acids which direct the 83 

oxidation towards the formation of alcohols, and subsequently trap the alcohols in the form of 84 

borate esters to protect them from over-oxidation [20–24]. This idea formed the basis of several 85 

industrial-scale processes for the oxidation of cyclohexane to cyclohexanol/cyclohexanone, 86 

used as intermediate for the production of nylon-6, oxidation of cyclododecane to 87 

cyclododecanol/cyclododecanone used as intermediates for nylon-12, as well as the oxidation 88 

of C10‒C20 alkanes for the synthesis of higher aliphatic alcohols used in the manufacture of 89 

detergents and surfactants [20,25,26]. The borate-assisted oxidation process allows higher 90 

selectivity to be achieved at relatively high feed conversions compared to typical autoxidations, 91 

which are normally carried out at low conversions in order to keep selectivity at an acceptable 92 

level. For example, during cyclohexane oxidation in the presence of boric acid, conversion of 93 

10–15% can be achieved with a combined alcohol and ketone selectivity of 90% and alcohol to 94 

ketone ratio of up to 10:1. In the absence of boric acid, the combined selectivity to cyclohexanol 95 

and cyclohexanone is 60‒70% with alcohol-to-ketone ratio of 1:1 and 4‒5% conversion 96 

[17,21].  97 

 98 

Although borate-assisted alkane oxidation was performed commercially for high boiling 99 

alkanes, this concept has so far not been successfully applied to light alkanes such as n-pentane. 100 

One of the main constraints is removal of the water formed under reaction conditions, given the 101 

high susceptibility of borate esters to hydrolysis in the presence of moisture. Thus, to achieve 102 

high selectivity there is a need for effective removal of water from the reaction zone under 103 

elevated pressure [27–29]. A second issue is the fact that the low reactivity of light alkanes 104 

coupled with the inhibiting action of boron on the oxidation through a reduction in the 105 

concentration of free radicals, may result in a substantially lower yield of products.  106 

 107 

In this study, we addressed the issue of low reactivity of alkanes and removal of water in the 108 

successful attempt to develop a process for selective oxidation of n-pentane.  109 

 110 
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2. Mechanism of liquid-phase oxidation of n-pentane 111 

The liquid-phase oxidation of hydrocarbons is a free radical reaction which has been 112 

extensively studied and reviewed [1,26,30]. Mechanistically, the reaction involves chain 113 

initiation, propagation and termination [31–34]. The complex reaction pathway for the 114 

oxidation of n-pentane can be summarised by the scheme in Scheme 2. In the thermally initiated 115 

reaction, formation of radical by hydrogen atom abstraction from pentane is the slow step and 116 

the reaction kinetics exhibits typical sigmoidal behaviour of an autocatalytic process. In this 117 

work the addition of a radical initiator DTBP increases the rate of the initial radical formation. 118 

Thus, initiation of the oxidation occurs by thermal homolytic decomposition of DTBP through 119 

cleavage of the O‒O bond to give tert-butoxy radicals, which abstract hydrogen atom from 120 

secondary C–H groups in n-pentane leading to formation of sec-pentyl radicals and tert-butyl 121 

alcohol. Rapid reaction of the sec-pentyl radicals with molecular oxygen occurs to give sec-122 

pentylperoxy radicals, which subsequently abstract hydrogen from n-pentane to form sec-pentyl 123 

hydroperoxide and sec-pentyl radicals. Rupture of the O‒O bond in the resulting sec-pentyl 124 

hydroperoxides takes place, either by unimolecular or bimolecular reactions, to give sec-125 

pentoxy and hydroxy radicals, followed by fast abstraction of hydrogen atoms from n-pentane 126 

to give sec-pentanols and water, respectively, as well as radicals, which further propagate the 127 

chain process. The sec-pentylperoxy radicals may also interact to form sec-pentoxy radicals 128 

and oxygen [31,35] or undergo bimolecular termination reactions to yield sec-pentanols, 129 

pentanones and oxygen. 130 

 131 

Besides the main reactions, a number of secondary reactions also take place. sec-Pentoxy 132 

radicals formed by decomposition of sec-pentyl hydroperoxides can undergo β-scission or C‒133 

C cleavage reactions to give aldehydes, mainly acetaldehyde and propionaldehyde. The 134 

aldehydes formed are subsequently oxidised to carboxylic acids, mainly acetic and propionic 135 

acids. The free radicals generated carry on the chain by reacting with oxygen to form peroxy 136 

radicals or they can abstract hydrogen atom to form smaller chain hydrocarbons such as 137 

 CH4, C2H
6
 and C3H

8
. Furthermore, sec-pentanols can be consecutively oxidised to 138 

pentanones, the ketones themselves being further oxidised to carboxylic acids [1,36].  139 

 140 

According to several investigators [22,37–40], it has been suggested that during the borate-141 

assisted oxidation of alkanes, a coordinatively bonded complex is formed between the boron 142 

atom and unpaired electrons on the oxygen atom of the intermediate alkyl hydroperoxide, as 143 

illustrated in Scheme 3. The unstable complex may subsequently decompose homolytically into 144 
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free radicals such as R1O
•
 and HO

•
, which further propagate the oxidation, or it can undergo 145 

heterolytic decomposition resulting in the formation of molecular products, mainly alcohols. 146 

Itskovich et al. [22] estimated that only 10‒15% of the overall decomposition of a 147 

hydroperoxide goes into the formation of free radicals. The main direction of hydroperoxide 148 

decomposition in the presence of boron compounds is through a non-radical path which 149 

substantially favours alcohol formation, and the lower level of free radicals explains the 150 

observed inhibition of the oxidation [41–43]. Furthermore, in the presence of borate, the 151 

hydrocarbon solvent is directly hydroxylated to the corresponding alcohol, presumably by the 152 

free active oxygen or by electrophilic substitution reaction [23,40,44]. 153 
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Scheme 2. Reaction scheme for the liquid-phase oxidation of n-pentane. 
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Scheme 3. Mechanism of action of boron on hydroperoxide decomposition during alkane 

oxidation. R1OOH: hydroperoxide, R2H: solvent, (ROBO)
3
: alkyl metaborate. 

