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Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic, and
nanophotonic materials. The interaction of light with carriers creates an out-of-equilibrium distri-
bution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently
cools via phonon emission. Here we combine pump-probe spectroscopy, featuring extreme temporal
resolution and broad spectral coverage, with a microscopic theory based on the quantum Boltzmann
equation, to investigate electron-electron collisions in graphene during the very early stages of re-
laxation. We identify the fundamental physical mechanisms controlling the ultrafast dynamics in
graphene, in particular the significant role of ultrafast collinear scattering, enabling Auger processes,
including charge multiplication, key to improving photovoltage generation and photodetectors.

Photonics encompasses the generation, manipulation,
transmission, detection and conversion of photons. Ap-
plications of photonics are nowadays ubiquitous, affecting
all areas of everyday life. Photonic devices, enabled by a
continuous stream of novel materials and new technolo-
gies, have evolved with a steady increase in functionalities
and reduction of device dimensions and fabrication costs.
Graphene is emerging as a viable alternative to con-
ventional optoelectronic, plasmonic, and nanophotonic
materials. Graphene has decisive advantages1 such as
wavelength-independent absorption, tunability via elec-
trostatic doping, large charge-carrier concentrations, low
dissipation rates, high mobility, and the ability to confine
electromagnetic energy to unprecedented small volumes2.
These unique optoelectronic properties make it an ideal
platform for a variety of photonic applications1, includ-
ing fast photodetectors3,4, transparent electrodes in dis-
plays and photovoltaic modules1,5, optical modulators6,
plasmonic devices7, microcavities8, and ultrafast lasers9,
just to cite a few. Understanding the interaction of light
with graphene, which in the first instance creates opti-
cally excited (“hot”) carriers, is pivotal to all these op-
toelectronic applications.

The interaction of light with carriers creates an out-
of-equilibrium distribution, which relaxes on an ultra-
fast timescale to a hot Fermi-Dirac distribution, that
subsequently cools via phonon emission. While the
slower relaxation mechanisms have been extensively
investigated10–12, the initial stages of relaxation, ruled
by fundamental electron-electron (e-e) interactions13–16,
still pose a challenge. Experimentally, they defy the res-
olution of most pump-probe setups, due to the ultra-
fast sub-100-fs dynamics spanning a broad range of en-
ergies. Theoretically, the linear dispersion of massless
Dirac fermions poses a novel many-body problem, fun-
damentally different from the parabolic-band model used
for decades in ordinary metals and semiconductors17,18.

The non-equilibrium dynamics of hot carriers can be
very effectively studied by ultrafast pump-probe spec-
troscopy. In this technique an ultrashort laser pulse cre-

ates a strongly out-of-equilibrium (non-thermal) distri-
bution of electrons in conduction band and holes in va-
lence band. Optically-excited carriers relax, eventually
reaching thermal equilibrium with the lattice. The re-
laxation dynamics, due to various scattering processes,
including e-e and electron-phonon (e-ph) scattering, as
well as radiative electron-hole (e-h) recombination, is
then accessed by a second probe pulse (see Fig.1). The
time-evolving distribution of hot electrons inhibits the
absorption of probe light due to Pauli blocking, yield-
ing an increase in the transmission through the sample
(“photobleaching”, PB) which is best probed at longer
wavelength (lower energy) with respect to the excitation
pulse. Transient absorption thus enables the direct mea-
surement of the distribution function in real time. A typ-
ical time evolution of the hot-electron distribution, calcu-
lated via the microscopic theory discussed later, is shown
in Fig.5e. Here we are interested in the sub-1 ps dynam-
ics during which two main processes occur. Firstly, the
initial peak produced by the pump laser broadens due to
e-e collisions converging towards a hot Fermi-Dirac shape
in an ultrashort time scale13–16 (less than 50 fs). Subse-
quently, the optical phonons emission19 drives a cooling
process in which the peak of the Fermi-Dirac distribution
shifts to lower energies towards the Dirac point.

In order to experimentally access the very first stages
of relaxation and to disentangle the role of e-e scat-
tering from other scattering mechanisms, it is therefore
necessary to probe low-energy electronic transitions and
at the same time achieve a sub-10 fs temporal reso-
lution. Pump-probe spectroscopy has been extensively
employed to study relaxation processes in carbon-based
materials. A variety of different samples have been
studied, including thin graphite/multilayer graphene
flakes10,20,21, few-layer graphene sheets on SiC11,12,22

and graphene oxide23,24, but only a limited number of
studies reported experiments on Single-Layer Graphene
(SLG)25–27. While the slower relaxation mechanisms
have been extensively investigated, the initial stages of
relaxation, ruled by fundamental e-e interactions still
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FIG. 1: a) Schematic of pump-probe experiment: a pump and a probe pulse, with different colors, impinge on the sample with
a variable delay. The transmission of the probe pulse through the sample is measured by a detector. b) Massless Dirac fermion
bands in graphene, εk,s = s~v|k| with s = ±1. Pump (blue arrow) and probe pulses (red arrow) are applied at different photon
energies in a hole doped sample. The electron distribution relaxes towards the Dirac point by losing energy. Electrons (grey
circles) transfer energy to other degrees of freedom (dashed arrows), such as phonons and other electrons in the occupied Fermi
sea. When half of the probe-pulse energy matches the maximum of the electron distribution, absorption is strongly suppressed
by Pauli blocking (red cross) and the transition is “bleached”.