 154 

3. Experimental 155 

The kinetic investigation of the liquid-phase oxidation of n-pentane with molecular oxygen in 156 

the presence of a free radical initiator and boron compounds was carried out in a batch reactor 157 

with continuous flow of the gas phase, details of materials and method of which are described 158 

below. 159 

 160 

3.1. Materials 161 

Anhydrous n-pentane (99.9%), di-tert-butyl peroxide (DTBP; Luperox®, 98%), 1,4-162 

difluorobenzene (≥99%), ethyl acetate (99.8%), boric oxide (99.98% trace metal basis), 163 

molecular sieve 3A (4‒8 mesh beads; Honeywell UOP), silica gel (60 Å pore size, 35‒60 mesh 164 

particle size) and activated basic alumina (58 Å pore size, 150 mesh particle size) were sourced 165 

from Sigma-Aldrich. Triisopropyl borate (TiPrB; AcroSeal™, >98%) and molecular sieve 3A 166 
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(4‒8 mesh beads) were purchased from ACROS Organics (Fisher Scientific, UK). sec-Butyl 167 

metaborate (s-BuMB; >98%) was custom-synthesised and supplied by Tyger Scientific, NJ, 168 

USA. The oxidising gas consists of a mixture of oxygen and nitrogen with 5‒10 vol% oxygen 169 

(BOC Gases, UK).  170 

 171 

Prior to oxidation, the anhydrous n-pentane was further purified to remove trace impurities such 172 

as aromatic compounds, olefins, water and oxygen-containing compounds which may interfere 173 

with the reaction and subsequent analyses. The received n-pentane was treated by percolating 174 

it through a packed column containing ~100 g of silica gel and ~100 g of activated basic alumina 175 

in a specially built glass apparatus under argon. Both silica gel and alumina were previously 176 

heated to 300°C in an oven for 12 hours, thereafter cooled to room temperature in a desiccator. 177 

 178 

3.2. Description of the oxidation reactor 179 

The reactor was batch with respect to liquid and continuous with respect to the gas; it is shown 180 

schematically in Figure 1. The reactor set-up consists of a glass-lined 150 mL stainless steel 181 

autoclave (HEL Ltd, UK) rated to 100 bar and 250°C. Heating was provided by placing the 182 

autoclave on a hot plate with aluminium reactor jacket to support the vessel and improve heat 183 

transfer. The reactor was also equipped with a pressure gauge, an IKA ETS-D5 temperature 184 

probe (IKA-Werke GmbH, Germany) with an accuracy of ±0.5°C, a magnetic stirrer and liquid 185 

sampling tube for taking samples periodically from the reactor without perturbing the pressure 186 

in the system. 187 

 188 

The outlet of the autoclave was connected to a 70 cm long stainless steel condenser, with 1,3-189 

propanediol/water mixture as coolant maintained at ‒20°C by a Thermo Haake DC30/K20 190 

cooling bath. Exiting gas from the condenser flowed through a back pressure regulator (BPR), 191 

which maintained a stable back pressure inside the reactor. The BPR is an RHPS series dome-192 

loaded pressure regulator (Proportion-Air Inc, USA), with a 0‒90 barg calibrated range. The 193 

desired downstream pressure setpoint was achieved by supplying nitrogen at 7 bar to the BPR 194 

dome and adjusting the voltage command signal on a 0‒10 VDC analogue potentiometer. The 195 

exit gas from the BPR goes through a three-way valve, which led to the vent or the gas 196 

chromatograph (GC) for analysis. The line was heated to prevent condensation of vapours. Gas 197 

feed to the reactor was controlled by a calibrated Sierra SmartTrak 100 mass flow controller 198 

(MFC; Sierra Instruments, USA) with an accuracy of ±1%. The experimental rig was placed 199 

inside a safety cabinet constructed with aluminium frames and 6 mm thick polycarbonate sheets 200 
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and fitted with a fume extractor. To prevent the risk of explosive mixture forming in the reactor 201 

set-up, the oxygen content in the feed gas oxygen was kept below the limiting oxygen 202 

concentration (LOC), i.e. 10.2 vol% at 150°C and 30 bar [45,46]. 203 

 204 

3.3. Experimental procedure 205 

Three different types of experiments were performed: thermal oxidation of n-pentane, initiated 206 

oxidation of n-pentane with DTBP, and oxidation of n-pentane with DTBP initiator and boron 207 

compounds. A description of the procedure for oxidation in the presence of s-BuMB is given 208 

below; the steps are similar for other experiments with only minor modifications. 209 

 210 

In a typical run, freshly activated molecular sieve, which had been heated in an oven at 260°C 211 

overnight and thereafter cooled to room temperature, was weighed into the reactor. The 212 

autoclave was connected to the condenser and air excluded from the apparatus with a flow of 213 

nitrogen. 1,4-difluorobenzene internal standard, DTBP radical initiator, purified n-pentane and 214 

s-BuMB were charged into the reactor using Hamilton gas-tight syringes with an accuracy of 215 

±1%. 70 mL of n-pentane was used in all experiments, and the concentration of internal 216 

standard was kept the same as 13.947 µL per mL of liquid charged. The amount of s-BuMB 217 

used was varied between 1.5 and 6.8 mol% relative to n-pentane. Density of s-BuMB was taken 218 

as 0.985 g mL−1 at 20°C [47].  219 

 220 

The desired back pressure was set by applying the appropriate voltage on the potentiometer 221 

(e.g. 3.33 V for 30 bar). The vent gas valve was shut and the reactor was pressurized with 222 

nitrogen using the maximum flow rate on the MFC, and the flow of was directed to the top of 223 

the reactor to minimise splashing of the liquid.   224 
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Figure 1. Schematic of the semi-batch reactor for oxidation of n-pentane. 

MFC: Mass flow controller; NRV: non-return valve; BPR: back pressure regulator; SOV: shutoff valve; LSV: liquid sampling valve. 
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Heating was turned on, and when the reactor reached the desired temperature, flow of the 225 

oxidising was started and directed through the gas sparger. Flow rate of the oxidising gas was 226 

maintained at 50 mL min
−1

 and the content of the reactor was stirred at 500 rpm to ensure good 227 

mixing of gas and liquid phases. Duration of each experiment was 8 hours. Liquid samples 228 

were withdrawn periodically, first by purging the liquid sampling tube thereafter taking ~500 229 

µL of liquid for analysis. Simultaneously the exiting gas phase from the reactor was sent to the 230 

GC for analysis of gaseous products.  231 

 232 

To recover alcohols from the liquid samples taking during oxidation with boron species, 233 

samples were treated with 1 mL deionised water at 50°C to hydrolyse borate esters. The 234 

mixture was shaken and left to stand for 20 minutes to ensure complete hydrolysis, followed 235 

by analyses of aliquots of the resulting aqueous and organic layers. The procedure described 236 

above was followed for the oxidation of n-pentane in the presence of TiPrB and boric oxide. 237 

During thermal and DTBP-initiated oxidations, boron compound was not used, and thus the 238 

liquid samples were analysed directly without hydrolysis. 239 

 240 

3.4. Analytical method and quantification of products 241 

Identification and quantitative analyses of oxidation products were undertaken on an Agilent 242 

7890B GC integrated with a 5977B MSD and fitted with a CTC PAL autosampler, customised 243 

and supplied by JSB UK and Ireland Ltd. Gas phase was analysed on the GC, which was 244 

equipped with two thermal conductivity detectors (TCDs). Identities of the gas products were 245 

confirmed by injecting a standard gas mixture (Agilent RGA checkout sample P/N 5190-0519) 246 

containing C1‒C6 hydrocarbons, hydrogen, CO, CO2 and nitrogen. Helium was used as the 247 

carrier gas with a flow rate of 3 mL min
−1

. The GCMS side was equipped with a DB-WAX 248 

column (30 m long, 250 µm diameter and 0.25 µm film thickness) suitable for separating polar 249 

compounds. The identity of each liquid phase species was established using NIST MS library 250 

and subsequently confirmed by injecting authenticated analytical standards. Calibration and 251 

quantification of the main products were performed on an Agilent MassHunterTM quantitative 252 

analysis software based on the response factor of each analyte relative to the internal standard 253 

using specific mass ions for both species. 254 

 255 

For the gas analysis, the inlet temperature and pressure were set to 250°C and 82.3 psi, 256 

respectively, while the detectors were maintained at 250°C. Oven temperature was held at 35°C 257 
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for 3 min then ramped at 10°C min
−1

 to 90°C and held for 1.5 min, and finally increased to 258 

190°C at a rate of 10°C min
−1

. Analysis time was 20 minutes with a further three minutes for 259 

post-run at 230°C. Liquid products were analysed on the MS by taking 100 µL aliquots and 260 

diluting to 1 mL in ethyl acetate. Inlet temperature was 300°C while the oven was programmed 261 

at 80°C for 1 minute, then ramped at 20°C min
−1

 to 140°C and subsequently to 200°C at 50°C 262 

min
−1

 and held for 1 min. Split ratio was 100:1 and total analysis time was 6.2 minutes. 263 

 264 

For experimental runs with boron compounds, both aqueous and organic phases were analysed 265 

using the same amount of internal standard, so that the total concentration of oxidation products 266 

is given by the sum of the amounts of the product in both phases, as written in Eq. (1). MS 267 

chromatogram of the aqueous phase showed no presence of 1,4-difluorobenzene, hence an 268 

amount of internal standard equivalent to that in the organic phase was added into each aqueous 269 

phase sample vials prior to analysis on the MS. 270 

Ci = Ci,aq + Ci,org (1) 

Due to high volatility of n-pentane, accurate determination of the conversion of the 271 

hydrocarbon was significantly challenging. Thus, analysis of the reactor performance was 272 

based on product selectivity and yield, defined in Eqs. (2) and (3), respectively. 273 

Ss-PeOH = 
mol of sec-pentanol

∑ mol of products
× 100% (2) 

Yi = 
mol of product i

initial mol of n-pentane
× 100% (3) 

 274 

4. Results and discussion 275 

4.1. Product distribution 276 

The main liquid products of pentane oxidation identified by MS are alcohols (2- and 3-277 

pentanols), ketones (2- and 3-pentanones), carboxylic acids (mainly C2 and C3, with some C4 278 

and C5) and esters (2-pentyl acetate and 2-pentyl propanoate). An example chromatogram is 279 

shown in Figure S1 (Supporting Information). 2- and 3-pentanones overlapped each other at 280 

the same retention time, hence they could not be determined separately. Negligible amount of 281 

formic acid was formed while 1-pentanol was not detected at all, the latter confirming that n-282 

pentane is predominantly oxidised at the methylene groups in the alkane chain. 283 

Chromatographic analysis of the gas evolved indicates that CO2, resulting from total oxidation 284 

of n-pentane, is the main gaseous product while CO and lower molecular weight hydrocarbons 285 
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(C1 to C4 alkanes) were also produced, although in much smaller concentrations. 286 