pose a challenge. Experimentally, they defy the reso-
lution of most pump-probe setups, due to the extremely
fast sub-100-fs carrier dynamics spanning a broad range
of energies. Theoretically, the linear dispersion of mass-
less Dirac fermions poses a novel many-body problem,
fundamentally different from the parabolic-band model
used for decades in ordinary metals and semiconductors.
Indeed, the temporal resolution reported in earlier liter-
ature, either in degenerate or two-color pump-probe, was
limited to∼ 100fs or higher10–12,22,23,25. This prevented
the direct observation of the intrinsically fast e-e scatter-
ing processes. Earlier studies thus mostly targeted the
phonon-mediated cooling of a thermalised (but still hot)
electron distribution, established within the pump pulse
duration. To date, only Ref.27 reported the investiga-
tion of SLG with sub-10 fs time resolution. However,
this particular experiment was conducted in a degener-
ate scheme, thus providing only a limited access to the
electron relaxation dynamics.

The focus of this work is on the impact of e-e interac-
tions on the initial stages of the non-equilibrium dynam-
ics. Even at equilibrium, e-e interactions are responsible
for a wealth of exotic phenomena in graphene28. They
reshape the Dirac bands29,30 and substantially enhance
the quasi-particle velocity29. Angle-resolved photoemis-
sion spectroscopy showed electron-plasmon interactions
in doped samples30,31, and a marginal Fermi-liquid be-
havior in undoped ones32. Many-body effects were also
revealed in optical spectra both in the infrared (IR)33

and in the ultraviolet, where strong excitonic effects were
measured34,35. In the non-equilibrium regime, the ex-
tremely fast e-e relaxation occurring on the time scale
of tens of femtoseconds is also consistent with the theo-
retical results of Refs.36–39. However, these pioneering
approaches36–39 relied solely on numerical methods and,
as discussed below, did not take full advantage of the
symmetries of the scattering problem. This implies an
uncontrolled treatment of crucially important scattering
events, which are collinear, thus characterized by a high

degree of symmetry. A deeper theoretical understand-
ing of collinear scattering events and, most importantly,
their phase space, requires more analytical work.

Here we combine extreme temporal resolution broad-
band pump-probe spectroscopy with a microscopic semi-
analytical theory based on the quantum Boltzmann equa-
tion to investigate e-e collisions in graphene during the
very early stages of relaxation. We identify the funda-
mental processes controlling the ultrafast dynamics in
graphene, in particular the significant role of Auger pro-
cesses, including charge multiplication.

SLG is grown by Chemical Vapor Deposition
(CVD)5,40 and transferred onto 100µm quartz substrates,
as described in Methods. These substrates induce negli-
gible artifacts in the experiments, as verified by measur-
ing the blank. We perform two-color pump-probe spec-
troscopy using few-optical-cycle pulses (see Methods).
We impulsively excite inter-band transitions with a 7 fs
pulse at 2.25 eV (2-2.5 eV bandwidth) and probe with a
red-shifted 13 fs pulse (1.2-1.45 eV bandwidth), as well
as a 9 fs pulse (0.7-1.2 eV bandwidth). The density of
photoexcited electrons is∼ 1013 cm−2. The availability of
such short IR pulses allows us to follow the electron pop-
ulation as it evolves towards a Fermi-Dirac distribution.
Our instrumental response function (IRF) (full width at
half maximum of the pump-probe cross-correlation) is
less than 15 fs41,42, with a crucially important order of
magnitude improvement in time resolution with respect
to previous two-color studies10,12,23. This allows us to
directly probe the e-e dynamics, unlike previous works.

Fig.2a plots the two dimensional (2D) map of the
differential transmission (∆T/T ) spectra as a function
of pump-probe delay in the 1.2-1.45 eV spectral range.
We observe, even with our time resolution, an almost
pulsewidth-limited rise of the PB signal in the near-IR,
Fig.2b. This immediately points to an ultrafast e-e re-
laxation, taking place over a timescale comparable to our
IRF. The PB signature is nearly featureless as a function
of probe wavelength, as expected given the linear dis-
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FIG. 2: a) ∆T/T map as a function of probe wavelength λ and pump-probe delay t. The positive photo-bleaching signal due
to Pauli blocking rises on the 10 fs timescale due to ultrafast spreading of the e-distribution upon impulsive excitation. b)
Transient dynamics at selected pump-probe map λs. The inset shows that the onset of the signal moves to longer times as the
probe photon energy decreases. c) Transient spectra at selected delays. For delays below 20 fs the signal peaks at high photon
energies due to the strongly out-of-equilibrium electron distribution. At later (∼ 20 fs) times the signal flattens and then peaks
at low photon energies, as the electron distribution thermalizes. d) Transient dynamics at probe photon energies < 1 eV. The
delay in the photobleaching onset is more evident. The recovery time slows as the e-distribution approaches the Dirac point

persion of massless Dirac fermions (MDFs) in SLG. The
selected time traces at different probe photon energies
feature a biexponential decay, with a first time constant
τ1 ' 150 − 170 fs, and a second longer time constant
τ2 > 1 ps. In agreement with previous studies, we as-
sign the first decay to the cooling of the hot electron
distribution via interaction with optical phonons, and
the longer decay to relaxation of the thermalized elec-
tron and phonon distributions by anharmonic decay of
hot phonons43,44. By varying the excitation intensity we
observe a linear dependence of the PB peak on pump flu-
ence, while its dynamics is nearly fluence-independent.