Acetaldehyde, a low boiling aldehyde, was also detected in the gas phase. Overall, the yield of 287 

gaseous products was negligible. 288 

 289 

The formation of carboxylic acids as well as small-chain alkanes provide an indication of 290 

significant C‒C cleavage reactions, which involves β-scission of sec-pentoxy radicals mainly 291 

into acetaldehyde, propionaldehyde and free radicals. The aldehydes readily oxidise to acids 292 

while the free radicals abstract hydrogen from n-pentane to give the lower alkanes observed in 293 

the reaction mixture [48–50]. 294 

 295 

4.2. Thermal and peroxide-initiated oxidation 296 

The variation of product yield and sec-pentanol selectivity with time during the thermal 297 

uninitiated oxidation of n-pentane at 150°C with 10 vol% oxygen in the feed gas and 30 bar 298 

total pressure are shown in Figure 2(a). In the early stages of oxidation, the yield of alcohols, 299 

ketones and acids are similar: 0.19%, 0.23% and 0.26%, respectively, after 1 hour. However, 300 

as the reaction progresses the formation of pentanones and acids rapidly increased compared 301 

to sec-pentanols. After 8 hours of reaction, sec-pentanol yield is 0.56% while the yields of 302 

pentanones and acids are 10.5% and 13.9%, respectively. Selectivity to sec-pentanols reached 303 

a maximum of 27.6% after 1 hour, after which it declines progressively to 2.2% after 8 hours 304 

of reaction. This observation is due to the intermediate nature of the alcohols during the 305 

oxidation of alkanes, hence their subsequent non-selective oxidation to by-products such as 306 

ketones and acids. Furthermore, the ratio of 2-pentanol to 3-pentanol formed is roughly 2:1, 307 

consistent with the number of secondary C-H bonds at the 2- and 3-position as well as the 308 

preferential oxidative attack on the methylene groups near the ends of an alkane chain [50,51]. 309 

The yield of pentanones also appear to decreases after about 6 hours of reaction, which may be 310 

due to their consecutive oxidation to acids. 311 
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Figure 2. Thermal and DTBP-initiated oxidations of n-pentane. (a) Thermal oxidation (b) 

Initiated oxidation with 1 vol% DTBP. T: 130°C, P: 30 bar, y
O2,in

: 0.1. 
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The influence of radical initiator on the oxidation was investigated with 1 vol% DTBP under 313 
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profiles are similar to those in Figure 2(a). The yield of sec-pentanols increased at first reaching 315 

1.27% after four hours and declines thereafter, pentanone formation appeared to slow down 316 

while yield of acids continue to increase over the course of the reaction. After one hour, the 317 

yield of alcohols, ketones and acids are 0.71%, 1.42% and 1.18%, respectively, which 318 
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increased to 0.78%, 13% and 19.93% after 8 hours. In terms of selectivity, Figure 2(b) shows 319 

that the optimum sec-pentanol formation occurred after one hour, as indicated by the selectivity 320 

of 21.4%, which reduces to 2.3% after 8 hours. 321 

 322 

Figure 3 compares the cumulative yield of the products for thermal and DTBP-initiated 323 

oxidations of n-pentane over the course of four hours. The presence of DTBP significantly 324 

increased the initial rate of the oxidation of n-pentane, and hence yield, whereas thermal 325 

oxidation without an initiator was quite slow in the early stages. The action of DTBP on the 326 

oxidation process is connected with a sharp reduction of the induction period due to an increase 327 

in the rate of hydrogen abstraction from n-pentane and subsequent oxygen uptake. These results 328 

confirm the fact that oxidation of n-pentane in the presence of an initiator can result in higher 329 

yield of products, with only a slightly lower sec-pentanol selectivity. 330 

 

Figure 3. Effect of initiator on n-pentane oxidation. T: 150°C, P: 30 bar, y
O2,in

: 0.1. 

 331 

Furthermore, oxidation of n-pentane at 130°C initiated with different initial concentrations of 332 
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reduction in ketone and acid formation compared to the oxidation at 150°C shown in Figure 335 
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 339 

It can also be seen from Figure 4 that the maximum sec-pentanol selectivity of 20% is achieved 340 

after two hours, which declines to 14.5% over the duration of the oxidation. Thus, for the same 341 

level of the initiator concentration, a reduction in temperature favours higher selectivity to 342 

alcohols, especially at longer reaction times. It is evident that further increase in the 343 

concentration of DTBP improves the rate of oxidation, hence yield. However, between 1 and 344 

2 vol% DTBP, there is only a marginal change in selectivity to sec-pentanol. When the amount 345 

of DTBP used for the oxidation is raised to 8 vol%, the yield markedly increases, as does the 346 

selectivity to alcohol in the early stages. However, the decrease in the alcohol selectivity is 347 

more pronounced than for 1 and 2 vol% DTBP, which may be due to increase in the rates of 348 

secondary reactions. These observations indicate that higher levels of initiator increases the 349 

concentration of chain-initiating radicals, giving higher conversion of n-pentane, and thus yield 350 

of oxygenated products. 351 

 352 

4.3. Effect of boron concentration on the oxidation 353 

 

 

Figure 4. DTBP-initiated oxidation of n-pentane at 130°C, P: 25 bar, y
O2,in

: 0.1. 
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The influence of boron on the oxidation process was investigated over a range of operating 354 

conditions. First, DTBP-initiated oxidation runs at 150°C in Figure 2(b) and 130°C in Figure 355 

4, both with 10 vol% oxygen in the feed gas, were repeated with different concentrations of 356 

sec-butyl metaborate. Figure 5 shows the selectivity and yield profiles. 357 

 358 

It can be seen from Figure 5(a) that in the early stages of the reaction, up to one hour, the 359 

initiated oxidations of n-pentane in the presence of the metaborate ester proceeds almost as 360 

efficiently as with DTBP only. This indicates that the reaction mechanism remains unchanged 361 

from the free-radical mechanism as with the initiator alone [17,52]. Beyond the initial period, 362 

however, the oxidation with the boron species progressively gives lower overall yield of the 363 

products, with 18.9% after 8 hours for the run with 1.5 mol% s-BuMB initiated by DTBP 364 

compared to 33.2% for the oxidation with DTBP only. Doubling the concentration of s-BuMB 365 

further reduces the total yield to 16.5% after 8 hours. Furthermore, it can be seen that the 366 

presence of boron significantly improves sec-pentanol selectivity, the optimum values of which 367 

are attained after two hours. With 1.5 mol% s-BuMB, maximum selectivity is 37.9% at 3.24% 368 

yield compared to 21.4% at 3.31% yield for oxidation with DTBP only. Doubling the 369 

concentration of boron to 3 mol% further improves sec-pentanol selectivity, giving a maximum 370 

of 43.5% at 3.16% yield after two hours. 371 

 372 

Figure 5(b) shows the results of oxidation runs at 130°C with 3 mol% s-BuMB. The run with 373 

8 vol% DTBP and no boron was presented earlier in Figure 2, where the optimum sec-pentanol 374 

selectivity was found to be 22.6% after two hours with a corresponding total yield of 3.46%. 375 

In comparison, when this experiment was repeated with 3 mol% s-BuMB in the reaction 376 

medium, Figure 5(b) shows that the rate of oxidation was inhibited, leading to lower yield 377 

compared to the run without boron. However, selectivity to sec-pentanols is significantly 378 

improved due to the presence of the alkyl metaborate. When the concentration of DTBP was 379 

increased to 10 vol% while maintaining the concentration of the metaborate ester at 3 mol%, it 380 

can be seen that the rate of oxidation of n-pentane increased to give product yields similar to 381 

that achieved during oxidation without the boron compound. sec-Pentanol selectivity is also 382 

still better than with DTBP only, however, the values are lower compared to the run with 8 383 

vol% DTBP and 3 mol% s-BuMB. 384 
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Figure 5. Effect of sec-butyl metaborate on the oxidation of n-pentane. (a) T: 150°C, P: 30 

bar, y
O2,in

: 0.1, CDTBP: 1 vol%, 10 g AO sieve. (b) T: 130°C, P: 25 bar, y
O2,in

: 0.1, 12 g AO 

sieve. Note: AO denotes “ACROS Organics” sieve. 

 385 

These results show the feasibility of achieving an improved alcohol selectivity in the presence 386 

of boron under conditions that give similar conversion as the oxidation without boron. In other 387 

words, it is possible to achieve improved selectivity without significant trade-off in conversion, 388 

thus maximising the yield. 389 
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Furthermore, the effect of varying boron concentrations on the oxidation was investigated with 391 

5 vol% oxygen in the feed gas. Table 2 summarises the optimum selectivity, the corresponding 392 

product yield and ROH/R'O ratio after two hours of reaction. The results again clearly confirm 393 

that while the rate of oxidation is fairly similar in the early stages with and without boron, the 394 

presence of the metaborate ester alters the product distribution, directing the oxidation towards 395 

increased alcohol production. 396 

 397 

Table 2. Experimental results at 2 h for oxidation with varying s-BuMB concentration. 398 

T: 150°C, P: 30 bar, y
O2,in

: 0.05, CDTBP: 10 vol%, 15 g UOP sieve. 399 

 
DTBP 

only 

Oxidation with DTBP and s-BuMB 

 3.7 mol%            

s-BuMB 

5.4 mol%            

s-BuMB 

6.8 mol%            

s-BuMB 

s-PeOH selectivity (%) 33.5 46.4 49.4 54.7 

Overall product yield (%) 5.45 4.65 4.59 4.48 

s-PeOH:PeO ratio 1.06 1.93 2.17 2.56 

 400 

4.4. Influence of feed gas composition and total pressure 401 

The dependence of reactor performance on varying oxygen concentration was investigated with 402 

oxidising gas mixtures containing between 5 and 10 vol% oxygen. It is evident from Figure 6 403 

that with increasing oxygen content in the feed gas, the rate of reaction, hence product yield, 404 

increases with reaction time. However, higher oxygen concentration in the feed gas has a 405 

detrimental effect on the formation of sec-pentanols, leading to lower selectivity. In addition, 406 

as the oxygen content increases, the optimum reaction time at which the maximum selectivity 407 

is attained shifts slightly to the left. Thus, for 5 and 10 vol% oxygen in nitrogen, maximum 408 

selectivity of 49.1 and 43.8% are attained at around two and one hours, respectively. 409 
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Figure 6. Effect of oxygen concentration on selectivity and yield. T: 150°C, P: 30 bar, 

Cs-BuMB: 3.7 mol%, CDTBP: 10 vol%, 15 g UOP sieve. 

 410 

The effect of oxygen content on reaction selectivity and yield was further investigated by 411 

varying the total reactor pressure with 5 vol% oxygen in the feed gas. The results obtained are 412 

shown in Figure 7. Over the range investigated, the reaction profiles show that the effect of 413 

total pressure on both the cumulative yield of oxidation products as well as sec-pentanol 414 

selectivity is small but not negligible. There is a slight increase in conversion, and consequently 415 

yield, with a marginal decrease in alcohol selectivity as the total pressure increased. For reactor 416 

pressure of 20 bar after two hours of oxidation, the overall yield of the oxygenated products 417 

was 4.18% while the corresponding sec-pentanol selectivity was 51.4%, compared to 4.62% 418 

yield and selectivity of 49.1% in the case of 30 bar reactor pressure after the same duration of 419 

reaction. 420 

 421 

From Figures 6 and 7 it can be reasoned that as the partial pressure of oxygen in the gas phase 422 

increases, the interfacial concentration of oxygen increases leading to higher availability of 423 

dissolved oxygen in the liquid phase. This consequently increases the rate of oxidation of n-424 

pentane and the product yield. On the other hand, higher dissolved oxygen concentration 425 

increases the rate of consecutive oxidation of sec-pentanols into pentanones and acids as well 426 

as total combustion side products such as CO2, thus lowering selectivity. In addition, the higher 427 

rate of oxidation due to increased oxygen concentration   presumably increases the water 428 
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formed, which rapidly saturates the molecular sieve adsorbent. The free moisture can cause 429 

premature hydrolysis of the protected sec-pentanols, thereby exposing them to further oxidative 430 

attack, and thus lower selectivity. 431 

 

Figure 7. Influence of total pressure on reactor performance. T: 150°C, y
O2,in

: 0.05, Cs-BuMB: 

5.4 mol%, CDTBP: 10 vol%, 15 g UOP sieve. 