A deeper insight into the e-e thermalization process
can be obtained from the inset of Fig.2b, showing a delay
in the PB maximum onset at longer probe wavelengths.
In addition, by comparing ∆T/T at selected probe delays
(Fig.2c) we see that, at early times (∼ 10 fs), ∆T/T has
a positive slope, peaking at high photon energy. Start-
ing from ∼ 20 fs, it progressively flattens and changes to
a negative slope, which persists and increases at longer
delays. To understand the data, we recall that ∆T/T is
proportional to the transient electron distribution10,27 at
time t. The sub-10 fs 2.25 eV pump pulse creates an elec-
tron distribution peaking at' 1.12 eV above the Fermi
level (red line in Fig.5e), while the probe pulse samples
the 0.6-0.72 eV interval. At early times we therefore ob-
serve the tail of this distribution, with a positive slope.
On the other hand, a thermal Fermi-Dirac distribution,
even with a typical doping usually present in as-prepared

SLG (chemical potential∼ 100-200 meV)45, peaks at low
photon energies, yielding a differential transmission with
a negative slope. The transition from the non-thermal
to the thermal regime, which is completed within∼ 50 fs,
is responsible for the change of slope in ∆T/T . Fig.2d
plots the ∆T/T dynamics measured with the second red-
shifted IR probe pulse. The high temporal resolution
combined with the low photon energy allows us to ob-
serve an even clearer delay in the PB peak formation.
In particular, the maximum ∆T/T is reached after 40,
60, and 80 fs for probe wavelengths of 1050 nm (1.2 eV),
1350 nm (0.92 eV), and 1550 nm (0.8 eV), respectively.
To the best of our knowledge, this is the first experiment
setting a timescale for the out-of equilibrium carrier ther-
malization with a direct measurement. Tuning the probe
to longer wavelengths also allows us to follow the subse-
quent e-ph cooling of the carrier distribution. In fact, τ1
becomes longer (' 400 fs at 1550 nm) when probing at
smaller photon energies, consistent with a distribution
moving towards the Dirac point, before dissipating the
excess energy into the phonon bath (Fig.5e).

The ultrashort time needed for a hot electron distri-
bution to thermalize in SLG is a consequence of e-e
collisions13–16,36,37,39. We now proceed to discuss the-
oretically Coulomb-mediated two-body collisions in SLG
(Fig.3). These include intra- and inter-band scattering,
“impact ionization” or “carrier multiplication” (CM),
and Auger recombination. In a CM process, for ex-
ample, electrons in valence band are “ejected” from the



4

intra-band
scattering

inter-band
scattering

carrier
multiplication

Auger
recombination

a db c

FIG. 3: Coulomb-enabled two-body scattering processes in graphene. Shaded areas denote occupied states, in conduction
and valence band, in a non-equilibrium state, at a given time. Arrows mark transitions from initial to final states. Coulomb
collisions can take place between electrons in the same band [(a) intra-band scattering] or between electrons in different bands
[(b) inter-band scattering]. Electrons can also scatter from one band to the other (c,d). These “Auger processes” can either
increase [(c) carrier multiplication] or decrease [(d) Auger recombination] the conduction-band electrons

Fermi sea and promoted to unoccupied states in conduc-
tion band. CM in graphene could thus play a pivotal
role in the realization of very efficient photovoltaic de-
vices and photodetectors with ultra-high sensitivity46–49.
Ref.46 noted that, due to severe kinematic constraints
(see Figs.4a,b) for MDFs in 2D, these processes can only
take place in a collinear scattering configuration. To
the best of our knowledge, however, it has not yet been
shown that CM and Auger recombination can occur in a
1d manifold embedded in 2D space, since the incoming
and outgoing momenta of the scattering particles lie on
the same line. Intuitively these processes should thus be
nearly irrelevant. Indeed, in Fig.4c we demonstrate that
the phase space for CM and Auger recombination in 2D
MDF bands vanishes. We will come back to this issue be-
low, in connection with the theoretical calculation of the
e-e contribution to the collision integral in the quantum
Boltzmann equation (QBE).

We use this knowledge of Coulomb-mediated col-
lisions in the framework of the QBE, the standard
tool to investigate electron dynamics in metals and
semiconductors50,51. We consider the equations of mo-

tion for the electron (fs,µ(k)) and phonon (n
(ν)
q ) dis-

tributions, including transverse and longitudinal optical
phonon modes at the Γ and K points of the Brillouin
zone52–54. Here s = +1 (s = −1) labels the conduc-
tion (valence) band and the valley degree-of-freedom,
µ = ±1 indicates whether the electron wavevector k
is measured from K or K′. The electron distribution
is independent of the spin degree-of-freedom. QBE de-
scribes i) Coulomb scattering between electrons and ii)
phonon-induced electronic transitions, where the energy

of an electron decreases (increases) by the emission (ab-
sorption) of a phonon. In particular, the phonons at
Γ are responsible for intra-valley transitions, while inter-
valley transitions involve K phonons. Emission of optical
phonons is crucial in the cooling stage of the dynamics
and is possible because the energy of photoexcited elec-
trons (∼ 1 eV) is much higher than the typical phonon
energy (∼ 150-200 meV)52. Finally, ph-ph interactions,
arising from the anharmonicity of the lattice, are taken
into account phenomenologically37,39, by employing a lin-
ear relaxation term, parametrised by a decay rate γph/~.

We neglect acoustic phonons, since they are ex-
pected to modify the electron dynamics on a > 1 ps
timescale43,44,55,56. Even when scattering between elec-
trons and acoustic phonons is assisted by disorder, the
so-called “supercollision” process57, relaxation times∼ 1-
10 ps have been predicted57 and observed58. These are
still too long compared to those considered here.

To simulate the experiments, we solve the QBE with
an initial condition given by the superposition of a Fermi-
Dirac distribution in equilibrium with the lattice at T =
300 K and a Gaussian peak (dip) in conduction (valence)
band, centered at ε̄ = ±1.125 eV, with a width of 0.09 eV.
Ref.37 argued that the anisotropy introduced in the elec-
tron distribution by the pump pulse disappears in a few
fs due to e-e scattering. We thus enforce circular symme-
try in our QBE to deal with time-dependent distribution
functions, fµ(εk,s), not dependent on the polar angle θk
of k, but on |k| and s = ±1 only, through the Dirac-band
energy εk,s = s~v|k|, where v ≈ 106 m/s is the Fermi ve-
locity. Thus, the e-e contribution to the QBE for the
electron distribution can be written as:

dfµ(ε1)

dt

∣∣∣∣
e−e

=

∫ ∞
−∞

dε2

∫ ∞
−∞

dε3 Cµ(ε1, ε2, ε3){[1− fµ(ε1)][1− fµ(ε2)]fµ(ε3)fµ(ε4)−

fµ(ε1)fµ(ε2)[1− fµ(ε3)][1− fµ(ε4)]} , (1)
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FIG. 4: Phase space for two-body collisions in graphene. a) Allowed and b) forbidden scattering process in which two electrons
with momenta k1 and k2 scatter into momenta k3 and k4 (k′3 and k′4). The total momentum Q = k1 +k2 is conserved in both
panels. Intra-band (inter-band) scattering can be represented on an ellipse (hyperbola) with distance between foci equal to
~v|Q|, where v is the Fermi velocity, and the major axis equals the total energy E (E′). The total energy E = ~v(|k1|+ |k2|) is
conserved in a), which represents intra-band scattering. On the contrary, in b), E′ = ~v(|k′3| − |k′4|) of the outgoing particles is
smaller than E. This forbidden scattering process represents a collision between two incoming particles in the same band, and
two outgoing particles in different bands, i.e. an Auger process, for Figs.3c,d. Energy conservation E = E′ implies that Auger
processes can only take place in the “degenerate limit”, i.e. when the vertices of the two confocal conical sections coincide with
the foci. In this limit the ellipse and hyperbola collapse onto a segment and half-line, respectively, and all the momenta are
collinear. c) The three-dimensional solid represents the allowed values of the total momentum |Q| [in units of E/(~v)] plotted
as a function of energies ε1 and ε3 (both in units of the total energy E) of an incoming and outgoing particle, respectively.
Region I corresponds to intra-band processes; region II to inter-band processes; region III to Auger processes. No phase space
is available for carrier multiplication and Auger recombination for massless Dirac fermions in 2D

where Cµ(ε1, ε2, ε3) is the Coulomb kernel (see Methods)
describing the exchange of (momentum and) energy from
ε1 and ε2 (incoming states) to ε3 and ε4 = ε1 + ε2 − ε3

(outgoing states) during a two-body (intra-valley) colli-
sion. Conservation of energy and momentum are auto-
matically enforced in Eq.(1).

Circular symmetry allows us to treat the angular inte-
grations in the Coulomb kernel analytically, taking par-
ticular care of the contributions arising from the subtle
collinear scattering processes described above (see Meth-
ods). The contribution of intra- and inter-band processes
can then be cast into an integration over the allowed total
momentum Q (see Fig.4c).