 432 

4.5. Effect of reaction temperature  433 

Over the range of 130 to 150°C, the influence of temperature on the on the rate of oxidation 434 

and product distribution was studied in the presence of boron. The selectivity and yield profiles 435 

are shown in Figure 8. The results show that the rate of n-pentane oxidation increases with 436 

temperature as indicated by the higher yield of products. As temperature increases, the rate of 437 

thermal homolysis of the radical initiator also increases, leading to higher conversion of the 438 

hydrocarbon. Selectivity to sec-pentanols also improves significantly with the reaction 439 

temperature, which may be attributed to two effects. First, higher temperature may be 440 

responsible for increasing the rate of heterolytic decomposition of the boron-hydroperoxide 441 

intermediate complex to favour sec-pentanol formation. Furthermore, the trans-esterification 442 

of sec-pentanols with sec-butyl metaborate is a slightly endothermic reaction (∆Hr
o =443 

+5.43 kJ mol
−1

), hence as temperature increases the equilibrium shifts towards the right to give 444 

higher yield of sec-pentyl borate esters, thus sec-pentanols upon hydrolysis. Other published 445 

literatures on the oxidation of hydrocarbons in the presence boron compounds have also 446 

reported increased alcohol selectivity with an increase in the reaction temperature [17]. 447 
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Figure 8. Dependence of yield and selectivity on reaction temperature. P: 30 bar, y
O2,in

: 0.05, 

Cs-BuMB: 3.7 mol%, CDTBP: 10 vol%, 15 g AO sieve. 

 448 

4.6. Influence of boron species on the oxidation 449 

It is known that different types of boron compounds exert varying levels of influence on the 450 

process in terms of alcohol selectivity and inhibition of the oxidation. For example, boric oxide, 451 

B2O3, has been found to be more reactive than orthoboric acid, B(OH)
3
, and trialkyl 452 

orthoborates, B(OR)
3
, for the decomposition of hydroperoxides. This structure-reactivity effect 453 

is due to differences in the Lewis acidity, and hence the ability of different boron to coordinate 454 

with unpaired electrons on the oxygen atom of hydroperoxides [53–55]. 455 

 456 

The oxidation of n-pentane was investigated with three different boron compounds of varying 457 

Lewis acidity and physical forms: sec-butyl metaborate (s-BuMB), triisopropyl borate (TiPrB) 458 

and boric oxide. The experimental results obtained when the oxidation was carried with similar 459 

molar concentration of the boron reagents are presented in Figure 9. These are compared with 460 

oxidation without the boron compounds. 461 
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Figure 9. Effect of boron species on product selectivity and yield. T: 150°C, P: 30 bar, 

y
O2,in

: 0.05, CDTBP: 10 vol%, 15 g UOP sieve. 

 462 

From Figures 9(a) and (b), it can be seen that the selectivity and yield profiles for both TiPrB 463 

and boric oxide are similar to that of s-BuMB, and all three boron compounds improve alcohol 464 

selectivity compared to the oxidation with DTBP only. However, s-BuMB gives higher product 465 

yield as well as selectivity to sec-pentanols than TiPrB as shown in Figure 9(a). The 466 

orthoborate appears to inhibit the oxidation far more than the metaborate ester, especially at 467 

later stages of the reaction. Furthermore, from Figure 9(b), the yield of oxidation products are 468 
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similar for both boron compounds, however, sec-pentanol selectivity is significantly higher for 469 

s-BuMB compared to boric oxide. Based on these findings, it may be suggested that an alkyl 470 

metaborate is far more effective for directing the oxidation of n-pentane towards the formation 471 

sec-pentanols compared to an orthoborate and boric oxide. These observations agree with the 472 

findings of Itskovich et al. [22], McMahon and Chafetz [56] and Illingworth [57], who 473 

investigated the oxidation of alkanes and cycloalkanes with various types of boron compounds, 474 

and reported that alkyl metaborates give better selectivity and less inhibition of the oxidation 475 

than trialkyl orthoborates and boric acid. The fact that s-BuMB  gives better selectivity than 476 

the same concentrations of TiPrB and boric oxide can be explained by the higher Lewis acidity 477 

of alkyl metaborates compared to alkyl orthoborates and boric oxide [52,58,59]. 478 

 479 

4.7. Dependence of alcohol-to-ketone ratio on reaction conditions 480 

Alcohol-to-ketone ratio is an important parameter that defines the effectiveness of a boron 481 

compound for directing the oxidation towards the formation of alcohols. For the oxidation of 482 

n-pentane at 150°C with 5 vol% oxygen in the feed gas and three different concentrations of 483 

sec-butyl metaborate as well as without the boron species, the results are presented in Figure 484 

10. It can be seen that, in general, the trends follow closely that of sec-pentanol selectivity: 485 

maximum alcohol-to-ketone ratio is achieved in the first hour of the reaction, regardless of the 486 

presence of boron, which thereafter decreases progressively with time. This observation is due 487 

to over-oxidation of the alcohols to pentanones with increasing conversion. Furthermore, 488 

oxidation with sec-butyl metaborate clearly gave higher yields of sec-pentanols relative to 489 

pentanones compared to oxidation carried out without added boron, and the value increases 490 

with increasing boron concentration. For the oxidation of n-pentane with 3.7 mol% s-BuMB, 491 

the optimum alcohol-to-ketone ratio is 2.14 compared to 1.41 achieved for the oxidation in the 492 

absence of boron. The yields of sec-pentanols relative to pentanones increased further to 2.37 493 

and 2.88 for 5.4 mol% and 6.8 mol% sec-butyl metaborate, respectively. The increase in 494 

alcohol production with an increase in boron concentration is due to an increase in the rate of 495 

heterolytic decomposition of sec-pentyl hydroperoxide to form sec-pentanols, as well as the 496 

increase in the rate of protective transesterification of the alcohols formed. 497 
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Figure 10. Influence of boron concentration on ROH/R'O ratio. T: 150°C, P: 30 bar, y
O2,in

: 

0.05, CDTBP: 10 vol%, 15 g UOP sieve. 