CM and Auger recombination require additional care.
As described in Fig.4c, their phase space in the case of 2D
MDFs vanishes if momentum and energy are conserved.
This statement holds true for infinitely-sharp bare bands
with strictly linear dispersions. Non-linear corrections to
the MDF Hamiltonian in powers of momentum (mea-
sured from the Dirac point), however, appear due to
lattice effects (e.g. trigonal warping). These are small
in the range of energies set by the pump (∼ 1 eV)59.
Non-linearities appear also due to the inclusion of e-e

interactions28. These give rise to a self-energy correc-
tion to the bare MDF bands, whose real part is respon-
sible for the velocity enhancement29. This correction be-
comes significantly large in the low-doping regime28,29,
while here we are interested in the non-equilibrium dy-
namics of a substantial population of photexcited elec-
trons (∼ 1013 cm−2). Most importantly, any effect giv-
ing a finite width to the quasiparticle spectral function,
such as e-e interactions30,31, opens up a phase space for
Auger processes. To calculate the Auger contribution to
Cµ(ε1, ε2, ε3) we take into account these electron-lifetime
effects by a suitable limiting procedure (see Methods).
We stress that the final result is independent of the pre-
cise mechanism limiting the electron lifetime.

Crucially, we go beyond the Fermi golden rule17,18 by
including screening in the matrix element of the Coulomb
interaction, by using the Random Phase Approxima-
tion (RPA)17,18. To this end, we introduce the screened
potential18 W (q, ω; t) = vq/ε(q, ω; t), where q and ~ω are
the momentum and energy transfer in a scattering event,
respectively, vq = 2πe2/(ε̄q) is the 2D Fourier trans-
form of the Coulomb potential, ε̄ is an average dielectric
screening, depending on the media around the sample28.
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The RPA dynamical dielectric function is ε(q, ω; t) = 1−
vqχ

(0)(q, ω; t), where the non-interacting time-dependent

polarization function χ(0)(q, ω; t) depends on the distri-
bution function fµ at time t:

χ(0)(q, ω; t) = 2
∑
s,s′,µ

∫
d2k

(2π)2

fµ(εk,s)− fµ(εk+q,s′)

~ω + εk,s − εk+q,s′ + i0+

× |F (µ)
ss′ (θk − θk+q)|2 . (2)

Here the factor two accounts for spin degeneracy, and the

chirality factor F
(µ)
ss′ , which depends on the polar angle

θk of k, is defined in Methods.
Collinear scattering plays also a key role in the theory

of screening of 2D MDFs. It takes place on the “light
cone” ω = vq when k + q is either parallel or anti-
parallel to k in Eq.(2). This implies a strong peak in
the imaginary part of χ(0)(q, ω; t) (which physically rep-
resents the spectral density of particle-hole pairs) close
to the light cone28, where =m [χ(0)(q, ω; t)] diverges like
|ω2 − v2q2|−1/2: RPA dynamical screening suppresses
Auger scattering. Since we are looking at effects that
are very fast on the time-scale set by plasma oscilla-
tions (1-10 THz)16, we also introduce a “static” ap-
proximation. This consists in evaluating χ(0)(q, ω; t) at
ω=0. In the static limit there is no collinear contribu-
tion to the screened potential and the impact of Auger
processes is maximal. Note that χ(0)(q, 0; t) still de-
pends on time through fµ. RPA is definitely a very
good starting point to deal with screening in metals and
semiconductors17,18, but is certainly not exact. We are
thus allowed to modify the RPA dynamical screening
function to interpolate the strength of Auger processes
between its maximal (static screening) and minimal (dy-
namic screening) value. We thus introduce a third ap-
proximate screening model by cutting off the singularity
of χ(0)(q, ω; t) in the region |~(ω − vq)| ≤ Λ of width 2Λ
near the light cone. This regularized polarization func-

tion, χ
(0)
Λ (q, ω; t), leads to a regularized screened poten-

tial WΛ(q, ω; t) = vq/εΛ(q, ω; t) ≡ vq/[1− vqχ(0)
Λ (q, ω; t)],

with Λ = 20 meV in our calculations.
We stress that our theory is free of fitting parameters

and it is predictive from the IR to the optical domain.
In the regularized screening model we do not adjust the
value of Λ to yield the best agreement with experiments.
However, the theory is expected to work better in the IR
limit, since it is based on the low-energy MDF Hamil-
tonian and thus neglects band-structure effects, which
become non-negligible at high energy.

Fig. 5 shows that the theory with dynamical screening
compares poorly with experiments, in predicting both the
prompt PB onset and its subsequent decay. While with
static and regularized dynamical screening the profile of
∆T/T is in good agreement with experiments (Figs.5a,b),
the dynamics is much slower in the presence of dynamical
screening. This is best seen at low probe energies, Fig.5b.
The dependence of the maximum of the differential trans-
mission (Fig.5c) on probe wavelength further highlights

the large discrepancy between experiments and theory
with dynamical screening. We trace back this discrep-
ancy to the fact that, as stated above, dynamical screen-
ing completely suppresses Auger processes. We thus con-
clude that these processes are a crucially important relax-
ation channel for the non-equilibrium electron dynamics
in graphene. Fig.5c shows clearly that it would have not
been possible to draw this conclusion without compar-
ing theoretical predictions with experimental data in the
low-energy regime, i.e. for energies ε < 0.6 eV.