 498 

The dependence of the alcohol-to-ketone ratio on the operating temperature is presented in 499 

Figure 11. Similar to the trends discussed above, Figure 11 shows that the yield of sec-500 

pentanols relative to pentanones reached a maximum in one hour and subsequently decreased 501 

with reaction time. For oxidation of n-pentane in the absence of boron, increasing reaction 502 

temperature from 130 to 150°C resulted in a decrease in in the alcohol-to-ketone ratio (see 503 

Figures 2(b) and 5), whereas in the presence of boron, the ratio increased with temperature as 504 

shown in Figure 11. The increase in pentanol-to-pentanone ratio with temperature in the 505 

presence of boron may be due to an increase in the rate of heterolytic decomposition of sec-506 

pentyl hydroperoxides into alcohols at the expense of ketones. 507 
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Figure 11. Effect of reaction temperature on ROH/R'O ratio. P: 30 bar, y
O2,in

: 0.05, 

Cs-BuMB: 3.7 mol%, CDTBP: 10 vol%, 15 g UOP sieve. 

 508 

4.8. Influence of the source of molecular sieve on reactor performance 509 

The performance of two commercially available synthetic 3A molecular sieves were compared 510 

under identical experimental conditions: type 3A sieve sourced from Honeywell UOP (Sigma-511 

Aldrich) and ACROS Organics (Fisher Scientific). Figure 12 shows the results obtained during 512 

the oxidation of n-pentane at 150°C with 3.7 and 5.4 mol% sec-butyl metaborate and 15 g of 513 

ACROS Organics molecular sieve. These experimental runs were carried out under the same 514 

conditions as the borate-assisted oxidation results presented in Table 2 with the same quantity 515 

of UOP type 3A sieve.  516 

 517 

Figure 12(a) shows that the total yield of the oxidation products are lower than for the 518 

equivalent experimental run in Table 2 utilising same amount of UOP sieve. For the experiment 519 

with 3.7 mol% s-BuMB, total yield of products after two hours are 4.14% and 4.65% for the 520 

AO sieve and UOP sieve, respectively. After 8 hours, the corresponding values were 13.82% 521 

and 16.2%. For higher sec-butyl metaborate concentration of 5.4 mol%, the overall yield of 522 

oxidation products were 3.69% and 4.59% after two hours for the AO and UOP sieve, 523 

respectively. These results indicate that the UOP sieve probably exert some catalytic effects on 524 

the oxidation process compared to the AO adsorbent, leading to less inhibition of the oxidation 525 

in the case of the former. 526 
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Figure 12. Effect of boron concentration on the oxidation of n-pentane. T: 150°C, P: 30 

bar, y
O2,in

: 0.05, CDTBP: 10 vol%, 15 g AO sieve. 

 527 

Furthermore, Figure 12(a) shows that selectivity to sec-pentanols is higher for the borate-528 

assisted oxidations with the ACROS Organics sieve than for oxidation with the UOP sieve 529 

shown in Table 2. For example, with 3.7 and 5.4 mol% s-BuMB and ACROS Organics sieve, 530 

selectivity to sec-pentanols is 47.9 and 55.9% after 2 hours, respectively, compared to 46.4% 531 

and 49.4% for the UOP sieve. After 8 hours, the alcohol selectivities decrease to 27.5 and 532 

36.1% for the ACROS Organics adsorbents, while for the UOP sieve the selectivities were 26.3 533 
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and 31.7%. In addition, the pentanol-to-pentanone ratios in Figure 12(b) for the ACROS 534 

Organics sieve are significantly higher than for the oxidation runs utilising the UOP sieve, 535 

shown in Figure 10. Maximum ROH/R'O ratio with the ACROS Organics sieve were obtained 536 

after two hours, and these correspond to 2.63 and 3.55 for oxidation with 3.7 and 5.4 mol% s-537 

BuMB, respectively, compared to 2.14 and 2.37% for the same concentrations of boron used 538 

with the UOP adsorbents, as shown in Figure 10. 539 

 540 

Overall, the ACROS Organics sieve gives significantly higher alcohol selectivity and alcohol-541 

to-ketone ratio but slightly lower yield compared to the UOP sieve. A possible explanation for 542 

the observed differences in performance is given below. 543 

  544 

Molecular sieves are synthetic zeolites or crystalline aluminosilicates; the type 3A sieve can be 545 

chemically represented by the empirical formula 546 

xK2O ∙ (1 − x)Na2O ∙ Al2O3 ∙ 2SiO2 ∙ yH2O (4) 

where x is the fraction of potassium ions, typically between 40 and 100%.  547 

 548 

The composition (i.e. silica-to-alumina ratio and metal ion content) and structure of molecular 549 

sieves have been shown to strongly influence their adsorptive properties as well as surface 550 

acidity and catalytic activity. Lin et al. [60] showed that the composition of  Na+ and K+ in 551 

type 3A sieve significantly affects the adsorption of water. The authors reported that due to site 552 

preferences for adsorbed water molecules in the zeolite framework, the capacity of 3A sieves 553 

at low water vapour pressures (<0.03 kPa) increases as the ratio of K+ to Na+ increases, 554 

however, the opposite effect is observed at higher water vapour pressures, i.e. UOP 4A sieve 555 

(100% Na+) outperforms a standard UOP 3A sieve and a K-modified sieve, with 40% and 0% 556 