A closer inspection of the dynamics reveals that the
thermalization of the initial hot electron distribution (see
Fig. 5e) is accompanied by a very fast equilibration of the
chemical potentials of conduction and valence bands, over
few tens of fs. Auger processes are the only e-e scattering
channel that couples the two bands (see Figs.3c,d) and
are thus responsible for this ultrafast equilibration (e-
ph scattering is relevant on the much longer time scale
of hundreds of fs11,22). Thus, hot carriers in conduc-
tion band provide a substantial amount of energy for the
promotion of electrons from valence to conduction band,
resulting in CM46–49. This is shown in Fig.5f (see Meth-
ods for the CM definition) and is crucial for graphene’s
application in photovoltaics and photodetectors.

We emphasize that dynamical screening, when cured
by cutting-off the singularity of the polarization func-
tion along the light cone with the parameter Λ, improves
the agreement with experiments when compared to static
screening only. Indeed, the static theory underestimates
screening since it misses collinear scattering. This ex-
plains why ∆T/T calculated with static screening: i) in-
creases too fast in the early stages, the electron dynamics
being initially boosted by the poorly-screened Coulomb
repulsion, and ii) slows down too much in the subsequent
stages, when poorly-screened carriers begin to accumu-
late close the Dirac point.

In conclusion, we performed time-resolved spec-
troscopy on single-layer graphene with an unprecedented
combination of temporal resolution and spectral tunabil-
ity allowing us to track the early processes involved in
electron thermalization. A microscopic theory based on
the quantum Boltzmann equation and including collinear
scattering and screening is capable of modeling the exper-
imental data with no need of free parameters. In the re-
gion of parameter space explored in this experiment this
ultrafast equilibration dynamics can only be explained
by considering carrier multiplication and Auger recom-
bination as fundamental mechanisms driven by electron-
electron interactions.

We note that collinear Coulomb collisions in the intra-
band scattering channel yield logarithmically-enhanced
quasiparticle decay rates and transport coefficients (such
as viscosities and conductivities)60–62. Angle-resolved
ultrafast measurements of the hot-electron distribution
may shed light on these important processes.

Ultrashort light pulses could be used to create a super-
hot plasma of ultrarelativistic fermions (massless Dirac
fermions) and bosons (e.g. phonons) in graphene or in
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FIG. 5: a) Time-evolution of ∆T/T at λ ' 900 nm extracted from Fig.2 (circles). Theoretical results are obtained from the
QBE solution using dynamical screening (dotted line), regularized dynamical screening (solid line), and static screening (dashed
line). All data are normalized to their maximum, and correspond to a chemical potential∼200meV (hole-doped sample). b)
As in panel a) for λ ' 1500 nm. c) Time tmax (in fs) at which ∆T/T reaches its maximum. The labeling of the theoretical
data (lines) is the same as in a,b). Experimental data in Fig.2a are here shown as a color plot in a continuous optical spectral
range for λ . 1000 nm. The circles with error bars correspond to three IR measurements. d) ∆T/T as a function of the
electron energy ε at different times. The slope inversion, signature of the initial stage of the dynamics (cfr. Fig.2c), is correctly
reproduced by the theory. e) Time-evolution of the electron population n(ε) per unit cell (in units of eV−1) as derived by
solving the QBE with regularized dynamical screening. The initial hot- electron peak (red) is centered at half the energy of
the pump laser. The amplitude of this distribution is divided by 3 to fit into the frame of the figure. The hot-electron peak
rapidly broadens into a non-thermal distribution (black), which then thermalizes to a hot Fermi-Dirac (green) distribution.
Subsequently, cooling by phonon emission takes place (blue), until thermal equilibrium with the lattice is eventually established
(not shown here since other effects neglected in our theory, such as acoustic phonons, are important in the late stages of the
dynamics. When the n(ε) peak energy crosses half the energy of the probe, Pauli blocking inhibits absorption. In this case a
stronger transmitted “bleaching” signal is recorded at the detector. f) Carrier multiplication as a function of time. Labeling
as in panels a-c). Note the suppression of carrier multiplication in the prediction based on dynamical screening (dotted line)

other Dirac materials, thereby creating conditions ana-
logue to those in early universe cosmogony, but within
a small-scale, table-top experiment. Understanding the
impact of collinear scattering on the ultrafast thermal-
ization of massless Dirac fermions can thus be of pivotal
importance to achieve a deeper understanding of high-
temperature gauge theories63,64.
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Methods

Graphene growth and transfer

SLG is first grown on copper foils (Cu) by Chemical
Vapor Deposition (CVD)5,40. A ∼ 25 µm thick Cu foil is
loaded in a 4 inch quartz tube and heated to 1000 oC with
an H2 gas flow of 20 cubic centimeters per minute (sccm)
at 200 mTorr. The Cu foils are annealed at 1000 oC
for 30 mins. The annealing process not only reduces
the oxidized foil surface, but also extends the graphene
grain size. The precursor gas, a mixture of H2 and CH4

with flow rates of 20 and 40 sccm, is injected into the
CVD chamber while maintaining the reactor pressure at
600 mTorr for 30 mins. The carbon atoms are then ad-
sorbed onto the Cu surface, and nucleate SLG via grain
propagation5,40. Finally, the sample is cooled rapidly
to room temperature under a hydrogen atmosphere at
a pressure of 200 mTorr. The quality and number of
layers of the grown samples are investigated by Raman
spectroscopy65,66. The Raman spectrum of graphene
grown on Cu does not show any D peak, indicating the
absence of structural defects. The 2D peak is a single
sharp Lorentzian, which is the signature of SLG. We then
transfer a 10 × 10 mm2 region of SLG onto quartz sub-
strates (100 µm thick) as follows. Poly(methyl methacry-
late) (PMMA) is spin-coated on the one side of graphene
samples. The graphene films formed on the other side of
Cu foil, where PMMA is not coated, is removed by using
oxygen plasma at a pressure of 20 mTorr and a power of
10 W for 30s. Cu is then dissolved in a 0.2 M aqueous
solution of ammonium persulphate ((NH4)2S2O8). The
PMMA/graphene/Cu foil is then left floating until all
Cu is dissolved. The remaining PMMA/graphene film is
cleaned by deionized water to remove residual salt. Fi-
nally, the floating PMMA/graphene layer is picked up
using the target quartz substrate and left to dry under
ambient conditions. After drying, the sample is heated
to 180 oC for 20 min to flatten out any wrinkles67. The
PMMA is then dissolved in acetone, leaving the graphene
adhered to the quartz substrate. A portion of the sub-
strate is not covered with graphene, thus allowing the
measurement of the nonlinear response of the substrate
by a simple transverse translation of the sample. This
contribution is measured to be negligible.

The transferred graphene is then inspected by opti-
cal microscopy, Raman spectroscopy and absorption mi-
croscopy. After transfer, the 2D peak is still a single
sharp Lorentzian, indicating that SLG has been trans-
ferred. The absence of D peak proves that no struc-
tural defects are induced during the transfer process. Ra-
man measurements over a large number of points indicate
a∼200meV p-doping45,68,69.

Pump-probe spectroscopy

The transient absorption spectroscopy setup is driven
by a regeneratively-amplified mode-locked Ti:Sapphire
laser (Clark Instrumentation) that delivers 150 fs pulses
at 780 nm with 500 mJ energy at 1 kHz repetition
rate. The laser drives three optical parametric amplifiers
(NOPAs), from which the visible pump pulses and the
two near-IR probe pulses are generated. These are then
compressed to the transform limit duration by means of
custom made chirped mirrors (visible NOPA), a fused sil-
ica prism pair (IR NOPA 1) and an adaptive shaper based
on a deformable mirror (IR NOPA 2). The pump and
probe pulses are synchronized by a motorized translation
stage and spatially overlapped on the sample in a slightly
noncollinear geometry. After the sample, the probe
beam is focused onto the entrance slit of a spectrometer
equipped with a 1024 pixel linear Si photodiode array
(Entwicklungsbuero Stresing). The IR NOPA 2 probe
pulse is instead detected by an InGaAs CCD spectrom-
eter (Bayspec Super Gamut). Both this devices allow a
full 1-kHz readout of the spectra. By recording pump-on
and pump-off probe spectra, we extract the differential
transmission signal as a function of pump-probe delay
(t) as ∆T/T (λ, t) = [Ton(λ, t)−Toff(λ, t)]/Toff(λ, t). The
system has a sensitivity better than ∆T/T = 10−4. The
pump intensity was reduced to avoid any sample satura-
tion or high order non-linear effects (Ipump < 10 J cm−2).
By moving from multichannel to single-wavelength detec-
tion, we were able to reduce the fluence by a factor 20,
and saw a substantially unchanged dynamics. The am-
plitude of the ∆T/T signal is lower than 0.007 at the
maximum of the PB signature and the signal from the
substrate is negligible.

Quantum Boltzmann Equation

The QBE for the electron distribution,

dfµ(εk,λ)

dt
=
dfµ(εk,λ)

dt

∣∣∣∣
e−e

+
dfµ(εk,λ)

dt

∣∣∣∣
e−ph

, (3)

includes collisions integrals due to e-e and e-ph scatter-
ing. The magnitude of the e-ph couplings is discussed
in Refs.52–54. Here we use the values 〈g2

Γ〉 = 0.0405 eV2

for the phonons at Γ and 〈g2
K,L〉 = 0.00156 eV2, 〈g2

K,T〉 =

0.2 eV2 for the longitudinal and transverse phonons at
K, respectively.

The equation for the phonon distribution,

dn
(ν)
q

dt
=
dn

(ν)
q

dt

∣∣∣∣∣
e−ph

− γph

~
[n(ν)

q − n(ν)
eq ] , (4)

includes the collision term due to e-ph scattering and the
linear relaxation with γph/~ ' 0.26 ps−139. The equilib-
rium phonon distribution function consists of the Bose-

Einstein thermal factor n
(ν)
eq = {exp [~ω(ν)

q /(kBT )]−1}−1
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evaluated at the ν-th phonon branch ω
(ν)
q , assumed dis-

persionless in the present treatment. This approximation

is well justified since ω
(ν)
q changes slowly with respect to

the electron dispersion.
The Coulomb kernel in Eq. (1) reads:

Cµ(ε1, ε2, ε3) =
2π

~
1

S2

∑
Q,k3

|V (µ)
1234|2

× δ(|E − ε1| − ~v|Q− k1|)
× δ(|ε3| − ~vk3)

× δ(|E − ε3| − ~v|Q− k3|+ η) , (5)

where E ≡ ε1 + ε2, k2 ≡ Q − k1, k4 ≡ Q − k3, and
S is the sample area. The polar angle of k1 does not
matter, while the modulus of k1 is equal to ε1/(~v). The
Dirac delta functions follow from the conservation of total
energy E and momentum Q. In Eq. (5) we introduced
the infinitesimal η in the argument of the third delta to
relax energy conservation, which is restored by taking
the limit η → 0. As shown in Fig. 4c), when η = 0 the
summand in Eq. (5) vanishes for Auger processes. In this
case, it is important to first perform the summations over
Q and k3, and then take the limit η → 0.

The squared matrix element |V (µ)
1234|2 (where the in-

tegers 1 . . . 4 indicate the dependence on λi and ki for
i = 1 . . . 4) includes a summation over spin degrees-of-
freedom and direct and exchange18 contributions to e-

e scattering. It reads |V (µ)
1234|2 = |U (µ)

1234 − U
(µ)
1243|2/2 +

|U (µ)
1234|2, where

U (µ)
1234 = W (|k1−k3|, ω; t)F

(µ)
λ1,λ3

(θk3
−θk1

)F
(µ)
λ2,λ4

(θk4
−θk2

)

(6)
is the matrix element of the Coulomb interaction in
the eigenstate representation of the MDF Hamiltonian59,

with F
(µ)
λ,λ′(θ) = [1 + λλ′ exp (iµθ)]/2 the so-called “chi-

rality factor”59 and ω = (ε1− ε3)/~. Note that Coulomb
scattering occurs only within a valley µ.

The contribution due to Auger processes to the

Coulomb kernel can be calculated analytically:

Cµ(ε1, ε2, ε3)|Auger =
1

8π2~5v4

√∣∣∣∣ε2ε3ε4

ε1

∣∣∣∣|V (µ)
1234|2 . (7)

The strength of e-e interactions in graphene is
parametrised by the dimensionless fine structure constant
αee ≡ e2/(~vε̄). We use αee = 0.9, as appropriate28 for
graphene with one side exposed to air and the other to
SiO2.

The differential transmission is calculated as a function
of wavelength λ = 2πc/ω from the electron distribution
via the following relation27:

∆T

T
(λ, t) = πα[fµ(~ω/2)− nF(~ω/2)

− fµ(−~ω/2) + nF(−~ω/2)] , (8)

where α = e2/(~c) ' 1/137 is the fine-structure constant
and nF(E) is the Fermi-Dirac distribution. Here µ = ±1
is not summed over and can be chosen at will, since the
electron distribution is identical for the two valleys.

The CM is calculated by employing the following equa-
tion:

CM =
nc(t)− nc(−∞)

nc(0)− nc(−∞)
, (9)

where nc(t) =
∑
µ

∫∞
0
dεfµ(ε)ν(ε) is the electron density

in conduction band at time t, ν(ε) = 2εA0/[2π(~v)2]
being the MDF density-of-states, and A0 ' 0.052 nm2

the area of the elementary cell.
The numerical solution of the QBE is performed with

a fourth-order Runge-Kutta method. The electron ener-
gies are discretized on a mesh with a 25 meV step. The
screening function and the Coulomb kernel are updated
in time at multiples of the integration step, depending on
the speed of the relaxation, with more frequent updates
(e.g. every 2 fs) at the beginning of the time evolution.
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de Abajo, R. Hillenbrand, and F. Koppens, Nature 487,
77 (2012).

3 F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, and P.
Avouris, Nature Nanotech. 4, 839 (2009).

4 L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo,
A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A.
Tredicucci, Nature Mater. advance online publication, 09
September 2012 (DOI 10.1038/nmat3417).

5 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J.

Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim,
K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, and S.
Iijima, Nature Nanotech. 4, 574 (2010).

6 M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L.
Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).

7 T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo,
R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Fer-
rari, and K.S. Novoselov, Nature Commun. 2, 458 (2011).

8 M. Engel, M. Steiner, A. Lombardo, A.C. Ferrari, H.V.
Lohneysen, P. Avouris, and R. Krupke, Nature Commun.
3, 906 (2012).

9 Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F.
Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, ACS
Nano 4, 803 (2010).

10 P.A. Obraztsov, M.G. Rybin, A.V. Tyurnina, S.V. Garnov,

mailto:acf26@hermes.cam.ac.uk


10

E.D. Obraztsova, A.N. Obraztsov, and Y.P. Svirko, Nano
Lett. 11, 1540 (2011).

11 D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W.A. de
Heer, P.N. First, and T.B. Norris, Phys. Rev. Lett. 101,
157402 (2008).

12 L. Huang, G.V. Hartland, L.-Q. Chu, Luxmi, R.M. Feen-
stra, C. Lian, K. Tahy, and H. Xing, Nano Lett. 10, 1308
(2010).
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