Na+, respectively. Furthermore, the solid-acid property and catalytic activity of molecular 557 

sieves are widely known [61]. The catalytic property of sieves arise from the surface Brønsted 558 

and Lewis acid sites inherent in their structures, which are readily regenerated on dehydration 559 

and neutralized on rehydration. The activity of sieves has been exploited to effect a wide range 560 

of acid-catalyzed hydrocarbon transformation reactions such as alcohol dehydration, 561 

isomerisation of alkanes, and polymerisation of olefins. According to Norton [62], the solid-562 

acidity, and hence catalytic activity, of type A molecular sieves for olefin polymerisation 563 

follows the order 3A < 4A < 5A, which reflects the increasing acidity of the metal ions present 564 

in the sieves, viz.  K+ < Na+ < Ca
2+

.  565 
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In general, metal ions can act as Lewis acids by coordinating to water or Lewis bases through 566 

the acceptance of a lone pair of electrons to form a hydrated metal ion or complex. The Lewis 567 

acid strength of a metal ion is dependent on its ability to attract electrons, which in turn is 568 

influenced by the size and charge of the ion [63]. Thus, the smaller the ionic radius of a cation, 569 

the stronger its Lewis acidity, making Na+ a stronger Lewis acid than K+. Furthermore, the 570 

higher the positive charge on a metal ion, the more acidic it is due to stronger attraction on the 571 

electron density, hence Al
3+

 is a stronger Lewis acid than Ca
2+

, which in turn is more acidic 572 

than Na+ and K+. 573 

 574 

From the foregoing discussions, the observed differences in performance of the 3A molecular 575 

sieves used in the present study may be connected with variations in the composition of the 576 

adsorbents. Indeed, based on the information provided in the product data sheet by the 577 

suppliers, the UOP type 3A sieve has 60% potassium ion content (K+/Na+ = 1.5) while the 578 

ACROS Organics 3A sieve contains 45% potassium ions (K+/Na+ = 0.82). The silica-to-579 

alumina (Si/Al) ratio for both materials is 1. As a result of its higher Na+ content, the ACROS 580 

Organic sieve probably has stronger surface Lewis acidity, and provides better in situ 581 

adsorption of the water formed, and thus better hydrolytic protection for sec-pentyl borates. 582 

This may in turn be attributed to the much improved sec-pentanol selectivity observed during 583 

oxidation with the ACROS Organics sieve compared to the UOP sieve. 584 

 585 

5. Conclusions 586 

The selective oxidation of n-pentane in the liquid phase assisted with a peroxide initiator and 587 

boron Lewis acid in the presence of a moisture adsorbent has been successfully demonstrated. 588 

This concept gives a significantly improved performance compared to the oxidation without 589 

the additives. The radical initiator increased the initial rate of oxidation thereby facilitating high 590 

product yield, the boron compounds promoted the formation of alcohols and subsequently 591 

minimised their over-oxidation by trapping them in the form of sec-pentyl borates, which are 592 

more stable to oxidation, while the molecular sieve 3A trapped the inhibiting water formed by 593 

adsorption, thus ensuring high selectivity to sec-pentanols.  594 

 595 

Process parameters, including temperature, oxygen content in the feed gas, and initiator and 596 

boron concentrations, have a considerable effect on the rate of oxidation and product 597 

distribution. Thus, a complex interrelationship exists between the different parameters 598 
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investigated in this work and their effect on the reactor performance. Overall, an optimum sec-599 

pentanol selectivity of 56% with an alcohol-to-ketone ratio of 3.6:1 and a total yield of 3.69% 600 

was obtained for pentane oxidation at 150°C, 30 bar total pressure using a feed gas containing 601 

5 vol% oxygen, with 10 vol% DTBP initiator, 5.4 mol% s-BuMB and 15 g ACROS Organics 602 

3A molecular sieve. 603 

 604 

From a practical viewpoint, the concept demonstrated in this work can, in principle, be applied 605 

to other light alkanes in the C1‒C9 range. This has the potential to enable the large-scale 606 

utilisation of cheaper feedstock for commodity chemical production. The alcohols formed in 607 

the process can be recovered as final products and utilised directly or they could be converted 608 

to other products such as olefins via dehydration, esters by reacting with an acid, ethers by 609 

partial dehydration, or heavier products by condensation over basic catalysts. Another 610 

possibility is direct processing of the borate esters from the reactor by thermal decomposition 611 

at around 300°C into olefins without first recovering the alcohols by hydrolysis. Overall, this 612 

process may have some commercial utility, hence further improvements in alcohol selectivity 613 

will make the process concept even more attractive. 614 

 615 

Finally, the work presented in this paper has been filed as a patent application [64]. 616 
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 622 

Nomenclature 623 

C  Concentration (mol%, vol%, mol L−1) 624 

DTBP  Di-tert-butyl peroxide 625 

∆Hr
o  Standard enthalpy of reaction (kJ mol

−1
) 626 

LOC  Limiting oxygen concentration (vol%) 627 

P  Total pressure (bar) 628 

PeO  Pentanones 629 

RH  Alkane 630 

ROOH  Alkyl hydroperoxide 631 
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S  Selectivity (%) 632 

s-BuMB sec-Butyl metaborate 633 

s-PeOH sec-Pentanol 634 

T  Temperature (°C) 635 

TiPrB  Triisopropyl borate 636 

Y  Yield (%) 637 
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1) An MS chromatogram of liquid products of n-pentane oxidation. 

 

1. An MS chromatogram of liquid products of n-pentane oxidation. 

 

Figure S1. An MS chromatogram of liquid products of n-pentane oxidation after 8 hours of 

reaction. 

1: n-pentane, 2: acetone, 3: ethyl acetate (solvent), 4: 2- and 3-pentanones, 5: 1,4-
difluorobenzene (internal standard), 6: 2-pentyl acetate, 7: 3-pentanol, 8: 2-pentanol, 9: 2-
pentyl propanoate, 10: acetic acid, 11: formic acid, 12: propanoic acid, 13: butanoic acid, 14: 
pentanoic acid.  T: 150 °C, P: 30 bar, yO2,in: 0.1, 1 vol% DTBP. 

 

                                                             
*Corresponding author. E-mail address: aal35@cam.ac.uk (A.A. Lapkin) 

3 

4 

7 8 10 
9 

12 

11 
14 

5 

2 6 13 

1 


	Borate-assisted liquid-phase selective oxidation of n-pentane
	Samson M. Aworinde,a Kun Wang,b Alexei A. Lapkina,
	Abstract
	Finally, the work presented in this paper has been filed as a patent application [64].
	Acknowledgement
	Nomenclature
	References

